## Front Cover :

Observations with the IRAM 30 m telescope of CO emission from the edge-on spiral galaxy NGC 891 displayed as a diagram of radial velocity vs. position along the major axis of the galaxy (from Garcia Burillo et al. 1992). Note the rapidly rotating nuclear disk at the center of the galaxy. The diagram resembles that for our Milky Way.

# ANNUAL REPORT 1991 

Edited by

Michael Grewing
with contributions from:

Jean Delannoy
Dennis Downes
Albert Greve
Michel Guélin
Stéphane Guilloteau
Karl-Heinz Gundlach
Bernard Lazareff
Manfred Malzacher
Alain Perrigouard
Jean-Louis Pollet
Marc Torres

[^0]
## TABLE OF CONTENTS

1. Introduction ..... 3
2. Scientific Highlights of Research with IRAM Telescopes in 1991 ..... 4
2.1 Summary ..... 4
2.2 Galaxies ..... 5
2.3 Young Stellar Objects ..... 10
2.4 Circumstellar Envelopes ..... 12
2.5 Molecules ..... 14
2.6 Solar System ..... 14
2.7 Atmopspheric Phase Fluctuations ..... 16
3. Pico Veleta Observatory ..... 17
3.130 m Telescope Operation ..... 17
3.2 Infrastructure ..... 17
3.3 Reflector Surface ..... 17
3.4 Receivers ..... 18
3.5 VLBI Equipment ..... 18
3.6 Backends ..... 19
3.7 Computers ..... 19
4. Plateau de Bure Observatory ..... 20
4.2 Data Reduction ..... 20
4.3 Operations ..... 21
4.4 Staff Changes ..... 23
4.5 Conclusions ..... 23
5. Grenoble Headquarters ..... 24
5.1 SIS Group and Receiver Group Activities ..... 24
5.2 Backend Developments ..... 31
5.3 Computer Group ..... 32
5.4 Technical Group ..... 34
6. Personnel and Finances ..... 37
7. Annexes I : Telescope Schedules ..... 40
7.1 IRAM 30m Telescope ..... 40
7.2 IRAM Plateau de Bure Interferometer ..... 52
8. Annexes II : Publications ..... 54
8.1 IRAM Publications ..... 54
8.2 IRAM Users' Publications ..... 58
9. Annex III : IRAM Executive Council and Committee Members ..... 63

## 1. INTRODUCTION

1991 has been the first year in which both the Pico Veleta Observatory and the Plateau de Bure Interferometer have been fully operating as guest observer facilities. This has greatly enhanced the scientific output, both in quality and in quantity. Some of the new material has already entered the literature, more is still awaiting publication. An overview over some of the results obtained is given in Chapter 2 of this report.

It has been particularly gratifying to see the rise in the number of scientists who start using the interferometer as their new tool. This is a learning process on both sides. The way in which interferometer projects are carried out differs in many important aspects from the more conventional procedures followed at Pico Veleta. The observations for a project normally span several weeks, and both the equipment and the data acquisition are more complex than for single-dish observations. Therefore, they are normally carried out in absentee mode by IRAM staff, who assumes responsibility for the quality of the data. Together with the assistance during the data reduction which is mandatory for first-time observers, this means an increased load on the IRAM personnel, and manpower allocated to Plateau de Bure observations will have to be reviewed.

After Spain had officially joined IRAM in the fall of 1990, the IRAM Council gave the final 'go ahead' for the construction of the fourth antenna for the Plateau de Bure in June 1991. This was a long awaited, very important step which will eventually speed up the interferometer operations by a factor of two for mapping. IRAM had prepared for this decision, and the tendering and contracting actions for the mount of antenna 4 started very quickly after the Council meeting. Most of the reflector components had already been produced in earlier years. Some (of them) still had to be purchased in 1991. A detailed schedule for the construction of antenna 4 is given in Chapter 5 of this report.

Also in 1991, interferometry of a different kind, 'Very Long Baseline Interferometry' (VLBI), has started at the 30 m telescope on an experimental basis, offering angular resolutions at the milli-arcseconds and even submilli-arcseconds level. While VLBI has become a regular network activity at cm-wavelengths, mm-VLBI, especially at the shorter mm-wavelengths, is still in a development phase, its growth potential being enormous.

Additional receivers at the 30 m telescope, the maintenance of the VLBI equipment mentioned above, and the ever increasing number of tuning requests made it necessary to have receiver engineers on the mountain more frequently than before, and also to use the help from cooperants for these tasks.

In the fall of 1991, the first of the Plateau de Bure antennas reached the end of its 5 year warranty period. Prior to this, IRAM carried out an internal total system's review to identify areas of concern and critical components. As far as hardware goes, the main area of concern are the pinholes which formed in the protective layer on the frontside of the reflectors, primarily on antennas 1 and 2 . This phenomenon has been studied in further detail, and various technical and financial scenarios have been discussed both with the manufacturer and the insurance company.

# HIGHLIGHTS OF RESEARCH WITH IRAM TELESCOPES IN 1991 

## SUMMARY

We describe here a small selection from the many programs carried out at the IRAM telescopes or published in 1991. Some highlights are:

- Detection of the $\mathrm{CO}(4-3)$ and $\mathrm{CO}(6-5)$ lines in $10214+4724$, an extremely luminous galaxy at a redshift of 2.286 , among the farthest detections of molecular emission lines ever made in astronomy.
- Evidence that ultraluminous infrared galaxies are powered by star formation, not black holes. The evidence is the detection, via the HCN molecule, of large quantities of high density molecular gas in these galaxies, and the good correlation of the mass of this gas with the far infrared luminosity.
- Discovery of a rapidly rotating nuclear disk in the galaxy NGC 891.
- Analysis of the IRAM interferometer maps of the HCN molecule in the center of the galaxy IC 342 and the first determination of molecular line ratios on a scale of 20 pc in a massive galaxy other than our own.
- Measurement of an unusually high ${ }^{18} \mathrm{O} /{ }^{17} \mathrm{O}$ isotope ratio in starburst galaxy centers, which suggests that starbursts preferrentially form high mass stars.
- New detections of CO in Markarian galaxies and evidence that the 1.3 mm continuum emission and the CO emission both give the same total mass estimate of molecular gas.
- Interferometric observations of $\mathrm{SiO} v=0$ thermal emission from evolved stars and evidence that the sizes of the SiO emission regions may be larger than previously believed.
- A new study of isotope abundances in carbon-rich circumstellar envelopes which sets limits on the total mass loss rates for these stars, showing that such stars cannot be the main sources of oxygen in the interstellar medium.
- New detections of deuterated molecules in Orion.
- Discovery, with the MPIFR bolometer on the $30-\mathrm{m}$ telescope, of a steep rise in the continuum flux at 345 GHz of the galactic center point source $\mathrm{Sgr} \mathrm{A}^{*}$, suggestive of a dust disk around the central engine at the nucleus of our Galaxy.
- A new study of HCN, HNC and their isotopically substituted variants in Orion, made with both the IRAM 30 m and the IRAM interferometer.
- The first ground based direct detection of Io's neutral atmosphere by observing $\mathrm{SO}_{2}$.
- Detection of CO and HCN in Neptune's stratosphere.


## GALAXIES

## Distant Galaxies (> $70 \mathbf{M p c}$ )

## A Starburst Near the Beginning of Time

The 30 m telescope has detected for the first time the $\mathrm{CO}(4-3)$ and $\mathrm{CO}(6-5)$ lines in the extremely luminous galaxy IRAS $10214+4724$. The $\mathrm{CO}(3-2)$ line had been found by Brown and Vanden Bout at the NRAO Kitt Peak telescope, and has now been mapped with the IRAM interferometer. The large amount of molecular gas implied by these detections suggests that most of the mass of the galaxy may be in the form of molecular gas and not stars as in galaxies in the present day universe. The other intriguing result is that most of the carbon and oxygen must have existed already when the universe may have been about a fifth of its present age, presumably due to an earlier (pre-galactic?) generation of stars. The redshift of this galaxy, $\mathrm{z}=2.286$, means the radiation was emitted when the volume of the universe was 36 times smaller than at present, and the average density of the universe was 36 times greater. The distances between the galaxies was 3.3 times smaller, but the galaxies were the same size, since galaxies themselves do not expand like the universe does. This means that mergers of galaxies were more frequent at this early epoch of the universe, and indeed, the global properties of $10214+4724$ do resemble those of the ultraluminous merger galaxies in the more local universe.

## Dense Molecular Gas and Starbursts in Ultraluminous Galaxies

The 30 m telescope has detected $\mathrm{HCN}(1-0)$ emission from five ultraluminous galaxies, three lower-luminosity interacting systems, and two gas rich normal galaxies. There are huge masses of high density gas ( $210^{10}$ solar masses) in the ultraluminous galaxies, which shows star formation, rather than black holes, generates their infrared luminosity. HCN traces $\mathrm{H}_{2}$ at a much higher density, $\sim 10^{4} \mathrm{~cm}-3$, than $\mathrm{CO}\left(\sim 500 \mathrm{~cm}^{-3}\right)$. The ultraluminous galaxies Mrk 231, Arp 193, Arp 220, and NGC 6240 have $\mathrm{HCN}(1-0)$ luminosities greater than the $\mathrm{CO}(1-0)$ luminosity of the Milky Way. Mrk 231 has $310^{10}$ solar masses of $\mathrm{H}_{2}$ at a density near $10^{4} \mathrm{~m}^{-3}$, about 300 times the mass of dense $\mathrm{H}_{2}$ in the Milky Way. Emission of $\mathrm{HCO}+(1-0)$ was also detected in Mrk 231 and $\operatorname{Arp} 220$ at half the strength of $\mathrm{HCN}(1-0)$. The ratio of HCN to CO luminosity is $1 / 6$ for ultraluminous galaxies, but only $1 / 80$ in normal spiral galaxies. A large fraction of the molecular gas in ultraluminous galaxies, perhaps 50 percent, is in very dense regions similar to star forming cloud cores, rather than in the envelopes of giant molecular clouds. The ratio of far infrared to HCN luminosity is similar in both ultraluminous galaxies and normal spirals, including the Milky Way, which suggests the star formation rate per mass of dense gas is independent of the infrared luminosity or the state of interaction. The molecular gas density in the central regions of the ultraluminous galaxies, $\sim 500 \mathrm{M}_{\text {sun }} \mathrm{pc}^{-3}$, is similar to the stellar density in the centers of elliptical galaxies, consistent with the idea that some mergers may eventually become ellipticals.

## CO in Markarian Galaxies

A new study of $\operatorname{CO}(1-0)$ and (2-1) towards 18 active Markarian galaxies, done with the 30 m telescope and the SEST telescope, shows the molecular gas is concentrated towards
the center of these galaxies, and that the $\mathrm{CO}(2-1) /(1-0)$ ratio is 0.5 . The 1.3 mm dust emission and the CO luminosity give compatible values for the gas mass.

### 2.2.2 Nearby Galaxies ( $10<\mathrm{D}<70 \mathrm{Mpc}$ )

## Trace molecules

Three more trace molecules, $\mathrm{N}_{2} \mathrm{H}^{+}, \mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{3} \mathrm{CCH}$, have been observed in nearby galaxies (NGC 253, M 82...). Several rotational transitions of the two latter species were detected in NGC 253 and/or M82; their relative intensities suggest gas densities of few $\mathbf{x}$ $10^{4} \mathrm{~cm}^{-3}$ toward the center of these systems.

## Rapidly rotating nuclear disk

CO observations of the central region of NGC 891 show a rapidly rotating nuclear disk or ring, similar in its 500 pc size and $250 \mathrm{~km} \mathrm{~s}^{-1}$ rotational velocity to the nuclear disk in the center of our Galaxy (cover photo).

## Further mapping of CO emission in nearby galaxies

Maps of the ${ }^{12} \mathrm{CO}$ emission in regions of NGC 1326, NGC 4736, NGC 4631, M100, M101, M33... have been published or were continued.

## Molecular spiral structure in M51

The $\mathrm{CO}(2-1)$ and (1-0) maps of M 51 made with the 30 m telescope have been analysed in terms of the average gas properties in the spiral arm and interarm clouds, and the implications for cloud evolution. In the interarm regions, the line ratio of ${ }^{12} \mathrm{CO} /{ }^{13} \mathrm{CO}$ is 1.5 times larger for the 2-1 lines than for the 1-0 lines, suggesting the interarm gas is less dense than gas in the spiral arms. A numerical simulation of cloud motions and evolution by $10^{5}$ test particles in a central gravitational field, perturbed by a spiral density wave triggered by M51's companion, reproduces the gross spiral structure and motions seen in CO. The observed arm-interarm CO contrast can be explained with a constant atomic/molecular gas ratio in the arms and between the arms.

## Very Rare CO Isotopomers

The $\mathrm{C}^{18} \mathrm{O} / \mathrm{C}^{17} \mathrm{O}$ abundance ratio has been measured in the central regions of NGC 253 , M82 and IC 342. This ratio is 8 in M82 and $>6$ in IC342, both double that in the interstellar medium in our Milky Way Galaxy. The results can be understood if starbursts in the centers of galaxies preferentially form high mass stars. Since the ${ }^{18} \mathrm{O}$ is mainly produced by high mass stars, such starbursts would yield high ${ }^{18} \mathrm{O} /{ }^{17} \mathrm{O}$ ratios (and high ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ ratios).


Fig. 2.1:
Giant molecular clouds near the center of the nearby galaxy IC 342, mapped with the IRAM interferometer in the $\mathrm{HCN}(1-0)$ line at a wavelength of 3.4 mm .

### 2.2.3 The Nearest Galaxies (< $10 \mathbf{~ M p c}$ )

HCN in the center of the galaxy IC 342
$\mathrm{HCN}(1-0)$ line emission from the center of the galaxy IC 342 has been mapped with the IRAM interferometer at $2.7^{\prime \prime}$ resolution. Comparison of this HCN map with other molecular line maps of similar resolution yields the first determination of molecular line ratios on a scale of 20 pc in a massive galaxy other than our own. In the five main clouds within 100 pc of IC 342's nucleus, the $\mathrm{CO}(1-0) / \mathrm{HCN}(1-0)$ intensity ratio is $7+/-2$ and is at least twice as high farther out in the mini spiral arms. In the central region, the line intensity ratios of ${ }^{13} \mathrm{CO}(1-0) / \mathrm{HCN}(1-0)$ and $\mathrm{HCN}(1-0) / \mathrm{NH}_{3}$ are both $\sim 2$. The interferometer also detects 3.4 mm continuum radiation near the center of the galaxy at a level of 27 mJy . Comparison with other maps shows the 3.4 mm continuum is free-free emission rather than thermal radiation by dust. The number of ionizing photons is similar to that in our Galactic center. Since the free-free continuum is associated with only one of the dense molecular clouds traced by the HCN, most of the molecular clouds in IC 342's center are not forming lots of massive stars. The gas in the molecular clouds is probably heated by dynamical friction rather than starlight. Since both the $\mathrm{HCN}(1-0)$ and the far $\mathbb{I R}$ radiation come from much smaller regions than the ${ }^{12} \mathrm{CO}(1-0)$, the HCN is better correlated with the FIR radiation than is ${ }^{12} \mathrm{CO}$, but neither HCN nor CO trace star formation. The global ratio of far infrared luminosity to molecular mass is only an indirect indicator of the efficiency of star formation in the center of IC 342. (Figs. 2.1 and 2.2)

## Molecular gas in a nuclear ring in NGC 3593

Strong ${ }^{12} \mathrm{CO}(1-0)$ and ${ }^{12} \mathrm{CO}(2-1)$ lines were detected with the 30 m telescope from the lenticular galaxy NGC 3593. Deconvolution of the data to 8 " resolution ( 270 pc at $\mathrm{d}=7$ Mpc ) shows the molecular gas is in a ring of radius $200-350 \mathrm{pc}$, the turn-over radius of the rotation curve. Probably because of optical extinction, the apparent optical center is 15 " from the centers of the molecular ring, the radio continuum and the rotational velocity field. The $\mathrm{J}=1-0$ ring is larger than both the $\mathrm{J}=2-1$ ring and the separation between the radio continuum peaks, suggesting either optically thin CO near the ring's inner boundary, or gradients in density or temperature with maxima near the center. The total molecular masses of $310^{8}$ and $4.510^{8}$ solar masses derived from the far-IR and ${ }^{12} \mathrm{CO}(1-0)$ fluxes, respectively, indicate dust and molecular cloud properties similar to those in the Milky Way. Molecular gas is $1 \%$ of the total mass of the entire galaxy and $8 \%$ of the mass in the innermost 700 pc diameter. The mass of molecular gas is 2.5 times that of the atomic gas. This is the first time the three-dimensional Lucy rectification has been used to get the spatial and velocity distribution of extragalactic molecular gas. Another restoration method, simulated annealing, also gave similar flux and velocity distributions.


Fig. 2.2 :
HCN molecular emission in the galaxy IC 342 , in individual $10 \mathrm{~km}^{\mathrm{s}-1}$ wide velocity channels of the IRAM interferometer. The figure also shows the HCN line intensity integrated over all velocity channels (as in Fig. 2.1), as well as the millimeter continuum emission. The broad-band continuum is thermal emission from ionized gas, not from dust.

## YOUNG STELLAR OBJECTS

## Outflows

## Thermal SiO in outflows

SiO thermal emission has been mapped in several outflows (L1448, B1, NGC 207, Cep A). This emission is detected at the terminal outflow velocity, presumably associated with shocked gas. The SiO abundance in the shocked component is found to be $10^{3}-10^{5}$ times larger than in the ambient quiescent gas and, in L1448, reaches $3 \%$ of the total silicon abundance.

## New outflow SE of NGC 1333

A new bipolar outflow has been found in the direction of IRAS 03282+3035, in the Perseus complex, south-east of NGC 1333. As in the outflow source in L1448, the outflow has many clumps, or "bullets", and a high terminal velocity ( $70 \mathrm{~km} \mathrm{~s}^{-1}$ ).

## Orion flows

Maps in several molecular species reveal the structure of the interface between the Orion molecular cloud and the Orion A H II region. Emission of cynanoacetylene, $\mathrm{HC}_{3} \mathrm{~N}$, has been studied up to the $\mathrm{J}=24-23$ line. The maps show long and thin ( 20 " by 300 ") fingers of gas north of the well-known outflow source, IRc2.

## Young Stars

## The Great Depletion Saga

Discovery :
Previous MPIfR bolometer studies at the 30 m telescope suggested the 1.3 mm continuum peaks in the molecular cloud near NGC 2024 may be isothermal protostars with dense ( $10^{8} \mathrm{~cm}^{-3}$ ) cold ( $10-15 \mathrm{~K}$ ) gas and dust where molecules disappear from the gas by freezing onto grains. Hence molecular lines would give the wrong mass and the continuum dust observations give the right answers.

Counterpunch :
Two recent studies at the 30 m telescope say no. The ${ }^{12} \mathrm{CO} \&{ }^{13} \mathrm{CO}(2-1)$ spectra both have Planck brightness temperatures of 45 K . NGC 2024 FIRS-5 \& 6 are young outflow sources, and must be hot. Multi-transition CS data also suggest warm gas and a core mass of 13 solar masses, much less than derived from the dust. The authors of these studies claim the cold dust interpretation is inconsistent: the dust spectra are assumed transparent in the temperature derivation, but the derived mass guarantees they are opaque.The real gas and dust are warm ( $40-60 \mathrm{~K}$ ) and there is no depletion of molecules onto grains on 10 " scales. Molecular lines give the right masses.

Riposte:
Two other new studies of $30-\mathrm{m}$ data on NGC 2024 reach the opposite conclusion. A reanalysis of the 30 m continuum data concludes the warm temperatures derived from the molecules are only in the bar where the condensations are embedded; some of the condensations themselves are cool ( $<20 \mathrm{~K}$ ) and their molecules are frozen onto grains. Ammonia peaks mapped at the VLA coincide with dust peaks found at the 30 m . There is far too little ammonia relative to the masses derived from the dust emission.

Fatal Embarrasment:
The ammonia linewidths are too small! They imply the mass in the condensations is ten times less than given by the dust data. The $\mathrm{H}_{2}$ density must be $10^{7} \mathrm{~cm}^{-3}$, not $10^{8}$. The molecules give the right answer after all.

What's the conclusion of this complex story? The simplest interpretation is that the dust continuum data give the wrong mass, and the virial masses from the $\mathrm{NH}_{3}$ linewidths give the correct masses for the condensations, and that there is not much depletion of molecules onto dust grains.

## Molecular Gas and Dust associated with Herbig Ae/Be Stars

The clouds associated with the Herbig Ae/Be stars LKHa 198, and RR Tau were studied with the 30 m telescope to see the effects of young stars on surrounding gas and dust. Maps of ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ toward these clouds were compared with IRAS maps at 12,25 , 60 and $100 \mu \mathrm{~m}$. The ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ lines toward the reflection nebulosity NGC 7023, are very weak. There is no ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ emission toward VDB 1 , the reflection nebula southwest of LKH $\alpha$ 198. Sharp borders are found between the molecular clouds and the reflection nebulosities VDB 1 and NGC 7023. The (2-1)/(1-0) intensity ratios of ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ indicate kinetic temperatures of 15 K and $\mathrm{H}_{2}$ densities $1-510^{3} \mathrm{~cm}^{-3}$ for the molecular cloud. Higher temperatures are found in the gas near the reflection nebula NGC 7023 and the border between VDB 1 and the molecular cloud near LKH $\alpha$ 198. Although massive stars are not being formed in these regions, and the clouds contain only 103 solar masses of gas, the ratios of IR luminosity to gas mass are $5 \mathrm{~L}_{\text {sun }} / \mathrm{M}_{\text {sun }}$, typical of very active star forming regions. The $100 \mu \mathrm{~m}$ and ${ }^{13} \mathrm{CO}$ fluxes are correlated, but the slope of this correlation varies over the clouds. The $\mathrm{F}(100 \mu \mathrm{~m}) / \mathrm{N}(\mathrm{H})$ ratio, in $\mathrm{mJy} / 10^{20} \mathrm{~cm}^{-2}$, is 1 to 2 for most of the cloud, $>10$ toward the reflection nebulosities, and 4 to 10 at the cloud edges. Toward the reflection nebulae, the $60 / 100,12 / 25$ and $12 / 100$ flux ratios increase, but the $25 / 60$ and $25 / 100$ ratios decrease. All these results for the reflection nebulae can be explained by the effects of ultraviolet radiation on the molecular gas and dust in these regions.

## Winds from Massive Hot Stars

The recombination line maser in MWC 349 was monitored with the 30 m telescope over a 1000 day period. The intensities of the masing transitions at 1 and 2 mm vary irregularly by factors of 4 (at 1 mm ) and 10 (at 2 mm ), on time scales as short as 30 days. The velocity separation of the blue and red maser spikes increases with frequency. The radial
velocities of the blue and red spikes at $\mathrm{H} 30 \alpha$ are also variable, but anti-correlated with each other. The intensity ratio $\mathrm{B} / \mathrm{R}$ of the blue and red maser spikes displayed drastic changes in the first half of the monitoring period, but then settled to a pattern where $B / R$ oscillates only slightly around a value of $\sim 0.9$. The recombination line maser is probably unsaturated at 1 and 2 mm with slight saturation setting in at 1 mm . From the intensity variations of the maser spikes and an estimate of the maser gain, the size of the maser region is $\sim 1$ mas which is likely to be associated with a rotating disk. The rapid variations in intensity and velocity of the maser spikes are best explained by the simultaneous presence of $10 \%$ density inhomogeneities of the central source. Underlying the maser emission lines, broad and weak pedestal features are detected which may arise in an isotropic component of the stellar wind.

## Dust Globules

The cometary globule ORI-I-2 has been mapped in several lines of CO, CS and HCN. These observations yield the mass, density and temperature in the globule and some insight on its evolution.

### 2.4 CIRCUMSTELLAR ENVELOPES

### 2.4.1 Chemistry and Dynamics of Star Envelopes

## Interferometric Observations of $\mathrm{SiO} v=0$ Thermal Emission from Evolved Stars

The IRAM interferometer has observed the $\operatorname{SiO} v=0, \mathrm{~J}=2-1$ emission from the oxygen rich evolved stars RX Boo, VY CMa, R Cas, o Cet, NML Cyg, W Hya, R Leo, IK Tau, IRC+10011, and IRC+10420, the carbon star IRC+10216, and the S-type star $\chi$ Cyg. The emission of RX Boo, R Cas, $\chi$ Cyg, and IK Tau is circularly symmetric, and the data on the other stars are also compatible with this geometry. In the O-rich and S-type Miras the half power radii of the SiO emitting regions are ( 1 to 7) $10^{15} \mathrm{~cm}$, larger than adopted in recent models for SiO thermal emission, but much smaller than CO diameters. The emitting regions in supergiants and IRC+10216 are larger than in O-rich Miras.

Except for IRC+10216, the source diameters do not vary with radial velocity. If the envelopes were expanding at constant speed, the diameters would have a clear maximum at the central velocities, and this is not observed. This shows that the terminal velocity is not yet reached at $5 \cdot 10^{15} \mathrm{~cm}$ from the star, possibly because dust grains may be forming over the whole SiO emitting shell, which is a region much larger than previously believed.

Isotopic abundances in carbon-rich circumstellar envelopes: a further iteration on the oxygen isotope puzzle

The (1-0) and (2-1) lines of the oxygen and carbon isotopomers of CO were studied with the 30 m telescope in five dusty, carbon-rich envelopes (CIT6, IRC+10216, CRL618, CRL2688, NGC7027) which represent stellar evolutionary stages from the early asymptotic giant branch to planetary nebulae. The data are compared with predictions from models of nucleosynthesis and dredge-up in red giants. The $\mathrm{C}^{17} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}$ abundance
ratios, assumed to equal ${ }^{17} \mathrm{O} /{ }^{18} \mathrm{O}$ in the gas phase, are about 1 in the last four envelopes, and a lower limit of 1 was derived in CIT6. From measured ratios of ${ }^{13} \mathrm{C}^{16} \mathrm{O} /{ }^{12} \mathrm{C}^{17} \mathrm{O}$ and ${ }^{13} \mathrm{C}^{16} \mathrm{O} /{ }^{12} \mathrm{C}^{18} \mathrm{O}$, and an assumed value of ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ for each source, the following ratios were derived: ${ }^{16} \mathrm{O} /{ }^{17} \mathrm{O}=(250$ to 850$)$ and ${ }^{16} \mathrm{O} /{ }^{18} \mathrm{O}=(300$ to 1300$)$.

The carbon isotopic ratio was derived in CIT6 and CRL618 from the optically thin lines of rare isotopomers of CS, a method previously used for IRC+10216. For CRL2688, and NGC7027, a lower limit to this ratio comes from the CO lines. In the five envelopes, the ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ ratios are about 30 , significantly larger than previous estimates for CRL 2688 and CRL 618.

The ${ }^{17} \mathrm{O}^{18} \mathrm{O}$ ratios measured in these five dusty envelopes are similar to those obtained from infrared observations in less opaque C-rich and O-rich envelopes. That is, ${ }^{17} \mathrm{O}$ is enhanced with respect to ${ }^{18} \mathrm{O}$ and ${ }^{16} \mathrm{O}$ by factors of 4 to 5 , relative to the remarkably constant values of ${ }^{17} \mathrm{O} /{ }^{18} \mathrm{O}$ and ${ }^{17} \mathrm{O} /{ }^{16} \mathrm{O}$ observed in the interstellar medium. This large enhancement sets upper limits on the total mass loss rate for these types of stars. In particular, red giant stars with C-rich (or translucent O-rich) envelopes cannot be the main sources of oxygen (and presumably of star processed matter) in the interstellar medium.

### 2.4.2 Post Red-Giant Stages

## Millimeter recombination lines in the planetary nebula BD $+30^{\circ} 3639$

Millimeter recombination lines $\mathrm{H} 30 \alpha, \mathrm{H} 35 \alpha$, and $\mathrm{H} 41 \alpha$ have been detected with the 30 m telescope in the compact planetary nebula $\mathrm{BD}+30^{0} 3639$. The mm line emission arises in an optically thin, expanding HII region with an LTE electron temperature $\mathrm{T}_{\mathrm{e}}^{*}=8800$ $+/-1500 \mathrm{~K}$. Fits of the observed line profiles with a radiative transfer model of the ionized shell yield the expansion velocity of the ionized gas of $20 \mathrm{kms}^{-1}$.

The observations confirm that the expansion velocity of the ionized gas is considerably smaller than the $52 \mathrm{kms}^{-1}$ expansion velocity of the molecular envelope detected in the $\mathrm{CO}(2-1) \&(1-0)$ lines. The $\mathrm{H} 38 \alpha$ line contributes $\sim 60 \%$ of the blend with the $\mathrm{CO}(1-0)$ line in $\mathrm{BD}+30^{\circ} 3639$ and completely changes the appearance of the $\mathrm{CO}(1-0)$ line profile. In other nebulae with little or no molecular gas, $\mathrm{H} 38 \alpha$ could be mistaken for the $\mathrm{CO}(1-0)$ line without careful checks.

## Pre-Planetary Nebulae

Four new pre-planetary nebula candidates have been detected in ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ and their ${ }^{12} \mathrm{CO}$ emission mapped; two of these nebula show evidence of a bipolar structure. From these and from previous observations there is a clear correlation between the 60 micron flux and the ${ }^{12} \mathrm{CO}(1-0)$ integrated intensity.

### 2.5 MOLECULES

New Molecules

Deuterated isotopomers of $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{CCH}$ and $\mathrm{CH}_{3} \mathrm{OH}$ have been detected in Orion A ( $\mathrm{OMC1}$ ) and/or TMC1. The deuterium enhancement for these molecules, relative to the local interstellar $\mathrm{D} / \mathrm{H}$ ratio, is a few times $10^{3}$ even in the relatively hot Orion A core gas. Indications are that for the firsr two, the ortho/para abundance ratio is closer to 1 than to 3 .

The relative abundances of HCN and its metastable isomer HNC have been studied in the OMC1 cloud, through observations of their rare ${ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$ and deuterium isotopomers. The $\mathrm{HNC} / \mathrm{HCN}$ abundance ratio is found to increase from 5 to 80 between the Orion ridge and the Orion-KL core.

New searches for molecular oxygen emisssion in galactic and extragalactic sources have been unsuccessful. New upper limits have been set on this species' abundance.

## Astrochemistry

## A Study of HCN, HNC and their isotopomers in OMC-1.

New observations of HCN, HNC, and their isotopically substituted variants towards the Orion hot core and ridge were made with the 30 m telescope. The $\mathrm{HC}^{15} \mathrm{~N}(\mathrm{~J}=1-0)$ transition was also mapped with the IRAM interferometer. The HCN, HNC and DCN abundances and density and kinetic temperature were determined at seventeen selected positions in the Orion molecular cloud. The HCN/HNC abundance ratio is very high ( $\sim 80$ ) in the immediate vicinity of Orion-KL but declines rapidly in adjacent ridge positions to values of order 5 . Furthermore, the $\mathrm{DCN} / \mathrm{HCN}$ abundance ratio increases from 0.001 in the warm gas close to the source IRc2 to values $0.01-0.06$ in the extended ridge of the cloud. A rather surprising result is that the $\left[\mathrm{H}^{13} \mathrm{CN}\right] /\left[\mathrm{HC}{ }^{15} \mathrm{~N}\right]$ ratio increases from $5-7$ over much of the ridge (consistent with the isotope ratio in local interstellar gas) to roughly 15 close to Orion-IRc2. There is reasonable agreement with steady state models of the molecular cloud chemistry. There is a dense clump in $\mathrm{HN}^{13} \mathrm{C}(1-0)$ and $\mathrm{DCN}(2-1)$ to the northwest of the prominent Peak 1 seen in vibrationally excited molecular hydrogen emission. The relative positions suggest an interaction between the molecular clump and the high velocity outflow emanating from Orion-KL. A new continuum map of the region has also been made with the IRAM interferometer (Fig. 2.3).

### 2.6 SOLAR SYSTEM

## The structure, stability, and global distribution of Io's atmosphere

Millimeter wave observations of $\mathrm{SO}_{2}$ have allowed the first ground based direct detection of Io's neutral atmosphere. From observations of two $\mathrm{SO}_{2}$ rotational lines, at 221.965 and 143.057 GHz , and from upper limits on two other lines, basic properties of Io's atmosphere can be derived. The $\mathrm{SO}_{2}$ atmosphere appears to be stable with time and can be represented by a collisionally thick ( $10^{11}-10^{12} \mathrm{~cm}^{-3}$ ) atmosphere ( $\mathrm{p}=3-40 \mathrm{nb}$ ) covering a


Fig. 2.3 :
IRAM interferometer maps of the $\mathrm{HC}^{15} \mathrm{~N}$ emission (top diagram) and 3.4 mm continuum emission from dust near the powerful outflow source IRc2 in Orion.
limited fraction (5-20\%) of Io's surface, with possibly larger pressures on the trailing side than on the leading. The horizontal distribution of gaseous $\mathrm{SO}_{2}$ is best described as the result of discrete sources (steady or volcanic) rather than by vapor pressure equilibrium over a smooth distribution of surface frosts. The lower atmosphere seems surprisingly hot, about $500-600 \mathrm{~K}$ at 40 km . New upper limits on atmospheric $\mathrm{H}_{2} \mathrm{~S}$, SO , and CO were also obtained.

## CO and HCN on Neptune

The 30 m telescope has been used to detect the $\mathrm{CO}(2-1)$ and $\mathrm{HCN}(3-2)$ lines in Neptune's stratosphere. CO and HCN have respective mixing ratios of ( $6.5+/-3.5$ ) $\times 10^{-7}$ and $(3+/-1.5) \times 10^{-10}$. CO seems to be present in Neptune's troposphere as well and to slowly decrease with altitude (scale height $\sim 200 \mathrm{~km}$ ). CO appears to be at least 15 times less abundant on Uranus than on Neptune. An upper limit of $10^{-7}$ was obtained for CO in Saturn's stratosphere.

### 2.7 ATMOSPHERIC PHASE FLUCTUATIONS

## Interferometric measurements of tropospheric phase fluctuations at 86 GHz on antenna spacings of 24 m to 288 m

Radio propagation in the troposphere is mainly influenced by water vapor and oxygen. The water vapor is not well mixed, and its fluctuations affect the phase of centimeter and millimeter waves received by interferometers. Because the atmosphere is essentially nondispersive at radio wavelengths, the phase variations increase with operating frequency and become especially pronounced at millimeter wavelengths. In the centimeter range, observations agree with the Kolmogorov turbulence model. It is now of great interest to obtain more information in the millimeter range. To do so, tropospheric phase fluctuations have been observed with the IRAM interferometer at a wavelength of 3.4 mm . The data, taken in a wide variety of weather conditions and elevation angles, are summarized as phase structure functions vs. baseline length, Allan standard deviation vs. sampling time, and one-dimensional phase power spectra. These results show how tropospheric turbulence affects astronomical observing with the IRAM interferometer and provide predictions of its effect at still higher frequencies.

On average, the phase variance has a (baseline) ${ }^{1.42}$ dependence, with the power law index changing between day and night. The one-dimensional phase power spectra vary with temporal frequency $f$ as $f-2.1$. The Fourier transform of the phase time series on a single baseline gives the approximate phase behaviour on other baselines. The Allan deviations for times of 4 sec to $\sim 1 \mathrm{~min}$ have an average slope of $-1.0+/-0.2$, close to the values expected from the structure function. The level of tropospheric phase fluctuations and the shape of the structure function both agree with previous centimeter wavelength results, after allowance for the different baseline lengths. Comparisons are also made with a recent statistical model of water vapor fluctuations and with Kolmogorov turbulence. From this analysis, it appears that the IRAM interferometer will be seriously limited at higher frequencies and longer baselines, unless further antennas can be added to the array, which would allow corrections for the atmosphere.

## PICO VELETA OBSERVATORY

## $3.1 \quad 30$-m Telescope Operation

The operation of the telescope throughout 1991 was smooth, also because of many long periods of good weather and the mild winter 1991-1992 (February). The telescope was regularly maintained for approximately 12 hours per week, coinciding with the time of receiver filling/maintenance and test tunings. There occurred no major mechanical or electrical failures except a one-week repair of the wobbler (mechanical wear of bearings). This time was also used to paint part of the yoke. No satisfactory solution has (yet) been found to stop the oil spill-over from the AZ bearing. The afternoon time of August was used for a reflector adjustment. The total down-time because of technical problems was $\sim 45$ hours.

For the majority of astronomical projects, receiver tunings could be made well in advance due to the availability of sufficient staff. This situation improved the operation of receivers, and can hopefully be maintained.

### 3.2 Infrastructure

Several improvements of the observatory's infrastructure have been made, or completed.
The second water line was brought into operation (autumn). This line uses also water from the Laguna, the trajectory follows the southern mountain ridge and may thus be less affected by frost.

The observatory was connected to two additional high voltage lines; one line - ordered by IRAM - connects the observatory to a power line located higher up the mountain, the other line was connected by CETURSA from a chair-lift station constructed in 1991 close to the telescope.

A new Uninterrupted Power Supply (UPS) of 100 kVA capacity was installed at the telescope. The servos are connected to the UPS so that astronomical observations, as well as all other telescope movements, are not interrupted by a power failure.

During summer, the heavy construction in the skiing area interrupted several times the old water line and the electricity line and destroyed part of the road (still to be repaired). An inspection of the telescope tower, the observatory building and the Granada offices revealed considerable wear and tear. Repair activities will start in 1992.

## Reflector Surface

The reflector was adjusted by turning $\sim 600$ panel support screws $(\sim 2 / 3$ of the total number). Subsequent 3 mm phase retrieval holography may not have produced a full understanding of the present surface precision. The geostationary ITALSAT 39 GHz
beacon, at 43 degree elevation, was used in a preliminary holography measurement with the 7 mm VLBI receiver. These measurements should be continued on a regular basis.

### 3.4 Receivers

The operation of the receivers followed the scheme to a) have always one receiver engineer/technician at the telescope, and b) establish reliable tuning lists across the frequency bands.

In June, the break-down of the cryostat of the 2 mm SIS receiver was repaired within two weeks.

The 3 mm SIS receiver caused permanent problems by being unreliable in its tuning parameters so that also a reliable tuning list could not be established. A new mixer was installed in December.

The 230 GHz G1 (old) SIS receiver - with Pb junction - performed well. A second 230 GHz G2 (new) SIS receiver was installed in autumn. This receiver uses (since December) a 4 -element Nb junction with Josephson noise suppression by a magnetic field. The receiver shows good performance though only over a somewhat reduced frequency band.

The 7 mm ( 43 GHz ) VLBI Schottky receiver (delivered by the MPIfR) was installed in August and used successfully in the first VLBI experiment in September (Onsala Effelsberg - Pico Veleta).

Tests were made with an open-structure 345 GHz SIS receiver (Rothermel), and regular observations are planned early 1992.

The telescope performance at 350 GHz was investigated with the MPIfR bolometer. The MPIfR group also tested a 230 GHz bolometer-polarimeter and a 230 GHz multibeam bolometer array. The MPIfR 230 GHz bolometer was available for regular observations.

Unfortunately, the 3 mm Schottky receiver remains to have only one channel because the diode lost contact during warm-up of the receiver for installation of the second mixer.

The first unit (prototype) for remote receiver control was completed in the Granada laboratory and shipped to Grenoble in autumn for installation on a 3 mm Kerr-mixer receiver.

### 3.5 VLBI Equipment

The following VLBI equipment was installed and successfully commissioned:
-7 mm (43 GHz) Schottky receiver

- GPS unit for clock timing from satellite signals
- Hydrogen Maser Clock
- VLBA terminal and Tape Unit.

Members from the MPIfR VLBI Group helped to train the local receiver-, backend- and computer-groups to operate and maintain this equipment. As soon as possible, VLBI tests will be performed at 3 and later at 1 mm wavelengths.

### 3.6 Backends

The IF distribution box (installed in 1990) worked well. The same holds for the 1 GHz equalizers of the IF chain.

The backends ( one 100 kHz 256 channel filterbank, two 1 MHz 512 channel filter-banks, one AOS and an expander) were regularly monitored and maintained. The auto-correlator was maintained, though not improved, in view of two new auto-correlators built in Grenoble and delivered in December.

The work on the 1 GHz bandwidth $/ 1 \mathrm{MHz}$ processor continued, though at a reduced rate. Priority was placed on the design and construction of a new IF distribution box to accomodate the new correlators ( 8 additional input ports).

### 3.7 Computers

The VAX-station IRAME-C was installed at the telescope to improve the data reduction facilities; another VAX-station for Granada has been ordered.

The operating system of the VAX computers was changed to VMS 5.4; the PCs were upgraded to use DECwindows and thus provide access to CLASS.

At the telescope an ATARI ST computer was installed for storage and display of the last 10 scans, with the possibility of local hardcopies on a printer. The software of the emulator was developed in Granada.

The software for the receiver remote control unit was developed at Granada and tested in Grenoble on the 3 mm Kerr-mixer receiver. The complete system $=$ receiver + control unit $+\mathrm{PC}+$ software will be installed on the telescope early 1992.

A UPS-unit and air conditioning were installed in the Granada computer room; the installation of air conditioning in the radio link room resulted in a reliable operation without break-down.

## 4. PLATEAU DE BURE OBSERVATORY

Observing Projects

After a little more than 12 months of regular observing, the Plateau de Bure interferometer has fully completed about 26 projects. A detailed list is given in Appendix Ib. The project size varies between a few hours (A043,B001) to the equivalent of several syntheses (A069), although most projects require full mapping.

So far only one project had to be cancelled after the first configuration because of insufficient sensitivity. This gives a precise idea of how many projects can be carried out with the current three antenna system: 25 to 30 per year. Effectively, about $30 \%$ of the total time could be used for astronomical observations whereas the remaining $70 \%$ went into maintenance, tests, and improvements, or were lost due to bad weather.

The repartition of the 26 projects per country is the following: IRAM 5.5 , Germany 5.5 , France 9.5 , Spain 4.0, and USA 1.5. These numbers are obtained by counting only the first authors. If all authors are counted, the numbers for France and Spain slightly decrease, whereas all others slightly increase. IRAM's share may seem high, but it must be taken into account that many projects have emerged from ongoing collaborations, and that some projects which are technically difficult ones need the participation of an experienced IRAM astronomer. Per project category, the repartition is: Star Formation 11, Circumstellar Envelopes 6, Galaxies 5, Others 4. This rather uneven distribution is partly driven by the limitations of the current spectral correlator.

## Data Reduction

The observations with the interferometer are carried out by two IRAM operators and one IRAM astronomer on the site. IRAM astronomers are also responsible for "quick-look" tests to check the data quality. From thereon all further data reduction steps are in principle the responsibility of the Principal Investigator. As a rule, he/she should come to Grenoble to work on one of the IRAM computers where the necessary software packages have been installed.

In practice the data reduction has been a real burden for IRAM in 1991. Firstly, because the anticipated computer power needs were somewhat underestimated. Secondly, because observers tend to underestimate the time needed to reduce and analyse their data, especially during the startup and learning phase. The latter effect was somewhat off-set by a smaller than anticipated flow of visitors who came to Grenoble for data reduction.

To improve the computer situation, IRAM has purchased one HP 730 workstation, and obtained one HP 720 on a CNRS special contract for software development. Each machine is now equipped with one drive for rewriteable, removable optical disks of $2 \times 325$ MBytes capacity ( 2 faces), and 1.2 GBytes hard disks, plus one 400 MBytes system disk. One face of one optical disk is devoted to one interferometer project for permanent storage, while the hard disks will be used as fast scratch space for interactive data reduction. The HP 700s
workstations also share some disk space with the main VAX-4000, which is connected to Plateau de Bure.

Software upgrading to use the GILDAS software (GreG, CLASS, CLIC, and all tasks) on the HP systems has been going on since September. GILDAS is now fully operational and runs typically 5 to 15 times faster on the HPs than on the VAX- 4000 for data reduction, and the optical disks allow very fast setup times for each project. Visitors actually no longer use the VAX to reduce their data, except for the initial step of downloading the uncalibrated data from the Plateau de Bure archive.

### 4.3 Operations

### 4.3.1 Two major bad events first

After a configuration change on May 24th which involved a station which had not completely been cleaned from snow, the reflector of Antenna 2 touched the snow and several panels at the lower rim were badly damaged. Thanks to the availability of spare panels, the antenna was back into operation after only one month. The surface was properly realigned through holography.

On December 4th, during maintenance work on the cables of the telepherique, B.Aubeuf, the responsible group leader, was severely injured. Thanks to the rescue team and the competence of a team of surgeons, he stands a good chance to recover almost completely from this severe accident.

### 4.3.2 Hardware Upgrades/Changes

A very stable inclinometer, NIVEL20, which uses the level of the liquid as a mirror, has been tested in January on Antenna 1. A resolution of 0.2 arcsec was within reach in 60 s or less. The installation was ccompleted with external help (from a student) in spring, and the related documentation was ready in June. Two other NIVEL20 sensors are now purchased for Antennas 2 and 3. They will be installed in the course of 1992.

An anticollision ultrasonic sensor has been tested at the end of the year, following the snow accident. A model from HONEYWELL has now been selected.

To accelerate and simplify snow clearance at Bure, a multi-purpose "ratrack" machine was selected as a replacement for both the bulldozer and the lifter which were used until now. A 370 HP ratrack was purchased from KASSBOHRER in December, and was delivered at Bure at the beginning of 1992.

The procedures for station changes have been simplified with new codes on the antenna carriage microprocessors. Centering sensors for the pedestal are now in use, a single lifting position was retained on each track: this eases the adjustment of the jacks and should allow more frequent use of automatic procedures when telescopes are moved from one station to another. New safety regulations have been imposed in June for these operations, with simple check-lists (snow clearance and move) to be filled in.

During maintenance sessions it was discovered that a few major system components needed replacements: one harmonic mixer (LO1) on Antenna 1; one FET in the first IF amplifier chain on Antenna 3; the main CAMAC controller and one crate controller. (There were no spares for these, although 9 crates are currently in use at Bure; since then, two spare units have been bought and are now available). A further replacement concerned the system which controls the load on the two DIESEL generators of the Plateau de Bure station.

In addition, numerous electronic boards were tested, exchanged and repaired during regular maintenance sessions. The experience which has built up since the commissioning of the telescopes has led to the decision to increase the number of spare parts for certain critical components in order to minimize downtimes of the interferometer.

### 4.3.3 Remaining problems

Although 18m of bad cables were replaced in October 1990 on the cable-car, close to the counterweight, the same effect is slowly but steadily building up again on the lower part of the cables which runs on rollers to allow a vertical movement of the counterweight. POMA, the firm who delivered the cable to IRAM, and APAVE, our technical consultants on cable-car matters, finally agreed, on the basis of several studies, that the weight of the counterweight should be increased to limit its vertical movement. This operation is foreseen for the spring of 1992.

The road cover between the tracks is needs to be partially replaced to have a smoother surface, last not least to facilitate the snow cleaning.

The number of small pinholes on the reflecting surfaces continued to increase in 1991. The surfaces are now regularly inspected by MAN and IRAM and, as a temporary protection, the pinholes are sealed of by stickers. These stickers have no effect on the observations at 3 mm , and will hardly affect the observations at a wavelength of 1 mm . However, the need remains to find a permanent solution to the problem.

Another area of concern are the METAWELL plates used as the backside cladding of the reflectors and also on the telescope mounts. The delamination problem which occured earlier seems to be limited to an early lot, primarily used on the reflector of Antenna 1 and on the mounts. More recently produced plates use a different type of glue that seems to be much better adapted to the climatological conditions that prevail on the Plateau de Bure. As a consequence, the entire METAWELL cladding of reflector 1 has been replaced in 1991 by new plates. What remains is the fixation problem, with only part of the silent blocks being replaced by a new design, and the Scotch tape problem (alu or other); the lifetime of the Scotch tape, which is used to seal the area between adjacent METAWELL plates, seems to be limited to 18 months, if not 12 . The time needed to renew it is 4 to 5 days per antenna, i.e. this problem has a non negligible impact on the availability of the telescopes !

The staffing of the Plateau de Bure observatory is still under review. One more position may have to be added to local technical team to allow a continuous support of the observations. At present, on Saturdays, and Sundays, technicians in 'stand-by' can be called upon to come to the mountain. This usually means a stand-still for at least several hours.

Some maintenance problems occurred repeatedly, and more permanent solutions must be found for them:

- (i) burnt paint on quadrupod legs. This has been solved by new protections, and an increase of the Sun's avoidance radius to 30 degrees in software ( 28 on optical sensors);
- (ii) grounding defects on deicing blankets of panels: the new model should avoid this after complete replacement which is performed as faults show up;
- (iii) bad reproducibility of subreflector actuators (end contacts, ice, or encoding system), at least once per year per antenna;
- (iv) cryogenic faults: iced back-shorts when tuning mixers, blocked pipes during fill-up with Helium. This calls for closed circuit cryo systems;
- (v) water accumulating in some parts of the pedestal, calling for a better evacuation (condensed water, or melted snow and ice?);
- (vi) encoder's bulbs do not have the expected lifetime (MTBF) and must be too often replaced. This requires a large number of spares in stock.

The weekly "operator's report" is now regularly copied to Grenoble for archiving which eases the following up of such maintenance problems.

## Staff Changes

A. Oberti has retired in April 1991, and B. Aubeuf was appointed as the new responsible for the cable-car.

In December 1991, Th. Crouzet has been hired as the new Station Manager, succeeding J. Delannoy upon his retirement. The new Station Manager will be based on the site but keep close contact with Headquarter staff through regular visits to Grenoble. He is responsible for the coordination of all technical work at the observatory as well as for the observatory logistics (in collaboration with the Head of Administration in Grenoble, M.Malzacher). He also coordinates the group of operators (in close collaboration with the Plateau de Bure coordinator in Grenoble. S. Guilloteau).

## Conclusions

The 1991 observing campaign has shown that the programs recommended by the Program Committee can be executed in a reasonably efficient manner. Several of the procedures have been standardised with numerous steps automated (command procedures are good examples, they exist e.g. for snapshot observations). Some important procedures, like e.g. configuration changes, have, however, so far escaped automation, primarily due to adverse climatic conditions and other physical or instrumental problems. There is obviously room for further improvements in this respect based on accumulating experience.

## 5. GRENOBLE HEADQUARTERS

### 5.1 SIS Group and Receiver Group Activities

## General

To extend the collaboration and to learn more about the requirements for SIS junctions of the various receiver groups, an SIS User Meeting was held at IRAM on October 28 and 29. The following institutions were represented: ENS/DEMIRM, Paris; CNES, Toulouse and Paris; INSU, Paris, MPI für Extraterrestrische Physik, Munich, MPI für Radioastronomie, Bonn; University of Cologne and IRAM. The next meeting will take place in the Paris area in November 1992 and will be organized by IRAM.

## Junction Fabrication and Development

## 100 GHz

(a) More standard junctions were fabricated for the $30-\mathrm{m}$ telescope and the Plateau de Bure Interferometer.
(b) For the first time, junctions have been made with integrated tuning structure.

## 150 GHz

(a) To replace the $\mathrm{Pb} / \mathrm{Bi} / \mathrm{In}$ junctions, Nb junctions were also made for this frequency but not yet implemented.
(b) Two of these junctions ( $80 \Omega$ ) were given to the University of Cologne for the Gornergrad telescope; a receiver noise temperature of about 70 K DSB has been obtained.

## 230 GHz

As mentioned in the 1990 Annual Report, the results at 100 GHz with Nb junctions have been so encouraging that we started the development for 230 GHz . Meanwhile a number of two- and four-junction arrays have been made. Receivers with these junctions are meanwhile on the $30-\mathrm{m}$ telescope (junctions with tuning structure are being prepared for 1992/3).

230 GHz junctions were also given to the group of astrophysics of the University in Grenoble, to the MPI für Radioastronomie in Bonn (for direct detector experiments), and to the Harvard Smithsonian Center for Astrophysics in Boston.


Fig.5.1:
Two serially connected SIS-junctions with tuning structure to compensate the junction capacitance in the vicinity of 230 GHz . Note the asymmetry in the tuning structure which helps to increase the useable bandwidth. The underlying larger areas belong to the lowpass filter for the IF output.


Fig.5.2:
Enlargement from Fig.5.1. Each of the two junctions has an area of about $2 \mu \mathrm{~m}^{2}$.
(a) Waveguide junctions of the standard IRAM design were fabricated for the MPI für Radioastronomie, but not yet tried out.
(b) A set of junctions with inductive tuning and a dipole antenna for an open structure receiver have been fabricated for the MPE. Best DSB receiver noise temperatures are about 100 K .

## 345, 460 and 600 GHz

Junctions with inductive tuning and log. per. antenna were fabricated for the MPI für Radioastronomie. The receiver and the tuning structure for 345 GHz is presently under test in Bonn. First results indicate a receiver noise temperature of about 300 K DSB.

### 5.1.3 Others

The evaporation of $\mathrm{SiO}_{2}$ by an electron beam has been replaced by rf sputtering which is expected to give more reproducible films. The dielectric properties of the $\mathrm{SiO}_{2}$ films have been investigated (in collaboration with the MPI für Radioastronomie) by testing capacitors and (in collaboration with the MPE) by ellipsometric measurements. It was concluded that the $\mathrm{SiO}_{2}$ films have properties close to those expected for quartz.

### 5.1.4 Receiver Group Activity

## Receiver Repairs/Upgrades

3 mm Pico Veleta: The 3mm mixer was replaced in December 1991. The previous mixer had degraded, and in particular its settings were not reproducible even on timescales of days, presumably due to degradation of the backshort. The new mixer incorporates a noncontacting backshort vacuum-coated with Parylene. It was fully characterized for DSB and SSB performance in Grenoble before being shipped. Fig 5.3 shows SSB performance of the new mixer on the telescope.

2 mm Pico Veleta: The previous 2 mm receiver had developed a cold Helium leak and was fully replaced in June 1991. The new mixer still uses a Lead junction. Fig. 5.4 shows the performance of the receiver on the telescope.
1.3 mm \#2 Pico Veleta: The 1.3 mm \#2 receiver was first installed on the $30-\mathrm{m}$ telescope in August 1989. After the Lead junction failed, a new mixer with a Niobium junction was installed in September 1991. Good results were obtained, especially at 230 GHz : 80K DSB and 125 K SSb (with 12 dB rejection). However, around 222 GHz , the receiver noise was degraded, and the sideband ratio was perturbed. This behaviour was analyzed (see below), and a modified structure was implemented. The new mixer was fully tested (DSB and SSB), and installed on the telescope in December 1991. No telescope results are shown because a minor cryogenic problem prevented extensive use in December 1991.


Fig.5.3:
Receiver temperature (SSB) of the new 3 mm mixer installed at the 30 m telescope in December 1991.


Fig.5.4:
Receiver temperature (SSB) of the new 2 mm mixer installed at the 30 m telescope in June 1991.

3mm Plateau deBure - Antenna 3: The receiver on Antenna 3 has been replaced by a new one which uses a Niobium junction. A preliminary laboratory noise curve appeared in the 1990 report. The final improved receiver noise is shown in Fig.5.5. Part of the improvement is due to the use of an IF amplifier built by the Yebes Observatory (IGN).


Fig.5.5:
Performance of the new 3mm receiver on Antenna 3 of the Plateau de Bure Interferometer. This receiver uses a Niobium junction built at IRAM, and an IF amplifier built at the Yebes Observatory.

### 5.1.5 Receiver Construction

A new 3 mm receiver is being prepared for Pico Veleta. This receiver incorporates a number of features:

- a prototype closed-cycle refrigerator (CENG/Air Liquide), which will eliminate tedious Helium fillings;
- a two-backshort mixer purchased from NRAO, which provides consistent sideband rejection;
- cold optics, and LO injection through a waveguide and custom-designed sidewall coupler;
- a new automated receiver control system, described in more detail below.

These new features pave the way for next generation receivers, and a number of problems have been met. Nevertheless, very encouraging results have been obtained, e.g. less than 50 K DSB receiver temperature.

After a frustrating delay, the technical problems faced by Air Liquide with its production unit cryogenerator seem to be solved.

## Remote Control System

This system involves a close collaboration between the Grenoble and Granada groups. After interface modules were developed in Grenoble, a working prototype and software were developed in Granada, which was transferred to Grenoble for tests with a laboratory receiver. After some improvements of hardware and software, the prototype is due to be installed on Pico Veleta with the 3 mm closed-cycle system. A production version with VME interface has also been developed.

## Bolometer

A single-channel bolometer has been built in cooperation with MPIfR, using a 0.3 K minifridge built by CNRS (Service d'Aéronomie). This is scheduled to be tested on the site early 1992, and, if successful, it will be offered as a common-user instrument.


Fig. 5.6
The 345 GHz SIS receiver built by H . Rothermel at the Max-Planck-Institut für Extraterrestrische Physik, Garching, installed in the receiver cabin at the 30 m telescope.

### 5.1.6 Development Activities

## Mixer Modelling and Design

Progress has been made in several directions. Scale-model measurements with the network analyzer and computer-aided modelling now allow us to understand better the behavior of the standard reduced-height waveguide mixer, and to predict its performance. For instance, the peak in receiver noise occurring around 220 GHz in the first Nb 1.3 mm mixer was diagnosed and in a suitably modified structure moved down to 210 GHz , where it is less obiectionable for astronomical use.

A completely new structure was developed in the 3 mm band, featuring full-height waveguide and inductive compensation of the junction. The design goal, a flat noise curve across the $80-115 \mathrm{GHz}$ band, has been reached. The results of laboratory measurements are shown in Fig. 5.6.


Fig.5.6:
Comparison of the performances of a traditional mixer and one built with the new waveguide design and inductive compensation of the junction.

Inductively compensated junctions for the 1.3 mm and 0.8 mm bands have been designed and fabricated. At the time of writing, very encouraging results have been obtained in the 1.3 mm band.

### 5.1.7 Instrumentation

The HP8510 network analyzer is now routinely used, both in the standard microwave range and in the millimeter domain thanks to the IRAM-built extension, to characterize components and dielectric materials.

A setup allowing simultaneous measurements of conversion losses in both sidebands has been used to characterize 3 mm and 1.3 mm mixers before installation on the $30-\mathrm{m}$ telescope.

### 5.2 Backend Developments

## New spectrometers built for both sites

The prototype unit of the new digital correlator was ready in April when extensive tests began under local software. Some modules were corrected to take system effects into account. The system met all its specifications, was accepted, and its duplication was started. A total of 8 units will be constructed.

The new generation of correlators will add 18432 channels to the PdB interferometer and 4096 to the $30-\mathrm{m}$ telescope. The machines are made out of 290 modules of 11 different types, including $10 \%$ spares.


Fig.5.7:
Frontside view of two completed spectrometers ready to go to the 30 m telescope.

The purchase of all components and the subcontractor management was performed by the Backend group technicians. The Granada lab contributed by furnishing some modules, too. By December, all the modules were built, $50 \%$ tested. Very low fault rate has been observed.

The final assembly of the two units dedicated to the 30 m telelescope experienced minimal difficulty. The initial 3 -year schedule has been exactly met, resulting in operational hardware delivery early in January 1992.

At the same time, one user's manual and 6 different technical manuals have been edited by recompiling the design and service documents produced over the past three years.

During this production period, engineering activities continued. They concerned i.a. the development of interferometer-specific modules, such as signal and LO distributions, and fringe rotators.

### 5.3 Computer Group

### 5.3.1 General Computing Facilities

The most noticeable change concerns the rearrangement of the computer and terminal rooms in July 1991. A spacious and well equipped 'user room' is now available for staff astronomers and visitors who come to Grenoble to reduce their interferometer data.

This 'user room' not only features terminals and workstations which provide access to the IRAM VAX-cluster and the HPs (see below) and the related periphery but there are also MACs and PCs for text editing, design of electronic circuitry, and other applications.

Also other very important but less visible improvements have been made. Early in 1991 a new microVAX 4000 model 300 was added to the VMS cluster. Its name: IRAM04. It became the most powerful VAX/VMS server at IRAM with 8 times the CPU performance of a VAX-11/780. Its main features are: 32 Mbytes of memory, a DSSI disk of 1 Gbytes , and a 1.2 Gbyte SCSI extra disk. Now the VMS cluster is composed of this new server plus 2 work stations (VS3200 and GPX) all running DECwindow.

To achieve an integration of the personnel computers for sharing files, printers and services in general, PATHWORK for MACs has been added and an improved version for PCs has been installed. The integration based on Ethernet thin wire cable connections has proved to be an efficient and valuable solution.

Meanwhile it has been proposed to use UNIX RISC work station to reduce the interferometer data. The Risc machines are today the best price/performance solution for intensive calculation and fast scientific visualization. After an evaluation of different stations from several manufacturers with standard calculations including mapping and cleaning, it has been decided to buy a HP 730. This machine will be offered with priority to visitors coming to Grenoble to process their data from the Plateau de Bure interferometer. The HP 730 delivers 72 SPECmarks, 76 MIPS and 22MFLOPS. It has been purchased with 32 MBytes of memory, a 400 MBytes internal disk and with DAT
and CD ROM drives. Its customization includes the installation of EMACS, a well known editor, and tools as DECTERM to create X DEC terminal windows, NPRINT to use the VMS cluster printers, and facilities to create project accounts.

Recently also a HP 720 has been received. This machine purchased with French funds to help interferometry imagery and algorithm development will primarily be used by staff members from IRAM and GAG.

For both HP work stations, extra magnetic disks and writable optical disk drives have been ordered. Raw and reduced data will be kept on optical disks (one per project) and magnetic fast disks will serve mainly as scratch space.

PC users with Ethernet connection to the VAXes can run X terminal emulation under DECNET. However, to support various network protocols, larger color scales and fast window management, NCD X color terminals have been purchased and installed in the offices of some of the astronomers. With both DECNET and TCP/IP being available, those terminals can serve directly $X$ applications running on HP/UNIX and VAX/VMS.

Our computers are now connected to GRENET, the campus Ethernet network with an access to Internet. Our subscription to Fnet, the French branch of EUnet gives us the opportunity to send and receive mails to our address IRAM.GRENET.FR.

### 5.3.2 Software Development

To go to VME has been a key decision for the IRAM development which include the spectral correlators and the tuning of the future receivers under microprocessor control. For all VME micros the common features are OS9 for the operating system, C for the programming language, Ethernet-TCP/IP for the communications, and NFS to provide virtual disks for the software development.

Most of the routines for the correlator acquisition, control and preprocessing have been written and tested. Those routines include the connection between the OS9 micros and the filter and LO black box, the correlator configuration, the sampler level adjustment, the acquisition synchronized on external interrupts, the preprocessing as FFT and clipping correction, and the data transfer to the VAX.

An operational version of the software for the Pico Veleta correlator based on specifications from Grenade should be assembled and tested soon. It is interesting to note here some figures obtained with the 68030 microprocessors clocked at 25 MHz :

A 256 channel FFT takes 35 ms and up to 12 bands (FFT) should be considered by each micro with the Bure configuration.

A maximum transfer rate of $1.1 \mathrm{Mbits} / \mathrm{s}$ is obtained on Ethernet with TCP/IP and when collisions are avoided.

For the receiver control, the VME microprocessor is interfaced to a bus already developed and used at IRAM-Granada.

Written in C, elementary control of motors has been achieved in continuous or in pulse mode. With this technique, a module has been written to set and to phase-lock the frequency of a local oscillator, and the complete adjustment of a receiver will be tested as soon as a receiver will be available.

## Technical Group

## General Developments

The numerically controlled milling machine purchased in 1990 was equipped with a video camera with magnifying optics ( $0-60 \mathrm{x}$ ) to facilitate the fabrication of delicate components with small dimensions and/or high precision requirements. The possibility to use data files produced by CAD software as programming input for the NC machine has become standard practice.


## Fig.5.8:

The IRAM NC milling machine equipped with a video camera for close monitoring of work in progress.

In response to more ever more demanding requests, new fabrication methods have been considered and partially already applied in-house and with external sub-contractors. These include the use of electro-errosion, cold stamping (for small waveguide structures), and ion etching.


Fig.5.9:
Mock-up of a sidewall coupler for the 2 mm band. Such plastic models are used to verify the programming of the NC milling machine.


## Fig.5.10:

The elevation frame for the fourth antenna mount during fabrication at FERRYCAPITAIN. This part interfaces with the central hub of the reflector.

The overall number of internal requests for manufacturing has continued to increase from 213 in 1990 to 273 in 1991. For 33 of these external subcontractors were chosen.

## Technical Support for the Plateau de Bure Installations

The group responded to a number of request for mechanical improvements of the existing telescope mounts, and continued its responsibility for keeping an updated set of drawing and documentation related to the Plateau de Bure Installations.

## Mount for Antenna 4 for the Plateau de Bure Interferometer

The technical group was responsible for the preparation of all documents related to the new antenna mount. The group prepared the various contracts and monitored closely their progress during the fabrication phase.

The construction of the mount advanced according to schedule and within the financial envelope foreseen.

The planning at the end of 1991 foresees the following milestones for 1992/1993:

- transport of major components of the mount to the PdB
- assembly of the mechanical parts of the mount
- electrical installations
- installation of thermal covers
- assembly of the reflector
- remaining installations and total system tests
- installation of receivers etc.

March 1992
April-June 1992
July/August 1992
August-October 1992
October-December 92
January/February 93
March 1993

## 6. PERSONNEL AND FINANCES

In 1991, IRAM had a total of 104 employees. Of these, 95 were IRAM staff members, and 9 were PhD students or post-docs, 5 in Grenoble, 4 in Granada.

One of the staff positions in the SIS laboratory is jointly financed by the MPIfR and the MPI für Extrarerrestrische Physik. The MPIfR also finances one of the post-doc positions in Spain, and one of the students has a French/Spanish scholarship.

IRAM's financial situation in 1991 and the budget provisions for 1992 are summarised in the following tables.

The total expenditures in 1991 were higher than originally foreseen.
In the course of the year, 3.1 MF were invested in new laboratory equipment, and 9.1 MF were paid in connection with the 4th antenna for the Plateau de Bure interferometer. Further investments were made in receivers and backends (3.3 MF), computers ( 0.8 MF ), administration and transport ( 0.1 MF ), and Pico Veleta infrastructure ( 0.5 MF ). The planned extension of the SIS laboratory for the development of junctions for submm astronomy includes a NbN sputter system and an electron microscope, to be financed by CNES, the MPIfR, the MPE and a donation from Advantest Coporation, Japan. Initial investments for this extension in 1991 were 1.6 MF.

Income other than contributions was higher than foreseen due to income related to special projects (e.g., NbN sputter system).

The reimbursement of Spanish Value Added Taxes, a longstanding problem, has only partially been resolved. The tax office reimbursed the V.A.T. for 1988 and 1989, but the taxes for 1986 and 1987 have not yet been paid back to IRAM. The 1986 reimbursement depends on the outcome of a court decision in Madrid, and the claim for the 1987 reimbursement must still be submitted to the tribunal.

The Instituto Geografico Nacional (IGN), Madrid, has joined IRAM as an official partner on 28 September 1990. IGN now participates with $6 \%$ to the annual operations and investment budgets, as well as with a one-time contribution of 16.2 MF in recognition of the investments paid by INSU and MPG in the past.

Negotiations have been started both with the manufacturer and the insurance company to explore possible financial arrangements should the surface panels of the Plateau de Bure antennas need a new protective cover.

## Expenditure



## Income



## Expenditure



## Income



## '. ANNEX I : TELESCOPE SCHEDULES / 7.1 [RAM 30m Telescope

| RAM 30-M TELESCOPE |  |  | JANUAKY 1991-JANUARY 1991 |  | Update: May 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Neek | Date | Ident, | Title | Freq.(GHz) | People |
| 11/02 | Jan 1-15 | 120-90 | A highly collimated bipolar outflow in the core of OMC-1 | $\begin{aligned} & 115,220,230,345 \\ & 147,245 \end{aligned}$ | Schmid-Burgk, Güsten, Mauersberger, Wilson |
|  |  | 145-89 | Gaseous content of circumstellar matter around young stellar objects in the RHO Ophiuchi cloud core | $\begin{aligned} & 110,137,141,216 \\ & 220,226 \end{aligned}$ | Montmerle, André, Despois, Martin-Pintado |
|  |  | 267-90 | Duration of extreme mass-loss of OH/IR stars | 110,220,140 | Forveille, Omont, Kahane, Habing, Heske |
|  |  | 204-90 | Are all the protoplanetary nebulae bipolar? | $\begin{aligned} & 89,90,115,130 \\ & 220,230 \end{aligned}$ | Bujarrabal, Alcolea, Planesas |
|  |  | 219-90 | Zero spacings for the SiO maps made with the IRAM Interferometer | 86 | Martin-Pintado, Wilson, Fiegig, Güsten, Walmsley Schilke, Cesaroni, Duvert, Wink |
|  |  | 243-90 | The remarkable outflow system from OMC-1 S6 : very high velocities, widespread shock chemistry | $\begin{aligned} & 81 \ldots 89,138,150 \\ & 217 . .230,345,347 \end{aligned}$ | Schmid-Burgk, Henning, Muders |
|  |  | 135-90 | Kinematics of a very small cloud in the Orion region | $220,230,115,110$ | Rodriguez, Gonzalez, Martin Pintado, Bachiller |
|  |  | 243-89 | A detailed study of the very extended high velocity gas around Orion/IRC2 | $\begin{aligned} & 86,115,130,154 \\ & 230 \end{aligned}$ | Martin-Pintado, Rodriguez, Bachiller, Wilson |
|  |  | 149-90 | Io's atmosphere from microwave lines of $\mathrm{SO}_{2}$ | $219-235$ | Lellouch, Belton, de Pater, Paubert |
|  |  | 286-90 | Temporal variability and composition of lo's atmosphere | 138-146,216-230 | Lellouch, Belton, de Pater, Paubert |
|  |  | 150-90 | Correlated observations of a sample of AGN together with ROSAT and IUE | cont. | Staubert, Courvoisier, Walter, Grewing |
|  |  | 272-90 | Distribution of physical conditions of the molecular gas in NGC 1068 | $\begin{aligned} & 86,89,98,147 \\ & 245 \end{aligned}$ | Planesas, Martin- Pintado Gomez-Gonzalez, Bachiller |
|  |  | 130-90 | Monitoring of MWC 349 |  |  |
| 13/04 | Jan 15-29 | 84-90 | A study of the water vapor emission toward molecular clouds and evolved stars at 183 and 325 GHz | 183,325 | Cernicharo, Gonzalez, Thum, Bachiller |
|  |  | 56-90 | Search for vibrationally excited HCN masers | $\begin{aligned} & 177,265,87,172 \\ & 258,259 \end{aligned}$ | Lucas, Cernicharo |
|  |  | 178-90 | Protoplanetary sources: The role of the 2lum feature | $86,91,113,145,226$ | Henkel, Omont, Mauersberger, Cox |



| Week | Date | Ident. | Title | Freq.(GHz) | People |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $65-90$ $.48-90$ | Internal motions and density in dense cores: hith resolution obs. of $-\mathrm{C}_{3} \mathrm{H}_{2}$ High density small scale structure in the edges of molecular clouds |  | Fuller, Myers, Falgarone, Puget Falgarone, Philipps |
|  |  | 250-90 | The structure of cold cloud cores | Bolo. | Mezger, Haslam |
|  |  | 252-90 | $\lambda 870 \mu m$ maps of the massive star forming cloud cores M17, W31 and NGC6334 | Bolo. | Haslam, Sievers |
|  |  | 246-90 | A search for dense central condensations in cloud cores detected in the Taurus cloud | Bolo. | Haslam, Zylka |
|  |  | 248-90 | $\mathrm{Sgr} \mathrm{A}^{*}$ and its environment at $\lambda 870 \mu m$ | Bolo | Zylka, Mezger |
| 08-09 | Feb 19-Mar 5 | 250-90 | The structure of cold cloud cores | Bolo. | Mezger, Haslam |
|  |  | 252-90 | $\lambda 870 \mu m$ maps of the massive star forming cloud cores M17, W31 and NGC6334 | Bolo. | Haslam, Sievers |
|  |  | 246-90 | A search for dense central condensations in cloud cores detected in the Taurus cloud | Bolo. | Iaslam, Zylka |
|  |  | 248-90 | $\mathrm{Sgr} \mathrm{A}^{*}$ and its environment at $\lambda 870 \mu \mathrm{~m}$ | Bolo | Zylka, Mezger |
|  |  | 254-90 | Proto-planetary disks around main sequence stars | Bolo. | Chini, Kreysa |
|  |  | 255-90 | Dust emission from quasars | Bolo. | Chini, Kreysa |
|  |  | 256-90 | Dust emission from active galaxies | Bolo. | Chini, Kreysa |
|  |  | 357-90 | Cold dust in spiral galaxies | 3olo. | Kreysa, Chini |
| .0-11 | Mar 5-19 | 276-90 | The pulsar supernova connection: a deep continuum survey of nearby recent supernovae at 1.3 mm wavelength | Bolo. | Tuffs, Chini, Wagner |
|  |  | 257-90 | Cold dust in spiral galaxies | Bolo. | Kreysa, Chini |
|  |  | 274-90 | Flux density measurements of compact steep-spectrum sources at 90 and 230 GHz | Bolo. | Steppe, Salter, Saikia |
|  |  | .50-90 | Correlated observations of a sample of AGN together with ROSAT and IUE | Cont. | Staubert, Courvoisier, Walter, Grewing |
|  |  | 287-90 | Are x-ray selected BLLacs the parent population of radio-selected BLLacs ? | 230 | Gear |
|  |  | :26-90 | Are massive disks powering molecular outflows? | 230 | André, Cabrit, Lada |
|  |  | 240-90 | A search for remnant circumstellar dust disks around young solar-type stars with age $>10 \mathrm{Myr}$ | 230 | Cabrit, André, Strom, Edwards, Skrutskie |
|  |  | 210-90 | 1.3 mm continuum emission from sircumstellar envelopes | .. 3 mm | Walmsley, Steppe, Forveille, Omont |
|  |  | 234-90 | Radio stars with suspected variability | 250 | Altenhoff, Wendker, Thum |
|  |  | 235-90 | Search for radio emission of Be stars | 250 Bolo. | Wendker, Thum, Altenhoff |



| [RAM 30-M TELESCOPE |  |  | IPRIL 1991- MAY 1991 |  | Update: May 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Week | Date | Ident. | Title | Freq.(GHz) | People |
| 6-17 | Apr 16-30 | 186-90 | Gas response at the resonance in the grand design spiral NGC 4321 |  | Elmegreen, Casoli, Combes Guélin, Garcia-Burillo, Beckman |
|  |  | 274-90 | Flux density measurements of compact steep-spectrum sources at 90 and 230 GHz | Bolo. | Steppe, Salter, Saikia |
|  |  | 221-90 | Shock chemistry in the cold cloud L1448 | $\begin{aligned} & 38-102,138-169 \\ & 220-245 \end{aligned}$ | Martin-Pintado, Bachiller Fuente, Planesas |
|  |  | 191-90 | Molecular gas in QSOs | 98 | Roland, Jaffe |
|  |  | 200-90 | Density distribution of compact$140,225$ molecular objects B335 |  | Evans, Zhou, Kömpe, Walmsley |
|  |  | 223-90 | The effects of density on the star formation efficiency | $\begin{aligned} & 97,146,244 \\ & 96,144,241 \end{aligned}$ | Cada, Evans, Falgarone |
|  |  | 227-90 | Nature of the $\rho$ OPH outflow sources Very dense gas in star formation regions: a multitransition CS study of $\mathrm{H}_{2} \mathrm{O}$ maser sources | 115,147 | André, Despois, Lada, Martin-Pintado,Montmerle Jaffe, Martin-Pintado <br> Gomez-Gon zalez, Evans, Plume |
|  |  | 225-90 |  | 98,147,244,96 |  |
|  |  |  |  | 144,241 |  |
|  |  | 181-90 | Are grain mantles the source of the remarkable gas phase enhancement of sulfur dioxide molecules around GSS 30 ? | 168,167,229 | Wootten, Loren, André |
|  |  | 207-90 | Densities and column densitiesof clouds toward CAS A | 110,220 | Przewodnik, Wilson |
|  |  |  |  | 230, 109 |  |
|  |  | 166-90 | Search for sulfur compounds in Venus atmos. Relation between atomic and molecular | 138-168, 216-221 | Bézard, Lellouch, Marten, Paubert |
|  |  | 242-90 |  | 108-115 | Dennefeld, Bottinelli |
|  |  |  | gas content in IRAS galaxies; and the efficiency of star formation | 215,230 | Gouguenheim, Martin |
|  |  | 230-90 | Galactic center molecular clouds associated with unusual HII regions | 98,244 | Morris, Serabyn |
| 3-19 | Apr $30-\mathrm{May} 14$ | 242-90 | Relation between atomic and molecular gas content in IRAS galaxies ; and the efficiency of star formation | $108-115$ | Dennefeld, Bottinelli Gouguenheim, Martin |
|  |  |  |  | $215,230$ |  |
|  |  | 230-90 | Galactic center molecular clouds associated with unusual HII regions | 98,244 | Morris, Serabyn |
|  |  | 163-90 | CO in Markarian galaxies | 110-115,220-230 | Chini, Krügel, Steppe |
|  |  | 283-90 | Chemical signatures of of protostellar regions | 86-104,217-265 | Gredel, van Dishoeck Blake |
|  |  | 101-90 | The search for CO in infrared quasars-continued | 108-84 | Wilson, Mauersberger, Kömpe Sanders, Scoville, Zensus |
|  |  | 199-90 | The line formation process | 210-220,80-90 | Wilson, Mauersberger, Scoville |
|  |  |  | in infrared QSO's | 128-135 | Sanders, Zensus, Kömpe |
|  |  | 177-90 | A massive CS outflow towards G34.26 | 98 | Cesaroni, Churchwell, Kömpe, Walmsley |
|  |  | 219-90 | Zero spacings for the SiO maps made with the IRAM Interferometer | 86 | Martin-Pintado, Wilson, Fiebig, Güsten Walmsley, Schilke, Cesaroni, Duvert, Wink |

IRAM 30-M TELESCOPE

## Update: May 1992

| Week | Date | Ident. | Title | Freq.(GHz) | People |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A057 | IRAM 30m and PdB CO Observations of the spiral structure in NGC 6946 |  | Boulanger, Casoli, Combes Guilloteau, Lequeux, Rieu, Viallefond |
| :0-21 | May 14- May 28 | 4057 | CO observations of the spiral structure in NGC 6946 |  | Boulanger, Casoli, Combes, Guilloteau Lequeux, Rieu, Viallefond |
|  |  | 41-91 | Giant molecular clouds in the nearby irregular galaxy IC 10 | 115, 230 | Becker, Greve, Johanson |
|  |  | 12-91 | Carbon monoxide isotope ratios in low-mass galaxies | 110 | 3ecker, Freudling, Greve, Wilson |
|  |  | $133-90$ | The dynamics of the circumnuclear disk in SgrA | 145, 240 | Mezger, Wilson, Zylka, Mauersberger |
|  |  | 14-91 | Study of the CO distribution in the edge-on galaxy NGC 4631 | 115,230 | Golla, Krause, Wielebinski |
|  |  | 20-91 | CO study of the central region of the barred spiral galaxy NGC 5383 | 114,228 | Wielebinski, Brouillet, Garcia-Barreto, Klein, Reuter |
|  |  | 32-91 | Stellar flares on AD Leo and AE Agr: multiband observations | SONT | Uecacheux, Dulk, Bastian, Bookbinder, Belkora |
|  |  | 16-91 | The compact region of annhiliation of positrons in the galactic center | 39,93,97,220,230 | Mirabel, Morris, Duc |
|  |  | )-91 | The discrimination between O - and C -rich circumstellar envelopes from mol. obs. | 38,90,130,244 | Bujarrabal, Omont, Fuente, Alcolea |
|  |  | 0-91 | The molecular envelope of Betelgeuse | $\begin{aligned} & 38,89,90,115 \\ & 130,146,220,230 \end{aligned}$ | 3ujarrabal, Lucas, Alcolea |
|  |  | 74-91 | HIGN resolution molecular study of photodissociation regions | $\begin{aligned} & 38,90,91,97 \\ & 109,113,146,165 \\ & 219,220,226,244 \end{aligned}$ | Fuente, Martin-Pintado, Bachiller, Cernicharo |
|  |  | 30-91 | High resolution obs. of CO emission in the envelopes of evolved stars : $\pm$ key to the ultimate revolution of the stars with high mass-loss | 115,230 | Lucas, Guilloteau, Guélin, Neri Cernicharo, Forveille, kahane, Loup <br> Morris, Omont, Bujarrabal, Martin-Pintado, Rieu |
| 22-23 | May 28 - Jun 11 | 38-91 | ${ }^{13} \mathrm{CO}$ line emission from ultraluminous IR galaxies | 10,220 | Radford, Downes, Solomon |
|  |  | 39-91 | CO in extremely distant luminous galaxies | 110,220 | Downes, Solomon, Radford |
|  |  | 258-90 | Hot water around late-type stars | $\begin{aligned} & 96,139,232,263 \\ & 336 \end{aligned}$ | Menten |
|  |  | 67-90 | The mass loss rate of short period Mira variables from $\mathrm{CO}(1 \rightarrow 0$ and $2 \rightarrow 1)$ measurements | 115,230 | Nood, Hekkert, Habing ran der Bliek |


|  | IRAM 30-M TELESCOPE |  |  | JUNE 1991- JULY 1991 |  | Update: May 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -Veek | $k$ Date | Ident. | Title | Freq.(GHz) | Peopl |
|  | 24-25 | June 11 - June 25 | 12-91 | Rare molecules in evolved planetary nebulae |  | Bachiller, Huggins, Cox, Forveille, Lequeux |
|  |  |  | 52-91 | Millimeter recombination lines in planetary nebulae $\mathrm{BD}+30^{\circ} 3639$ | 36,147,231 | Bachiller, Huggins, Cox, Forveille, Lequeux |
|  |  |  | 150-90 | Correlated observations of a sample of AGN together with ROSAT and IUE | cont | Staubert, Courvoisier, Walter, Grewing |
|  |  |  | 61-91 | The large scale interaction of the HII region and the ambient gas in Orion A High velocity filaments and bullets | 36-245 | Martin-Pintado, Rodriguez, Bachiller, Wilson |
|  |  |  | 36-91 | HCN and HNC chemistry in Orion-KL | 36-90, 148 | Schilke, Walmsley |
|  |  |  | 39-91 | Protonated HCN in cold clouds and the galactic center | 75,86,148 | Schilke, Walmsley, Henkel, Millar |
|  |  |  | 77-91 | Methyl cyanide as a probe of kinetic temperature in dense molecular clouds | 110, 147, 220 | Evans, Martin- Pintado, Gomez-Gonzalez, Plume |
|  |  |  | 33-91 | CS absorption line observations of spiral arms | 98, 147 | Greaves, Moore, Williams |
|  |  |  | 49-91 | HC3N and HC5N around IRC+10216 | 32,101,164,218 | Kahane, Jura |
|  |  |  | 33-91 | Steps towards a molecular Tully-Fisher relation |  | Kazes, Dickey |
| $\frac{1}{\lambda}$ | 26-27 | June 25-July 9 | 54-91 | Molecular clouds within 10 PC of galactic center |  | Wright, Ho, Guesten |
|  |  |  | $16-91$ | Density structure in cold molecular clouds | $30,85,145,150$ | Cox, Guesten |
|  |  |  | $40-91$ | Catalogue of calibrated spectra for redshifted CO | $110,115,220,230$ | Liechti, Steppe |
|  |  |  | 5-91 | Multi-level HNCO observations of nearby starburst galaxies | 220 | Rieu, Jackson, Henkel, Mauersberger |
|  |  |  | 47-91 | $\mathrm{D} / \mathrm{H}$ in the galactic center (III) | 85,144,216,220 | Jacq, Walmsley |
|  |  |  | 258-90 | Hot water around late-type stars | 96,139,232,263,336 | Menten |
|  |  |  | 53-91 | The small scale structure of a GMC | 110,220 | Dutrey, Duvert, Castets, Bachiller, Bally Walmsley, Boulanger |
|  | 28-29 | July 9 - July 23 | 26-91 | C 2 H in circumstellar envelopes: a tracer of acetylene and dust condensation | 87,174,262 | Tejero, Cernicharo, Omont, Mailla |
|  |  |  | 51-91 | A fresh look at the electron density problem: measurements of the $\mathrm{DCO}+/ \mathrm{HCO}+$ abundance ratio in four cloud cores | 72,86,144,216 | Guélin, Cernicharo, Rowe, Valiron |


| Neek | Date | Ident. | ritle | Freq.(GHz) | People |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 37-91 | CO photodissociation at the edges of IRC+10216 |  | Juélin, Cernicharo, Lucas, Kahane |
|  |  | 70-91 | Search for the HCCN radical and for the C4H4 molecule in interstellar clouds | 37,109,110,131 | Guélin, Cernicharo, Bogey |
|  |  | 13-91 | The transition of atomic to molecular gas in MCD 176.6+24.5 | 90,109,230 | Heithausen, Schneider, Wouterloot |
|  |  | 25-91 | The very small scale structure of molecular clouds : Iligh angular resolution isotopic CO mapping of 1457 and NGC 1499 | 09,110,218,220 | Cimmermann, Herbertz, Stutzki |
| :0-31 | July 23 - August 6 | 59-91 | Multi-transition CS observations of outer-galaxy massive star forming clouds | 97, 146 | De Geus, Brand, Wouterloot, Rudolph |
|  |  | 81-91 | The molecular cloud content of elliptical galaxies:What is the physical state of the ISM ? | !3,115 | Wiklind, Combes, Dupraz, Henkel |
|  |  | 30-91 | CO distribution in elliptical galaxies |  | Wiklind, Lees, Combes, Dupraz, Henkel |
|  |  | 43-91 | CO observations of old dust-forming | 110,220,115,230 | Shore, Starrfield, Braine |
|  |  | 35-91 | Getting the most out of NGC 6946 | 110, 220 | Braine, Casoli, Combes, Viallefond |
|  |  | 34-91 | Strong CO in an isolated galaxy | 110,115,220,230 | Braine, Combes, Shore |
|  |  | 22-91 | Deuterium chemistry search for CH2DCN, CH2DCCH and CH3CCD | 30-226 | Gerin, Combes, Encrenaz, Laurent, Wlodarczak |
| 12-33 | Aug. 6 - tug. 20 | 34-91 | 3trong CO in an isolated galaxy |  | Lecacheux, Dulk, Bastian, Bookbinder, Belkora |
|  |  | 11-91 | The starburst galaxy NGC660: CO in the polar ring? | 14, 220 | Combes, Casoli, Dupraz, Gerin, Van Driel |
|  |  | 38-91 | CO line observations of bright carbon stars | 115, 230 | Iroenewegen, De Jong, Loup |
|  |  | 2-91 | Molecular gas in a cluster environment | 115, 230 | Jage, Henkel, Mauersberger |
|  |  | 39-91 | Protonated HCN in cold clouds and the galactic center | 74,86,87,148 | 广chilke, Walmsley, Henkel, Millar |
|  |  | 65-91 | is the envelope in DR21 very dense? |  | Wilson, Mauersberger, Henkel, Hüttemeister |
|  |  | 64-91 | Kho Oph B:A high density, cold cloud | 144,147,241,245 | Wilson, Mauersberger, Koempe |
|  |  | 19-91 | A multilevel study of extragalactic H 2 CO | 140,145,218,225 | Huettemeister, Baan, Henkel, Mauersberger |
|  |  | 48-91 | Isotopic ratio on Titan | 39, 259 | Bézard, Marten, Coustenis, Paubert |
|  |  | 37-91 | Venus mesophere dynamics from CO lines | 115, 220, 230 | Lellouch, Goldstein, Rosenqvist, Paubert, Bougher |


| [RAM 30-M TELESCOPE |  |  | IUGUST 1991- SEPTEMBER 1991 |  | Update: May 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Week | Date | [dent. | Title | Freq.(GHz) | People |
| 34-35 | Aug. $20-$ Sep. 3 | 37-91 | Venus mesophere dynamics from CO lines | 115, 220, 230 | Lellouch, Goldstein, Rosenqvist, Paubert, Bougher |
|  |  | 30-91 | The formation of C 3 H 2 : Observations in M17 | $85,90,145$ | Giard, Falgarone, Pauzat, Cox |
|  |  | 31-91 | Correlation between gas density and infrared colours | 110, 147, 230 | Boulanger, Falgarone |
|  |  | 75-91 | Mapping of the H 20 vertical distribution in the upper atmosphere of Venus from a study of the 226 GHz line | 225 | Encrenaz, Lellouch, Rosenqvist, Gulkis Paubert, Belton, de Pater |
|  |  | 71-91 | Molecular emission from circumstellar regions of young stars | 109, 146, 244 | Fuller, Masson, Myers, Falgarone |
|  |  | 45-91 | Comparison of the small scale structure in dense cores with and without stars |  | Fuller, Falgarone, Myers, Puget |
|  |  | 31-91 | The large scale interaction of the HII region and the ambient gas in Orion A high velocity filaments and bullets | $\begin{aligned} & 86,98,113,132,226 \\ & 232,245 \end{aligned}$ | Martin- Pintado, Rodriguez, Bachiller, Wilson |
|  |  | 124-91 | Continuum observations of asteroids at 86 GHz | 86 | Altenhoff, Johnston, Stumpf, Webster |
|  |  | 120-91 | Internal motions and density structure in dense cores:High resolution observations of $\mathrm{C}_{3} \mathrm{H}_{2}$ | 82,85,145 | Fuller, Myers, Falgarone, Puget |
| 36-37 | Sep. 3-Sep 17 | $163-91$ | Discrimination between O and C C rich circumstellar envelopes from molecular observations | 85,88,113,130, 244 | Bujarrabal, Omont, Fuente, Alcolea |
|  |  | 157-91 | A study of the 28 SiO maser emissionin VY CMa |  | Cernicharo, Bujarrabal |
|  |  | 32-91 | A search for hot $\mathrm{CO}(\mathrm{v}=1)$ towards shocked regions of the interstellar medium | 114, 228 | Cernicharo, Gonzalez, Bachiller, Martin-Pintado Gomez-Gonzalez |
|  |  | .34-91 | Chemistry in the molecular envelope of NGC 7027 |  | Cox,Omont,Guilloteau, Bachiller, Huggins, Forveille |
|  |  | 57-91 | A molecular study of the tear drops in the Rosette nebula | $115,230,110,220,97$ | Gonzalez, Cernicharo,Gomez-Gonzalez |

IRAM 30-M TELESCOPE
SEPTEMBER 1991-OCTOBER 1991
Update: May 1992

| Week | Date | Ident. | Title | Freq.(GHz) | People |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 38-39 | Sep 17-Oct 1st | 131-91 | Is there an intrinsec difference between Seyfert 1 and Seyfert 2 galaxies |  |  |
|  |  | 132-91 | The Iram line calibrator catalog continued:Cablibration in 1.3 mm window |  | Koëmpe, Mauersberger |
|  |  | 159-91 | Is a galaxy's HCN luminosity a good indicator of its star forming rate? |  | Solomon, Radford, Downes |
|  |  | 160-91 | L1287-RN01B: A unique FUOri object associated with a molecular outflow | 36, 130, 144, 230 | Guilloteau, Lazareff, Le Floch, Staude |
|  |  | 164-91 | A search for signs of ongoing star formation in the dense cores of the Taurus complex | 115, 230 | Le Floch, Cernicharo, Lazareff |
| 10-41 | Oct 1st - Oct 15 | 131-91 | Is there an intrinsec difference between Seyfert 1 and Seyfert 2 galaxies | [10-115, 220-230 | Steppe |
|  |  | 97-91 | The molecular outflows of youngest stellar objects | 115,230 | Bachiller, Juan |
|  |  | [29-91 | Circumnuclear molecular gas in Seyfert gal. | 115, 230 | Planesas, Colina, Martin-Pintado, Diaz |
|  |  | [30-91 | Molecular gas in 3 selected nuclear starburst galaxies | 115, 230 | Planesas, Colina, Diaz |
|  |  | 109-91 | Shock chemistry in the cold cloud L1448 | 30,221 | Martin-Pintado, Fuente, Bachiller |
|  |  | 34-91 | So and So ${ }^{2}$ probes of shocked extragal. gas |  | Henkel, Mauersberger, Omont, Sage, Schilke Hüttemeister, Walmsley |
|  |  | 103-91 | Molecular gas in the tidal arms and dwarf galaxies of the M81 group |  | Brouillet, Baudry, Henkel, Sage |
|  |  | -50-91 | Molecular clouds in the dwarf elliptical galaxy NGC185. | 115, 230 | Wiklind, Henkel, Rydbeck |
| 42-43 | Oct 15-Oct 29 | $\begin{aligned} & \lfloor 29-91 \\ & \lceil 30-91 \end{aligned}$ | Circumnuclear molecular gas in Seyfert gal. Molecular gas in 3 selected nuclear starburst galaxies | $\begin{aligned} & 115,230 \\ & 115,230 \end{aligned}$ | Planesas, Colina, Martin-Pintado, Diaz Planesas, Colina, Diaz |
|  |  | 73-91 | Systematic observations of anomalous refraction at 86 GHz | 36 | Altenhoff, Downes, Penalver |
|  |  | 93-91 | Search for PH3 in Uranus and Neptune | 36, 160 | Lellouch, Rosenqvist, Encrenaz, Paubert |
|  |  | 113-91 | Evidence of protostellar collapse in B335 | 140, 225 | Evans, Zhou, Kömpe, Walmsley |
|  |  | 114-91 | Very dense gas in regions of massive star formation.Multitransition CS study of water maser sources | 98, 147, 224 | Jaffe, Martin-Pintado, Gomez-Gonzalez, Plume, Evans |


|  |  |  | 15-91 | The effects of density on the star formation efficiency |  | ،ada, Evans, Falgarone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 14-45 | Oct $29-$ Nov 12 | $\begin{aligned} & 170-91 \\ & 171-91 \end{aligned}$ | Observations of AE AQUARII Search for ${ }^{13} \mathrm{CO}(\mathrm{J}=3-2)$ and Cl emission in IRAS 10214+4724 | Bolometer $100,149,246$ | jecacheux, Dulk, Bastian, Bookbinder, Abada 3rown, Vanden Bout |
|  |  |  | 155-91 | [sotopic and molecular abundances in IC10 | 38,97,110,220 | Becker, Greve, Johansson |
|  |  |  | 88-91 | A search for molecular gas in an SBO galaxy with counter-rotating ionized gas and stars | 115,230 | Sage, IIenkel, Wiklind |
|  |  |  | 144-91 | NGC1569: A post-starburst galaxy with $\mathrm{CO}(2-1) / \mathrm{CO}(1-0)$ ratios 1 ? |  | 3ecker, Greve, Johansson |
|  |  |  | 92-91 | Studies of the molecular gas in SO galaxies | 115, 230 | Li, Seaquist, Sage |
|  |  |  | :08-91 | The large scale interaction of the HII region and the ambient gas in Orion A. High velocity filaments and bullets | 15,130,230 | Rodriguez, Martin-Pintado Wilson, Bachiller |
|  |  |  | 39-91 | CO observations of far-IR bright. radio quiet quasars |  | Barvainis, Alloin, Antonucci, Gordon |
| 9 | 16-47 | Nov $12-$ Nov 26 | 153-91 | Multi molecular mapping of the circumstellar envelope of IRC +10216 | 30,113,232, 341 | Kahane, Cernicharo, Guélin, Forveille Lucas, Omont, Guilloteau |
|  |  |  | 166-91 | Short spacings for the Bure interferometer maps of SiCC and C4H(2v7) in IRC+10216 | 34, 94 | Lucas, Guélin, Cernicharo |
|  |  |  | 168-91 | Chemical processes and their localisation in CRL 2688 | $35,93,145,244$ | Jmont, Lucas, Kahane |
|  |  |  | 154-91 | The ${ }^{18} \mathrm{O} /{ }^{17} \mathrm{O}$ ratio in oxygen-rich dusty envelopes | 36, 219, 224 | Kahane, Forveille, Cernicharo, Guélin |
|  |  |  | 123-91 | N3310:a more extreme starburst than M82? | 115,230,88,89 | Braine, Combes |
|  |  |  | 121-91 | CO observations of M87 | 115, 230 | Braine, Combes, Wiklind |
|  |  |  | 122-91 | NGC 3187: little FIR, little blue light, but lots of CO ? | .15, 230 | Braine |
|  |  |  | 162-91 | Nature of the molecular halo in NGC891 |  | Garcia-Burillo, Guélin, Cernicharo |


| Neek | Date | Ident. | Title | Freq.(GHz) | People |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8-49 | Vov 26 - Dec 10 |  | A study of shock chemistry SN the protoplanetary nebula CRL 618 |  | Garcia-Burillo, Tejero, Cernicharo, Guélin, Neri, Martin-Pintado |
|  |  | 112-91 | Density wave induced star formation in the arms of NGC3631:CO J=2-1 | 230 | Knapen, Beckman, Van der Kruit, Cepa |
|  |  | 128-91 | A search for molecular oxygen in dark clouds | 109, 233, 219 | Cernicharo, Fuente, Garcia-Burillo, Hein |
|  |  | 48-91 | The origin of broad line wing emission in MBM16 |  | Gotting, Stutzki |
|  |  | 117-91 | CO rotation in selected edge-on galaxies |  | Wielebinski, Reuter, Krause, Ott, Grewing |
|  |  | 165-91 | $\mathrm{HCO}+(\mathrm{J}=3-2)$ observations of Herbig-Haro objects | 267 | Rudolph, Rieu, Welch, Bachiller |
|  |  | 145-91 | CO in infrared luminous QSO's | 36, 101,108 | Wilson, Mauersberger, Kompe, Scoville, Sanders |
| ;0-51 | Nov $10-$ Dec 24 | 30-91 | Gas response at the resonances in the Grand design spiral NGC 4321 | 114, 229 | Elmegreen, Casoli, Combes, Guélin Garcia-Burillo, Beckman |
|  |  | 266-91 | Distribution and kinematics of molecular clouds in elliptical galaxies | .15, 230 | Wiklind, Combes, Lees, Henkel, Rupen |
|  |  | 95-91 | Oxygen isotope ratios in galaxies | 115, 230 | Sage, Salzer, Loose, Ilenkel |
|  |  | 135-91 | CO observations of the edge-on galaxy NGC 100 | 115, 230 | Bosma |
| 32-01 | Dec $24-\mathrm{Jan} 7$ | 37-91 | The kinematics and physical conditions of molecular gas near the center of M81 | (15, 230 | Sage, Brouillet, Westpfahl |
|  |  | 156-91 | CO observations in NGC595 and star forming regions in M33 |  | Viallefond, Boulanger, Cox, Guelin, Lequeux |
|  |  | .71-91 | Search for ${ }^{13} \mathrm{CO}(\mathrm{J}=3-2)$ and Cl emission emission in IRAS 10214+4724 | . $00,149,246$ | Brown, Vanden Bout |
|  |  | 217-91 | Observations of $\mathrm{HCN}(\mathrm{J}=1-0)$ in Maffei 2. Complementary mapping for emission at low spatial frequencies for PdB observations | 38, 131, 265 | Rieu, Viallefond, Combes, Jackson Lequeux, Truong-Bach |
|  |  | 19-91 | High density slakk scale structure in the edges of molecular clouds | . $10,115,220,230$ | Falgarone, Philips |
|  |  | 120-91 | Internal motions and density structure in dense cores: High resolution observations of C 3 H 2 | 32, 85, 145 | Fuller, Falgarone, Puget |
|  |  | .00-91 | Circumstellar molecular emission : From IRAS sources to T Tauris star | 109,146,244 | Fuller, Myers, Masson, Falgarone |
|  |  | 270-91 | Comparison of the small scale structure in dense cores with and without stars | 38,146,109,219 | Tuller, Myers, Falgarone, Puget |

## 7. ANNEX [ : TELESCOPE SCHEDULES / 7.2 IRAM Plateau de Bure Interferometer

| Project | Conf. | Title | Authors | Molecules | Object | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A032 | BC | Dense Cores in Star | R.Gusten R.Cesaroni D.Fiebig | $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}^{34} \mathrm{~S}$ | NGC 2024 | YSO |
| A033 |  | Forming Regions | C.Henkel K.M.Menten R.Mauersberger | $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{HCO}^{+}$ | Orion A |  |
| A035 |  |  | P.Schilke J.Schmid-Burgk | H41 $\alpha$ | W3 (OH) |  |
| A042 | C1,C2 | A Neutral Circumstellar Disk around MWC 349 | J.Martin-Pintado C.Thum R. Bachiller | CO | MWC 349 | CSE |
| A043 | C2 | Cold Condensations in a Molecular Cloud | F.Pajot, J.L.Puget <br> M.Perrault J.P.Bernard | Continuum | TCDa-b | Mol |
| A045 | CD | Snapshots of circumstellar material in Young Stellar Objects | D.Despois P.André T.Montmerle <br> A.Baudry S.Cabrit | ${ }^{13} \mathrm{CO}$ | AS205, L1719B, S68, L723-MM, B335, LkHa234, Elias 1, RY Tau, DL Tau, CI Tau, L1527, GM Aur | YSO |
| A049 | BC | $\begin{aligned} & \mathrm{HCO}^{+} \\ & \text {in } \mathrm{IC} 342 \end{aligned}$ | J.Lequeux Nguyen-Q-Rieu F.Casoli <br> F.Combes M.Gérin C.Henkel <br> J.Jackson F.Viallefond Truong-Bach | $\mathrm{HCO}^{+}$ | IC 342 | Gal |
| A050 | C2 | Fine scale isotropy of cosmic background radiation | S.Radford | Continuum | Empty field | Oth |
| $\begin{aligned} & \text { A051 } \\ & \text { A052 } \end{aligned}$ | CD | Mapping of the high velocity bullets in L1448 outflow | R.Bachiller A.Fuente J.Martin-Pintado P.Planesas S.Guilloteau B.Lazareff | CO | L1448 | YSO |
| A054 | BC | Morphology and Kinematics of Circumstellar Disks around Outflow sources | S.Cabrit C.Bertout P.André <br> A.Baudry D.Despois S.Guilloteau | ${ }^{13} \mathrm{CO}$ | HL-Tau | YSO |
| A057 | CD <br> mosaic <br> $+30-\mathrm{m}$ | CO observations of the <br> Spiral Structure of NGC6946 | F.Boulanger F.Casoli F.Combes <br> S.Guilloteau J.Lequeux Nguyen-Q-Rieu <br> F.Viallefond | CO | NGC 6946 | Gal |
| A059 | BC | A search for rotating proto-stellar disks: the dense gas around $\mathrm{W} 3(\mathrm{OH})$ | S.Guilloteau A.Castets G.Duvert | $\mathrm{C}^{18} \mathrm{O}$ | W3(OH) | YSO |
| A065 | BC | Bipolarity around AGB Stars CO in IRAS09371+1212 | M.Morris T.Forveille R.Lucas S.Guilloteau A.Omont | CO | Frosty Leo nebula | CSE |



## 8. ANNEX II : PUBLICATIONS / 8.1 IRAM Publications

MOLECULAR SPIRAL STRUCTURE IN M51 FROM ${ }^{12} \mathrm{CO}(2-1)$ AND (1-0) SINGLE DISH OBSERVATIONS
S. Garcia-Burillo, M. Guélin

1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed.
F. Combes, F. Casoli, Kluwer, Dordrecht, p. 67
274. CO EMISSION ALONG THE ANOMALOUS ARMS OF NGC 4258
M. Krause, P. Cox, J.A. Garcia-Barreto, D. Downes

1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 166

CO IN DISTANT GalaXies
D. Downes, S.J.E. Radford, P.M. Solomon 1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 295

THE DENSE MOLECULAR CORE OF ARP 220
S.J.E. Radford, J. Delannoy, D. Downes,
M. Guélin, S. Guilloteau, A. Greve, R. Lucas, D. Morris, J. Wink

1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 303
277. SIMULATIONS OF MOLECULAR CLOUDS IN M51
S. Garcia-Burillo, F. Combes, M. Gerin 1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 351
278. HIGH-VELOCITY MOLECULAR BULLETS IN BIPOLAR OUTFLOWS: L1448 AND HH 7-11 R. Bachiller, J. Cernicharo, J. Martin-Pintado, M. Tafalla, B. Lazareff 1991, in Fragmentation of Molecular Clouds and Star Formation, IAU Symp. 147, ed. E. Falgarone, F. Boulanger, G. Duvert, Kluwer, Dordrecht, p. 389
279. EFFECTS OF THE UV RADIATION ON THE SURROUNDING GAS AND DUST
A. Fuente, J. Martin-Pintado, J. Cernicharo, N. Brouillet, G. Duvert

1991, in Fragmentation of Molecular Clouds and Star Formation, IAU Symp. 147, ed. E. Falgarone, F. Boulanger, G. Duvert, Kluwer, Dordrecht, p. 409
280. PHYSICAL CONDITIONS OF STAR FORMING SITES IN THE S247/252 MOLECULAR COMPLEX
C. Koempe, G. Joncas, J.G.A. Wouterloot, H. Meyerdierks 1991, in Fragmentation of Molecular Clouds and Star Formation, IAU Symp. 147, ed. E. Falgarone, F. Boulanger, G. Duvert, Kluwer, Dordrecht, p. 443
281. AN $8^{\prime \prime}$ RESOLUTION CO(3-2) MAP OF IC 342 R. Mauersberger, A. Schulz J.W.M. Baars, H. Steppe

1991, in Fragmentation of Molecular Clouds and Star Formation, IAU Symp. 147, ed. E. Falgarone, F. Boulanger, G. Duvert, Kluwer, Dordrecht, p. 460
282. OPEN STRUCTURE SIS RECEIVER FOR SUB-MM RADIO ASTRONOMY BETWEEN $350 \& 700 \mathrm{GHz}$
H. Rothermal, A. Eckart, K.H. Gundlach, M. Lucius
1991, in Int. Conf. MM Wave \& Far Infrared Technology, ICMWFT'90, Beijing, p. 4
283. INVESTIGATION OF THE TUNNEL BARRIER IN Nb-BASED JUNCTIONS PREPARED BY SPUTTERING AND ELECTRON BEAM EVAPORATION
H. Kohlstedt, K.H. Gundlach, A. Schneider 1991, IEEE Trans. Magnetics 27, 3149
284. EXTENSION MILLIMÈTRIQUE d'un ANALYSEUR de RESEAUX 20 MHz
F. Mattiocco, M. Carter

1991, in Résumés des Conférences 7 7èmes Journées Nationales Microondes, JNM-LEMO-ENSERG, Grenoble, p. 213
285. CO EXCITATION AND $\mathrm{H}_{2}$ MASSES OF INFRARED-LUMINOUS GALAXIES
S.J.E. Radford, P.M. Solomon, D. Downes 1991, ApJ 368, L15
286. ASTRONOMICAL DETECTION OF $\mathrm{H}_{2} \mathrm{CCC}$
J. Cernicharo, C.A. Gottlieb, M. Guélin, T.C. Killian, G. Paubert, P. Thaddeus, J.M. Vrtilek 1991, ApJ 368, L39
287. ASTRONOMICAL DETECTION OF $\mathrm{H}_{2}$ CCCC J. Cernicharo, C.A. Gottlieb, M. Guélin, T.C. Killian, P. Thaddeus, J.M. Vrtilek
1991, ApJ 368, L43
288. MICROWAVE DETECTION OF HYDROGEN SULFIDE \& METHANOL IN COMET AUSTIN (1989c1)
D. Bockelée-Morvan, P. Colom, J. Crovisier, D. Despois, G. Paubert

1991, Nature 350, 318
289. ASTRONOMICAL DETECTION OF THE HCCN RADICAL. TOWARD A NEW FAMILY OF CARBON-CHAIN MOLECULES?
M. Guélin, J. Cernicharo

1991, A\&A 244, L21
290. THE NUCLEAR RING OF THE BARRED GALAXY NGC 4314
J.A. Garcia-Barreto, D. Downes, F. Combes, M. Gerin, C. Magri, L. Carrasco, I. Cruz-Gonzalez 1991, A\&A 244, 257
291 DENSE GAS IN NEARBY GALAXIES IV. DETECTION OF $\mathrm{N}_{2} \mathrm{H}^{+}, \mathrm{SiO}, \mathrm{H}^{13} \mathrm{CO}^{+}, \mathrm{H}^{13} \mathrm{CN}$ AND HN ${ }^{13}$ C
R. Mauersberger, C. Henkel

1991, A\&A 245, 457
292. FIRST DETECTION OF HDO IN THE ATMOSPHERE OF VENUS AT RADIO WAVELENGTHS: AN ESTIMATE OF THE $\mathrm{H}_{2} \mathrm{O}$ VERTICAL DISTRIBUTION
T. Encrenaz, E. Lellouch, G. Paubert, S. Gulkis 1991, A\&A 246, L63
293. ASTRONOMICAL AND LABORATORY STUDY OF Si ${ }^{13} \mathrm{CC}$
J. Cernicharo, M. Guélin, C. Kahane, M. Bogey, C. Demuynck, J. Destombes

1991, A\&A 246, 213
294. DENSE GAS IN NEARBY GALAXIES V. MULTILEVEL STUDIES OF $\mathrm{CH}_{3} \mathrm{CCH}$ AND $\mathrm{CH}_{3} \mathrm{CN}$
R. Mauersberger, C. Henkel, C.M. Walmsley, L.J. Sage, T. Wiklind

1991, A\&A 247, 307
295. 1.3 MM CONTINUUM EMISSION FROM CIRCUMSTELLAR ENVELOPES
C.M. Walmsley, R. Chini, E. Kreysa, H. Steppe, T. Forveille, A. Omont

1991, A\&A 248, 555
296. ${ }^{29} \mathrm{SiO} \mathrm{v}=1$ MASER EMISSION FROM EVOLVED STARS: PUMPING OF ${ }^{29} \mathrm{SiO}$ BY ${ }^{28} \mathrm{SiO}$ THROUGH INFRARED LINE OVERLAPS
J. Cernicharo, V. Bujarrabal, R. Lucas 1991, A\&A 249, L27
297. EXTRAGALACTIC ${ }^{18} \mathrm{O} /{ }^{17} \mathrm{O}$ RATIOS AND

STAR FORMATION: HIGH MASS STARS PREFERRED IN STARBURST SYSTEMS ?
L.J. Sage, R. Mauersberger, C. Henkel 1991, A\&A 249, 31
298. $\mathrm{CO}(\mathrm{J}=1-0$ AND 2-1) MAPPING OF IRC+10216: A HOT CORE MODEL FOR THE GAS KINETIC TEMPERATURE DISTRIBUTION AND THE MASS-LOSS RATE
Truong-Bach, D. Morris, Nguyen-Q-Rieu 1991, A\&A 249435
299. 1E 1740.7-2942: A BLACK HOLE IN A MOLECULAR CLOUD ?
I.F. Mirabel, M. Morris, J. Wink, J. Paul, B. Cordier 1991, A\&A 251, L46
300. THE INTERNAL STRUCTURE OF MOLECULAR CLOUDS: II. THE W3(OH)/W3( $\left.\mathrm{H}_{2} \mathrm{O}\right)$ REGION.
T.L. Wilson, K.J. Johnston, R. Mauersberger 1991, A\&A 251, 220
301. ${ }^{13} \mathrm{CO}$ EMISSION IN THE IRREGULAR GALAXY NGC 55 AND THE IR-LUMINOUS GALAXY NGC 3256
R. Becker, W. Freudling

1991, A\&A 251, 454
302. EXTINCTION TOWARDS 30 DORADUS DERIVED FROM COMMON UPPER LEVEL $\mathrm{P}_{\gamma} / \mathrm{H}_{\delta}$ AND $\mathrm{P}_{\delta} / \mathrm{H}_{\varepsilon}$ LINE RATIOS
A. Greve, J. Castles, C.D. McKeith

1991, A\&A 251, 575
303. CIRCUMNUCLEAR STAR FORMATION IN THE BARRED GALAXY NGC 1022
J.A. Garcia-Barreto, D. Downes, F. Combes, L. Carrasco, M. Gerin, I. Cruz-Gonzalez 1991, A\&A 252, 19
304. MOLECULAR CLUMPS ASSOCIATED WITH ULTRA COMPACT H II REGIONS
R. Cesaroni, C.M. Walmsley, C. Kömpe,
E. Churchwell

1991, A\&A 252, 278
305. ANATOMY OF THE BARNARD 5 CORE
G.A. Fuller, P.C. Myers, W.J. Welch, P.F. Goldsmith, W.D. Langer, B.G. Campbell, S. Guilloteau, R.W. Wilson 1991, ApJ 376, 135

306
MM WAVE OBSERVATIONS OF INTERSTELLAR MOLECULES
M. Guélin, C. Rist, J. Cernicharo 1991, in Molecular Clouds, ed. R.A. James, T.J. Millar, Cambridge Univ. Press, p. 97
307. A CO SURVEY OF THE HALO OF NGC 891 S. Garcia-Burillo, M. Dahlem, M. Guélin 1991, in The Interstellar Disk-Halo Connection in Galaxies, IAU Symp. 144, ed. H. Bloemen, Kluwer, Dordrecht, p. 299
308. PHYSICAL CONDITIONS OF LOW MASS STAR FORMING REGIONS
J. Cernicharo

1991, in Physics of Star Formation and Early Stellar Evolution, ed. C.J. Lada, N.D. Kylafis, Kluwer, Dordrecht, p. 287
309. GALAXY KINEMATICS FROM ISIS SPECTRA
J. Castles, C.D. McKeith, A. Greve

1991, Vistas in Astronomy 34, 187
310. SPECKLE-INTERFEROMETRY AND PROVISIONAL ORBIT OF BU 738
M. Scardiam, R. Neri, M. Grewing

1991, Astron. Nachr. 312, 6, 351
311. MOLECULAR SPIRAL STRUCTURE IN MESSIER 51 FROM ${ }^{12} \mathrm{CO}(2-1)$ AND (1-0) SINGLE DISH OBSERVATIONS
S. Garcia-Burillo, M. Guélin 1991, Annales de Physique, Colloque No. 3, vol. 16, p. 13
312. MICROWAVE OBSERVATIONS OF HYDROGEN SULFIDE AND SEARCHES FOR OTHER SULFUR COMPOUNDS IN COMETS AUSTIN (1989c1) \& LEVY (1990c)
J. Crovisier, D. Despois, D. Bockelée-Morvan, P. Colom, G. Paubert 1991, Icarus 93, 246
313. $\mathrm{Nb}-\mathrm{Al}$ OXIDE-Nb JUNCTIONS FOR 3-MM SIS RECEIVERS
T. Lehnert, C. Grassl, K.H. Gundlach, J. Blondel 1991, Proc. Superconductor Science \& Technology, SUST-4, 419.
314. SIS JUNCTIONS AS FREQUENCY MIXERS AND OSCILLATORS
K.H. Gundlach

1991, Proceedings of Symposium on Applied Superconductivity, Kernforschungszentrum Karlsruhe, p. 77
315. AN OPEN STRUCTURE SIS MIXER FOR 350 GHz
H. Rothermel, D. Billon-Pierron, K.H. Gundlach 1991, Proc. 16th Int. Conf. Infrared and Millimeter Waves, eds. M.R. Siegrist, M.Q. Tran, T.M. Tran, Ecole Polytechnique Fédérale de Lausanne, p. 135
316. RECEIVER DEVELOPMENT WITH NB/ALOXIDE/NB SIS MIXERS IN THE FREQUENCY RANGES OF (210-270) AND (320-370) GHz M.C. Carter, S. Navarro, A. Karpov, D. BillonPierron, T. Lehnert, K.H. Gundlach 1991, Proc. 16th Int. Conf. Infrared and Millimeter Waves, eds. M.R. Siegrist, M.Q. Tran, T.M. Tran, Ecole Polytechnique Fédérale de Lausanne, p. 137
317. DIRECT DETECTION WITH Nb BASED TUNNEL JUNCTIONS AT 74 GHz
J. Mees, E. Kreysa, T. Lehnert, K.H. Gundlach 1991, Proc. 16th Int. Conf. Infrared and Millimeter Waves, eds. M.R. Siegrist, M.Q. Tran, T.M. Tran, Ecole Polytechnique Fédérale de Lausanne, p. 218
318. EXPERIMENTAL ASSESSMENT OF PHASE RETRIEVAL HOLOGRAPHY OF A RADIO TELESCOPE
D. Morris, J.H. Davis, C.E. Mayer 1991, IEE Proc.-H 138, 243
319. HOLOGRAPHIC REFLECTOR MEASUREMENT OF THE 30 M TELESCOPE AND THE 15 M SEST
J.W.M. Baars, D. Morris, N.D. Whyborn 1991, in Holography Testing of Large Radio Telescopes, Nauka, St. Petersburg, p. 53
320. 1.3 MM CON'TINUUM EMISSION FROM CIRCUMSTELLAR ENVELOPES
C.M. Walmsley, R. Chini, E. Kreysa, H. Steppe, P. André, T. Forveille, A. Omont 1991, in From Ground Based to Space Borne Submm Astronomy, ESA SP-314, ed. B.H. Kaldeich, ESTEC, Noordwijk, p. 155
321. EXCITATION ROTATIONNELLE DE L'AMMONIAC INTERSTELLAIRE: PROBLÈMES THÉORIQUES ET PERSPECTIVES

## C. Rist

1991, Ph.D. Thesis, Université Joseph Fourier Grenoble I
322. DISTRIBUTION ET DYNAMIQUE DES NUAGES MOLECULAIRES DANS LES GALAXIES SPIRALES MESSIER 51 ET NGC 891
S. Garcia-Burillo

1991, Ph.D. Thesis, Université Joseph Fourier Grenoble I
323. THE DESIGN OF HIGH FREQUENCY ANTENNAS
J. Delannoy

1991, in Radio Interferometry: Theory, Techniques, and Applications, ed. T.J. Cornwell, R.A. Perley, Astron. Soc. Pacific, San Francisco, p. 15
324. THE IRAM PLATEAU DE BURE INTERFEROMETER
R. LUCAS

1991, in Radio Interferometry: Theory, Techniques, and Applications, ed. T.J. Cornwell, R.A. Perley, Astron. Soc. Pacific, San Francisco, p. 449
325. DENSE MOLECULAR GAS AND STARBURSTS IN ULTRALUMINOUS GALAXIES P.M. Solomon, D. Downes, S.J.E. Radford 1992, ApJ 387, L55
326. MOLECULAR GAS CONTENT OF THE PRIMAEVAL GALAXY IRAS $10214+4724$
P.M. Solomon, S.J.E. Radford, D. Downes 1992, Nature 356, 318
327. FABRICATION AND PROPERTIES OF

SUPERCONDUCTOR- INSULATOR-NORMAL METAL TUNNEL JUNCTIONS
T. Lehnert, K.H. Gundlach 1992, Journ. Vacuum Sci. Technol. A10, 110
328. UNDERSTANDING NOISE IN SIS RECEIVERS
R. Blundell, R.E. Miller, K.H. Gundlach 1992, Int. Journ. IR \& mm Waves 13, 3
329. A POWERFUL, ULTRA-STEEP SPECTRUM RADIO GALAXY HAVING AN EXTREMELY LOW-EXCITATION EMISSION LINE SPECTRUM
Gopal-Krishna, E. Giraud, J. Melnick, H. Steppe 1992, A\&A 254, 42
330. CARBON MONOXIDE IN ACTIVE GALAXIES R. Chini, E. Krügel, H. Steppe 1992, A\&A 255, 87
331. ISOTOPIC ABUNDANCES IN CARBON RICH CIRCUMSTELLAR ENVELOPES: A FURTHER ITERATION ON THE OXYGEN ISOTOPE PUZZLE
C. Kahane, J. Cernicharo, J. Gómez-González, M. Guélin
1992, A\&A 256, 235
332. MONITORING OF THE RECOMBINATION LINE MASER IN MWC349
C. Thum, J. Martin-Pintado, R. Bachiller 1992, A\&A 256, 507
333. A STUDY OF HCN, HNC AND THEIR ISOTOPOMERS IN OMC-1
P. Schilke, C.M. Walmsley, G. Pineau de Forêts, E. Roueff, D.R. Flower, S. Guilloteau 1992, A\&A 256, 595
334. THE INTERNAL STRUCTURE OF MOLECULAR CLOUDS III. EVIDENCE FOR MOLECULAR DEPLETION IN THE NGC 2024 CONDENSATIONS
R. Mauersberger, T.L. Wilson, P.G. Mezger, R. Gaume, K.J. Johnston
1992, A\&A 256, 640
335. SIX YEARS OF MONITORING 3C273 AT MILLIMETRE WAVELENGTHS
H. Steppe

1992, A\&A 259, 61
336. INTERFEROMETRIC OBSERVATIONS OF HCN ( $v=2$ ) EMISSION FROM IRC +10216 R. Lucas, S. Guilloteau 1992, A\&A 259, L23
337. INTERSTELLAR DETECTION OF DEUTERATED METHYL CYANIDE
M. Gerin, F. Combes, G. Wlodarczak, T. Jacq, M. Guélin, P. Encrenaz, C. Laurent 1992, A\&A 259, L31
338. THE PHYSICAL STRUCTURE OF THE SMALL AND ISOLATED COMETARY GLOBULE ORION-I-2
J. Cenicharo, R. Bachiller, G. Duvert, E. GonzálezAlfonso, J. Gómez-Gonzalez 1992, A\&A 261, 589
339. A SEARCH FOR MODERATE REDSHIFT CO ABSORPTION
N.G. Douglas, S.J.E. Radford, J. Roland, J.K. Webb
1992, A\&A 262, 8
340. SEARCH FOR MOLECULAR GAS IN POLAR RING GALAXIES AND THE GIANT LOW SURFACE BRIGHTNESS GALAXY MALIN 1
S.J.E. Radford

1992, A\&A 262, 13
341. THE ( ${ }^{12} \mathrm{CO} /{ }^{13} \mathrm{CO}$ ) RATIO TOWARD $\zeta$ OPH T.L. Wilson, R. Mauersberger, W.D. Langer, A.E. Glassgold, R.W. Wilson

1992, A\&A 262, 248
342. HCN IN THE CENTER OF THE GALAXY IC 342
D. Downes, S.J.E. Radford, S. Guilloteau, M. Guélin, A. Greve, D. Morris 1992, A\&A 262, 424
343. INTERFEROMETRIC OBSERVATIONS OF SiO $v=0$ THERMAL EMISSION FROM EVOLVED STARS
R. Lucas, V. Bujarrabal, S. Guilloteau, R. Bachiller, A. Baudry, J. Cernicharo, J. Delannoy, T. Forveille, M. Guélin, S.J.E. Radford 1992, A\&A 262, 491
344. CRL 618: THE NATURE OF THE $200 \mathrm{~km}^{-1}$ MOLECULAR OUTFLOW
R. Neri, S. Garcia-Burillo, M. Guélin, J. Cernicharo, S. Guilloteau, R. Lucas
1992, A\&A 262, 544
345. THE IRAM INTERFEROMETER ON PLATEAU DE BURE
S. Guilloteau, J. Delannoy, D. Downes, A. Greve, M. Guélin, R. Lucas, D. Morris, S. Radford, J. Wink, J. Cernicharo, S. Garcia-Burillo, R. Neri, J. Blondel, A. Perrigouard, D. Plathner, M. Torres 1992, A\&A 262, 624
346. INTERFEROMETRIC MEASUREMENT OF TROPOSPHERIC PHASE FLUCTUATIONS AT 86 GHz ON SPACINGS OF 24 m to 288 m L. Olmi, D. Downes

1992, A\&A 262, 634

## 8. ANNEX II : PUBLICATIONS / 8.2 USERS's Publications

CO OBSERVATIONS OF NGC 604
F. Viallefond, P. Cox, F. Boulanger, J. Lequeux, M. Perault, S.N. Vogel

1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 21

CO IN EARLY-TYPE GALAXIES
T. Wiklind

1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 33

THE DETECTION OF CO IN M104
E. Bajaja, M. Krause, R.-J. Dettmar, R. Wielebin ski
1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 47

MOLECULAR SPIRAL ARMS
F. Casoli

1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 51

THE DISTRIBUTION OF THE MOLECULAR GAS IN NGC 6946
F. Clausset, F. Casoli, F. Viallefond, F. Combes 1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 88

HI AND H II IN NEARBY SPIRAL GALAXIES F. Viallefond

1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 167

DENSE MOLECULAR GAS IN EXTRAGALACTIC NUCLEI
C. Henkel, R. Mauersberger

1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 195

164 DO MOLECULAR CLOUDS DEFORM INTERSTELLAR MAGNETIC FIELDS ?
R. Beck, E.M. Berkhuijsen, E. Bajaja

1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 209

165 MOLECULAR GAS IN NGC 4736: CO OBSERVATIONS AND NUMERICAL SIMULATIONS M. Gerin, F. Combes, F. Casoli 1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 268
$1 \mathrm{h6}$ HCN AND HCO+ IN IR BRIGHT GALAXIES Nguyen-Q-Rieu, J. Jackson, C. Henkel, R. Mauersberger

1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 299
167. IRAM $\mathrm{C}^{18} \mathrm{O}(1-0)$ AND VLA $\lambda 6$ AND 20 CM OBSERVATIONS OF M82
H.-P. Reuter, U. Klein, R. Wielebinski 1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 302
168. INTERSTELLAR MATTER IN ACTIVE GALAXIES
E. Krügel

1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 307
169. CO(J=2-1) OBSERVATIONS OF THE EDGEON GALAXY NGC 4631
Y. Sofue, T. Handa, G. Golla, R. Wielebinski 1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 329
170. $\mathrm{CO}(2-1)$ AND $\lambda 20 \mathrm{CM}$ RADIO CONTINUUM OBSERVATIONS OF NGC 3628
H.-P. Reuter, M. Krause, R. Wielebinski 1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 331
171. SIMULATION OF THE INTERACTING TRIPLET M81, M82, NGC 3077
N. Brouillet, F. Combes, A. Baudry 1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 347

172 HI DEFICIENT GALAXIES IN COMA ARE NOT CO DEFICIENT
F. Casoli, F. Combes, p. Boisse 1991, in Dynamics of Galaxies and their Molecular Cloud Distributions, IAU Symp. 146, ed. F. Combes, F. Casoli, Kluwer, Dordrecht, p. 411
173. UV PENETRATED CLUMPY MOLECULAR CLOUD CORES
J. Stutzki, R. Genzel, U. Graf, A.I. Harris, A. Sternberg, R. Güsten 1991, in Fragmentation of Molecular Clouds and Star Formation, IAU Symp. 147, ed. E. Falgarone, F. Boulanger, G. Duvert, Kluwer, Dordrecht p. 235
174. DUST EMISSION FROM STAR FORMING CLOUDS: A PROGRESS REPORT
P.G. Mezger, A. Sievers, R. Zylka 1991, in Fragmentation of Molecular Clouds and Star Formation, IAU Symp. 147, ed. E. Falgarone, F. Boulanger, G. Duvert, Kluwer, Dordrecht, p. 245
175. DENSE CLOUD CORES
R. Güsten, A. Schulz, E. Serabyn

1991, in Fragmentation of Molecular Clouds and Star Formation, IAU Symp. 147, ed. E. Falgarone, F. Boulanger, G. Duvert, Kluwer, Dordrecht, p. 430
176. LARGE-SCALE INTERACTION OF THE OUTFLOW AND QUIESCENT GAS IN ORION
J. Martin-Pintado, A. Rodriguez-Franco, R. Bachiller 1991, in Fragmentation of Molecular Clouds and Star Formation, IAU Symp. 147, ed. E. Falgarone, F. Boulanger, G. Duvert, Kluwer, Dordrecht, p. 456
177. A VERY STRAIGHT AND COLLIMATED OUTFLOW IN THE CORE OF OMC-1
J. Schmid-Burgk, R. Güsten, R. Mauersberger, A. Schulz, T.L. Wilson

1991, in Fragmentation of Molecular Clouds and Star Formation, IAU Symp. 147, ed. E. Falgarone, F. Boulanger, G. Duvert, Kluwer, Dordrecht, p. 491
178. DENSITY AND KINEMATICS OF THE W49A CLOUD CORE
E. Serabyn, R. Güsten

1991, in Fragmentation of Molecular Clouds and Star Formation, IAU Symp. 147, ed. E. Falgarone, F. Boulanger, G. Duvert, Kluwer, Dordrecht, p. 494
179. DETECTION OF HNCO IN EXTERNAL GALAXIES
Nguyen-Q-Rieu, C. Henkel, J.M. Jackson, R. Mauersberger 1991, A\&A 241, L33
180. DETECTION OF THE EXCITING SOURCE OF THE SPECTACULAR MOLECULAR OUT-
FLOW L1448 AT $\lambda 1-3$ MM
R. Bachiller, P. André, S. Cabrit

1991, A\&A 241, L43
181. THE DETECTION OF CO IN NGC 4594
E. Bajaja, M. Krause, R.-J. Dettmar, R. Wielebinski
1991, A\&A 241, 411
182.

M81: CO CONTENT AND INTERACTION WITH ITS COMPANION GALAXIES
N. Brouillet, A. Baudry, F. Combes, M. Kaufmann, F. Bash
1991. A\&A 242. 35
183. THE H II REGION G0.18-0.04: IONIZATION OF A MOLECULAR CLOUD BY IMPACT WITH A STRONG MAGNETIC FIELD E. Serabyn, R. Güsten

1991, A\&A 242, 376
184. HIGH-VELOCITY SiO EMISSION IN THE L 1448 OUTFLOW. EVIDENCE FOR DENSE SHOCKED GAS IN THE MOLECULAR BULLETS
R. Bachiller, J. Martin-Pintado, A. Fuente 1991, A\&A 243, L21
185. DETECTION OF CO IN THE ELLIPTICAL GALAXIES NGC 3265 \& NGC 5666
M.A. Gordon

1991, ApJ 371, 563
186. IO'S ATMOSPHERE FROM MICROWAVE DETECTION OF SO 2
E. Lellouch, M. Belton, I. de Pater, S. Gulkis, T. Encrenaz

1990, Nature 346, 639
187. THE MOLECULAR INTERSTELLAR MEDIUM AND THE NEAR- INFRARED CONTINUUM OF THE BARRED LINER NGC 6764
A. Eckart, M. Cameron, J.M. Jackson, R. Genzel, A.I. Harris, W. Wild, H. Zinnecker 1991, ApJ 372, 67
188. NITROGEN ABUNDANCES IN CARBONRICH STARS THAT ARE PROGENITORS TO PLANETARY NEBULAE M. Jura

1991, ApJ 372, 208
189. IRAS SOURCES BEYOND THE SOLAR CIRCLE. I. CO OBSERVATIONS
J.G.A. Wouterloot, J. Brand 1989, A\&AS 80, 149
190. IRAS SOURCES BEYOND THE SOLAR CIR-

CLE. II. DISTRIBUTION IN THE GALACTIC WARP
J.G.A. Wouterloot, J. Brand, W.B. Burton, K.K. Kwee

1990, A\&A 230, 21
191. HIGH VELOCITY CO $2^{\prime}$ NORTH OF ORION KL
T.L. Wilson, R. Mauersberger

1991, A\&A 244, L33
192. V645 CYGNI: A DECELERATING MOLECULAR OUTFLOW ?
L. Verdes-Montenegro, J.F. Gómez, J.M. Torrelles, G. Anglada, R. Estalella, R. López 1991. A\&A 244. 84

DETECTION OF CO EMISSION FROM TWO DISTANT, NON VARIABLE OH/IR STARS
A. Winnberg, M. Lindqvist, H. Olofsson, C. Henkel

1991, A\&A 245, 195
194. THE POST-AGB EVOLUTION OF LOWMASS STARS
J. Alcolea, V. Bujarrabal

1991, A\&A 245, 499
CO OBSERVATIONS OF COLD IRAS OBJECTS: AGB AND POST AGB STARS
L. Likkel, T. Forveille, A. Omont, M. Morris 1991, A\&A 246, 153

DENSE CLUMPS IN NGC 2024 - PROTOSTELLAR CONDENSATIONS?
A. Schulz, R. Güsten, R. Zylka, E. Serabyn 1991, A\&A 246, 570

SUBMILLIMETRE/MILLIMETRE OBSERVATIONS OF AFGL 490
R. Chini, Th. Henning, W. Pfau 1991, A\&A 247, 157
198. PROTONATED HCN IN MOLECULAR CLOUDS
P. Schilke, C.M. Walmsley, T.J. Millar, C. Henkel 1991, A\&A 247, 487

CO IN THE PLANETARY NEBULAE BD $+30^{\circ} 3639$ AND M1-17
R. Bachiller, P.J. Huggins, P. Cox, T. Forveille 1991, A\&A 247, 525

200 RADIO CONTINUUM AND CO(2-1) OBSERVATIONS of NGC 3628
H.P. Reuter, M. Krause, R. Wielebinski, H. Lesch 1991, A\&A 248, 12
201. THE STRUCTURE OF THE CO ENVELOPES OF PLANETARY NEBULAE
T. Forveille, P.J. Huggins

1991, A\&A 248, 599
202. SEARCH FOR MOLECULAR OXYGEN

IN GALACTIC AND EXTRAGALACTIC SOURCES
F. Combes, F. Casoli, P. Encrenaz, M. Gerin, C. Laurent

1991, A\&A 248, 607
203. ARE HI-DEFICIENT GALAXIES OF THE COMA SUPERCLUSTER DEFICIENT IN MOLECULAR GAS ?
F. Casoli, P. Boissé, F. Combes, C. Dupraz 1991. A\&A 249359
204. MOLECULAR GAS IN THE RSAB GALAXY NGC 4736
M. Gerin, F. Casoli, F. Combes 1991, A\&A 251, 32

205 DUST EMISSION FROM STAR-FORMING REGIONS. I. THE W49A AND W51A COMPLEXES
A.W. Sievers, P.G. Mezger, M.A. Gordon, E. Kreysa, C.G.T. Haslam, R. Lemke 1991, A\&A 251, 231
206. THE EXTENT OF THE MOLECULAR ENVELOPES AROUND EVOLVED STARS V. Bujarrabal, J. Alcolea 1991, A\&A 251, 536
207. HIGH-VELOCITY MOLECULAR JETS AND BULLETS FROM IRAS $03282+3035$
R. Bachiller, J. Martin-Pintado, P. Planesas 1991, A\&A 251, 639
208. DUST CONTINUUM RADIATION FROM LUMINOUS YOUNG STELLAR OBJECTS J. Gürtler, Th. Henning, E. Krügel, R. Chini 1991, A\&A 252, 801
209. DENSE MOLECULAR GAS IN GALACTIC NUCLEI
C. Henkel, W.A. Baan, R. Mauersberger 1991, A\&A Reviews 3, 47
210. CS MULTITRANSITIONAL STUDIES OF DENSITY DISTRIBUTION IN STAR-FORMING REGIONS. I. THE NGC 2071 REGION
S. Zhou, N.J. Evans, R. Güsten, L.G. Mundy, M.L. Kutner

1991, ApJ 372, 518
211. THE INTERSTELLAR MEDIUM OF THE HOT SPOT GALAXY NGC 2903
J.M. Jackson, A. Eckart, M. Cameron, W. Wild, P.T.P. Ho, R.W. Pogge, A.I. Harris 1991, ApJ 375, 105
212. THE STRUCTURE OF THE CO ENVELOPES OF PLANETARY NEBULAE
P.J. Huggins, T. Forveille 1991, Bull. AAS 23, 915
213. THE SEARCH FOR PROTOSTARS IN HIGH MASS STAR FORMING REGIONS
T.L. Wilson

1991, in Ground Based to Space Borne Sub-mm Astronomy, ESA SP-314, ed. B.H. Kaldeich, ESTEC, Noordwijk, p. 279
214. H II REGION/MOLECULAR CLOUD INTERFACES
J. Stutzki

1991, in Atoms, Ions \& Molecules, ed. A.D.
Haschick, P.T.P. Ho, Astron. Soc. Pacific, San Francisco, p. 115
215. METHANOL MASERS AND SUBMILLIMETER WAVELENGTH WATER MASERS IN STAR FORMING REGIONS
K.M. Menten

1991, in Atoms, Ions \& Molecules, ed. A.D.
Haschick, P.T.P. Ho, Astron. Soc. Pacific, San Francisco, p. 119
216. DEUTERIUM IN THE GALACTIC CENTER MOLECULAR CLOUDS
C.M. Walmsley, T. Jacq

1991, in Atoms, Ions \& Molecules, ed. A.D. Haschick, P.T.P. Ho, Astron. Soc. Pacific, San Francisco, p. 305
217. MILLIMETER WAVE RECEIVERS FOR RADIO ASTRONOMY
R. Blundell

1991, in Atoms, Ions \& Molecules, ed. A.D. Haschick, P.T.P. Ho, Astron. Soc. Pacific, San Francisco, p. 423
218 STRUCTURE AND ENERGY BALANCE OF MOLECULAR CLOUDS
R. Genzel

1991, in Molecular Clouds, ed. R.A. James, T.J. Millar, Cambridge Univ. Press, p. 75
219. NEWLY DISCOVERED CO OUTFLOWS IN OMC-1
T.L. Wilson, J. Schmid-Burgk, R. Mauersberger, R. Güsten, A. Schulz, L.M. Ziurys 1991, in Molecular Clouds, ed. R.A. James, T.J. Millar, Cambridge Univ. Press, p. 108
220. CO AND MAGNETIC FIELDS IN SPIRAL GALAXIES
R. Beck, E.M. Berkhuijsen, E. Bajaja 1991, in Molecular Clouds, ed. R.A. James, T.J. Millar, Cambridge Univ. Press, p. 179
221. MOLECULAR CLOUDS AND STAR FORMATION AT LARGE $R$
J. Brand, J.G.A. Wouterloot 1991, in The Interstellar Disk-Halo Connection in Galaxies, IAU Symp. 144, ed. H. Bloemen, Kluwer, Dordrecht, p. 121

222 SLOW ROTATION OF GAS IN THE HALOS OF EDGE-ON GALAXIES M82 AND NGC 4631 Y. Sofue, N. Nakai, T. Handa, G. Golla, H.P. Reuter, R. Wielebinski 1991, in The Interstellar Disk-Halo Connection in Galaxies, IAU Symp. 144, ed. H. Bloemen, Kluwer, Dordrecht, p. 307
STAR FORMATION AND MOLECULAR CLOUDS IN GALAXIES
Y. Sofue
1991. Annales de Physique, 16(3), p. 3
224. NEUTRAL AND IONIZED GAS IN THE SPIRAL NGC 6946
F. Viallefond

1991, Annales de Physique, 16(3), p. 19
225 RINGS WITH AC'TIVE STELLAR FORMATION: NGC 4314 AND NGC 4736
M. Gerin, F. Combes, F.Casoli

1991, Annales de Physique, 16(3), p. 33
226. MOLECULES IN DISKS
F. Combes

1991, in Dynamics of Disc Galaxies, ed. B. Sundelius, Chalmers University of Technology, Göteborg, p. 219

227 MOLÉCULES DANS LES ENVELOPPES d'ÉTOILES ÉVOLUÉES
S. Deguchi, Nguyen-Quang-Rieu 1991, Annales de Physique, 16(4), p. 413
228. PHYSICAL CONDITIONS AND HEATING/COOLING PROCESSES IN HIGH MASS STAR FORMATION REGIONS
R. Genzel

1991, in The Physics of Star Formation and Early
Stellar Evolution, ed. C.J. Lada, N.D. Kylafis, Kluwer, Dordrecht, p. 155
229. THE X-RAY AND RADIO PROPERTIES OF LOW-MASS PRE-MAIN SEQUENCE STARS T. Montmerle

1991, in The Physics of Star Formation and Early Stellar Evolution, ed. C.J. Lada; N.D. Kylafis, Kluwer, Dordrecht, p. 675
230. RADIO RECOMBINATION LINES AT MILLIMETER WAVELENGTHS IN H II REGIONS M.A. Gordon

1990, in Radio Recombination Lines: 25 Years of Investigation, ed. M.A. Gordon, R.L. Sorochenko, Kluwer, Dordrecht, p. 93
231. CO EMISSION FROM THE RADIO-QUIET QUASAR E $1821+64$ AT $z=0.301$ : IMPLICATION FOR THE ORIGIN OF ITS FAR-IR RADIATION
D. Alloin, R. Barvainis, R. Antonucci, M. Gordon 1991, in Structure and Emission Properties of Accretion Disks, ed. C. Bertout et al., Editions Frontiéres, Gif sur Yvette, p. 371
232. IRAM: HET DUITS-FRANS-SPAANSE INSTITUUT VOOR RADIOASTRONOMIE OP MILLIMETERGOLFLENGTEN
J.W.M. Baars

1991, Zenit, November, p. 384
233. UNTERSUCHUNGEN DER ZENTRALREGIONEN AKTIVER GALAXIEN KERNE
C.J. Schalinski
1990. Doctoral Thesis. Universität Bonn

DIE VERTEILUNG MOLEKULAREN GASES UND RELATIVISTICHER ELEKTRONEN IN DER AKTIVEN GALAXIE M 82
H.P. Reuter

1991, Doctoral Thesis, Universität Bonn
235. ORION A - ANATOMIE d'un NUAGE MOLÉCULAIRE GÉANT
A. Dutrey

1991, Doctoral Thesis, Université Paul Sabatier Toulouse III

MOLECULAR LINE AND CONTINUUM STUDIES OF HIGH MASS STAR FORMATION J.S. Richer

1991, Ph.D. Thesis, University of Cambridge
ANALISI E MISURA DEL SEEING ASTRO-
NOMICO A $\lambda \mathrm{mm}$ E sub-mm MEDIANTE L'ANALISI DELLE FLUTTUAZIONI DI FASE TROPOSFERICHE CON UN INTERFEROMETRO
L. Olmi

1992, Doctoral Thesis, Università degli Studi di Firenze
238. CONDICIONES FISICAS Y QUIMICAS EN NUBES MOLECULARES CON FORMACION ESTELAR RECIENTE
Asuncion Fuente Juan
1992, Doctoral Thesis, Universidad Autónoma de Madrid
239. A FAST CO JET IN ORION B
J.S. Richer, R.E. Hills, R. Padman

1992, Mon. Not. R. astr. Soc. 254, 525
240. INTERSTELLAR DETECTION OF DEUTERATED METHYL ACETYLENE
M. Gerin, F. Combes, G. Wlodarczak, P. Encrenaz, C. Laurent
1992, A\&A 253, L29
241. HOT, DENSE, MOLECULAR GAS ASSOCIATED WITH ULTRACOMPACT H II REGIONS
E. Churchwell, C.M. Walmsley, D.O.S. Wood 1992, A\&A 253, 541
242. SiO EMISSION AS A TRACER OF SHOCKED GAS IN MOLECULAR OUTFLOWS J. Martin-Pintado, R. Bachiller, A. Fuente 1992, A\&A 254, 315
243. MILLIMETER RECOMBINATION LIES IN THE PLANETARY NEBULA BD $+30^{\circ} 3639$ R. Bachiller, P.J. Huggins, J. Martin-Pintado, P. Cox 1992, A\&A 256, 231
244. THE MOLECULAR CLOUD CONTENT OF EARLY TYPE GALAXIES III. A NUCLEAR MOLECULAR RING IN NGC 3593
T. Wiklind, C. Henkel
1992. A\&A 257, 437
245. THE MOLECULAR EMISSION OF YOUNG PREPLANETARY NEBULAE
V. Bujarrabal, J. Alcolea, P. Planesas 1992, A\&A 257, 701
246. THE SMALL SCALE DENSITY AND VELOCITY STRUCTURE OF QUIESCENT MOLECULAR CLOUDS
E. Falgarone, J.L. Puget, M. Pérault 1992, A\&A 257, 715
247. MOLECULAR CLOUDS IN A POLAR RING F. Combes, J. Braine, F. Casoli, M. Gerin, W. van Driel
1992, A\&A 259, L65
248. GALAXY PHOTOMETRY AT MILLIMETRIC WAVELENGTHS
P. Andreani, A. Franceschini

1992, A\&A 260, 89
249. PHYSICAL CONDITIONS OF THE MOLECULAR GAS AND DUST ASSOCIATED WITH THE HERBIG Ae/Be STARS
A. Fuente, J. Martin-Pintado, J. Cernicharo, N. Brouillet, G. Duvert 1992, A\&A 260, 341
250. ANATOMY OF THE SAGITTARIUS A COMPLEX II. $1300 \mu \mathrm{~m}$ AND $870 \mu \mathrm{~m}$ CONTINUUM OBSERVATIONS OF SGR A* AND ITS SUBMM/IR SPECTRUM
R. Zylka, P.G. Mezger, L. Lesch

1992, A\&A 261, 119
251. G54.4-0.3: CO SHELL AND STAR FORMATION REGION SURROUNDING A SHELLTYPE SUPERNOVA REMNANT II. COMPACT CO CLOUDS AND THE STAR FORMATION SCENARIO
N. Junkes, E. Fürst, W. Reich

1992, A\&A 261, 289

## 9. ANNEXE III - IRAM Executive Council and Committee Members, January 1991

## EXECUTIVE COUNCIL

| Centre National de la Recherche Scientifique | A. Berroir (President) <br> J.M. Bertrand <br> P. Encrenaz |
| :--- | :--- |
|  |  |
| Max-Planck-Gesellschaft | R. Genzel |
|  | W. Hasenclever <br> P.G. Mezger |
| Instituto Geografico Nacional | J. Fernandez Vega (Vice President) <br>  <br>  <br>  <br>  <br>  <br> J. Gomez Gonzalez <br> J. Mezcua Rodriguez |

## SCIENTIFIC ADVISORY COMMITTEE

A Barcia
C. Bertout
F. Combes
E. Fürst
R. Güsten (Deputy Chairman)
A. Harris
R.E. Hills
J. Martin Pintado
J.L. Puget (Chairman)

## PROGRAM COMMITTEE

F. Boulanger
C. Henkel
J. Cernicharo
P. Planesas
T. Forveille
J. Stutzki

## AUDIT COMMISSION

C.N.R.S.
M.F. Ravier
R. Vernejoul
M.P.G.
A. Bohndorf
W.Keinath

## IRAM ADDRESSES

Institut de Radio Astronomie Millimétrique
Domaine Universitaire, 38406 St Martin d'Hères, France -
Tél.: (33) 76824900 - Fax: (33) 76515938 - Tlx: 980753 F
E-mail address: username@IRAM.GRENET.FR. or through SPAN: IRAM04::username or 17805::username
Institut de Radio Astronomie Millimétrique
Observatoire du Plateau de Bure, 05250 St Etienne en Dévoluy, France
Tél.: (33) 92538520 - Fax: (33) 92538523
Instituto de Radioastronomia Milimétrica
Avenida Divina Pastora 7, Nucleo Central, 8012 Granada, Espana
Tél.: (34) 58279508 - Fax: (34) 58207662 - Tlx: 5278584 IRAM E
E-mail address: username@IRAM.ES, or through SPAN:IRAMEG::username or 16494::username
Instituto de Radioastronomia Milimétrica
Estacion Radioastronomia IRAM-IGN del Pico Veleta, Sierra Nevada, Granada, Espana
Tél.: (34) 58480413 - Fax: (34) 58480417

## IRAM Partner Organisations

Centre National de la Recherche Scientifique - Paris, France
Max-Planck-Gesellschaft - München, Bundesrepublik Deutschland
Instituto Geografico Nacional - Madrid, Espana (since September 1990)


[^0]:    INSTITUT DE RADIO ASTRONOMIE MILLIMETRIQUE
    INSTITUT FÜR RADIOASTRONOMIE IM MILLIMETERBEREICH INSTITUTO DE RADIOASTRONOMIA MILIMETRICA

    300 Rue de la Piscine
    Domaine Universitaire
    38406 SAINT MARTIN D'HERES
    France

