IRAM-COMP-048

Revision: 0
07 JAN 2008

Contact Author

e

Institut de RadioAstronomie Millimétrigue

PdB New Generation
Interferometer Control Software

Owner Alain Perrigouard (perrigou@iram.fr)

Keywords:

Approved by: Date: Signature:

A.Perrigouard January 2008 ﬁ?

IRAM My Title
Change Record
REVISION DATE AUTHOR AFFECTED REMARKS
SECTION/PAGE
Content

1 1o Yo [T o o I 3
2 o o [£ =TS1] 1 o 3
3 Y T o o =SSR 4
3.1 01111V o] oo = 1 o PP TPUPTPPPPPPT 7
4 The functions to include in 0BS ..., 7
4.1 Functions to control the antenna mounts:cce oo, 7
4.2 Functions to control and monitor the SIS and WVR receiver.................... 7
4.3 Practical CONSIAEratioNS...........ccuvvviiiiee i s s e e e e e e 9
5 Shared MEMOIY ATEAScccvccueeiieeiiee ettt re e sraesraeeres 10
5.1 o1 ST PR PR 13
6 Init and background tasks.........ccccevieiieiiee e 14
6.1 Antenna (Zcontrol/antennaZbin).......cccccciiiiiiiiiiee e 14
6.2 Astro (Zcontrol/astro/bin/) ... 15
6.3 Receiver (/control/receiVver/bin/) ... 15
7 Common (Zcontrol/common/bins) ..., 15
8 (o301 .41 1= g (o SRS 15
8.1 MBEEO .. e 16
9 Graphic USEr iNtErfaCesS......cciveiieii et 16
9.1] - 16
9.2] 7 1 PSPPSR 17
9.3 £S5 1 PP 17

Create Date:January 2008

interfControl.doc Page 2 of 17

Author: A. Perrigouard

IRAM My Title

1 Introduction

The interferometer software should be compiled and then copied (installed) to its target directory from
sessions opened on bure4b/5h that should be accessible from all the developers. In principle bure3b is more
reserved for the observations and to the operators (account oper).

The target should be Zcontrol mounted as well on burelb and bure3b/4b/5h.

The developers referenced with their UID/GID must have a home directory on Zusers to be allowed to
login on bure3b e.g. Zusers/softs/gildas or Zusers/computer/perrigou. If someone needs
to develop under a private account, ask for the corresponding directory creation. Furthermore, to add sub-
directories to /control and to access all files in /control, the developers need to belong also to the
group interf and to have switched to this GID. In other words one needs to execute the shell command
“newgrp interf” before accessing /control. If a developer doesn’t change its default GID to interf, | may
create directories and files in /control but the files will be created with its original GID, letting them
inaccessible from the other developers.

Here after an example for the computer group:

The software written to control and monitor the antennas and the receivers of the interferometer of Plateau
de Bure can be down loaded, edited, updated and compiled in any working directory.

For instance on bure3b, to download the sources:

bure3b:~ $ mkdir devel

bure3b:~ $ cd devel

bure3b:~/devel $ cvs co -r FC6-branch LINUX

To build everything, i.e. to compile and link all executables and to generate intermediate files:
bure3b:~/devel/LINUX/burel $ make

By intermediate files one means the direct access binary files used in astrj, the astrometry package
originally written by J.Delannoy, and the include files needed to describe the shared memory areas and
which are used by the programs written in Fortran 95.

To install the executables, the binary files, the include files and all the script files, etc..., a "make install"
has to be issued under root, with the environment variable INSTROOQT set to /control if we wish to keep
the structure similar to the one we had on the HP version of burel.

bure3b :~/devel/LINUX/burel $ newgrp interf

bure3b :~/devel/LINUX/burel $ make install

In bure3b:/control the directories antenna/, astro/, command/, common/ and
receiver/ are created and their contents are copied. The scripts clean and install are also copied into
[control.

However, in the created directories a new level of sub-directories are created which may be bin/, obj/, data/
or include/ depending on the needs. For instance the files satdO7.bin, tche0615.bin and
vsp86 .dat are found in control/astro/data/.

For extra development and in particular for obs and rdi, the files copied with the above “make install” to
bure3b:/control should be necessary and sufficient for making (compilation and link) those packages (obs

and rdi).

2 Addressing
iramr2b 192.168.10.1
bureACS 192.168.10.5
bureKVM 192.168.10.6
netapplb 192.168.10.11
netapp2b 192.168.10.12
Create Date:January 2008 Author: A. Perrigouard

interfControl.doc Page 3 of 17

IRAM My Title

burel 195.83.131.3 burelb 192.168.10.51
bure2 195.83.131.4 bure2b 192.168.10.52
bure3 195.83.131.5 bure3b 192.168.10.53
bure4 195.83.131.6 bure4b 192.168.10.54
bure5 195.83.131.7 bure5b 192.168.10.55

bure-nfs-master 195.83.131.68 x86nfsrw 192.168.10.98
ifproc 195.83.131.69 ifprocb 192.168.10.99
clock 195.83.131.70 clockb 192.168.10.100

antll 195.83.131.71 antllb 192.168.10.101
antl2 195.83.131.72 antl2b 192.168.10.102
ant21l 195.83.131.73 ant21b 192.168.10.103
ant22 195.83.131.74 ant22b 192.168.10.104
ant31 195.83.131.75 ant31b 192.168.10.105
ant32 195.83.131.76 ant32b 192.168.10.106
ant4l 195.83.131.77 ant4ilb 192.168.10.107
ant42 195.83.131.78 ant42b 192.168.10.108
ant51 195.83.131.79 ant51b 192.168.10.109
ant52 195.83.131.80 ant52b 192.168.10.110
antél 195.83.131.81 ant6lb 192.168.10.111
ant62 195.83.131.82 ant62b 192.168.10.112

xcorll 195.83.131.151 xcorllb 192.168.10.151
xcorl2 195.83.131.152 xcorl2b 192.168.10.152
xcorl3 195.83.131.153 xcorl3b 192.168.10.153
xcorl4 195.83.131.154 xcorl4db 192.168.10.154
xcorl5 195.83.131.155 xcorl5b 192.168.10.155
xcorl6 195.83.131.156 xcorl6b 192.168.10.156
xcorl7 195.83.131.157 xcorl7b 192.168.10.157
xcorl8 195.83.131.158 xcorl8b 192.168.10.158
phaser 195.83.131.130 phaserb 192.168.10.171
Deprecated:

The names ending with b will stay valid until we definitively switch to this new architecture. We cannot
have a processor with the same name and 2 different IP addresses (e.g. antll 195.83.131.71 and
192.168.10.101) and we cannot have 2 machines with the same name (e.g. burel HP Risk workstation-
HPUX and PC 64 bits - LINUX FC6).

As soon as the switch to the new architecture will be decided, we will be able to move to the final names to
finalize the scripts and the code which may be name dependent.

It will be useful to keep some machines on-line like for instance the current burel and bure2. They will be
renamed burelo and bure2o with the same address in the network 195.83.131.

At Bure there is also a private network dhcp 192.168.3.* (dhcp-pdb*). This network will later be moved to
192.168.11.0/24

We keep in mind to move the personal PCs to a private network 192.168.12.0/24.

The public networks 195.83.131.1/25 and 195.83.131.128/26 will be kept for special cases.

Vmware is installed on bure2b to host a virtual machine with R/W access to the FS distributed to the SBCs
VMIC. The machine is called x86nfsrw.

3 Semaphores

As before, we use semaphores to synchronize interprocess communication or process execution.
common/src/sem_routines.c is a compilation of the functions to handle the semaphores.

The function sem_create() creates a set of 64 semaphores. The set is identified by the key "BURE".
Once created, the shell command ipcs shows information about the activated semaphore set. For instance:
burelb:~ $ ipcs -s

Create Date:January 2008 Author: A. Perrigouard
interfControl.doc Page 4 of 17

IRAM My Title

—————— Semaphore Arrays --------

key semid owner perms nsems

0x45525542 851968 root 666 64

key, 0x45525542, is the string "BURE" in hexadecimal, in reverse order.

perms are read and write for owner(root), group and others). write permission means permission to alter
semaphore values).

And to remove the semaphore array:
burelb:~ $ ipcrm -s 851968

to remove the semaphore array identified with semid=851968, or
burelb:~ $ ipcrm -S 0x45525542 to remove semaphore array "BURE"

The list of the semaphore utility functions present in sem_routine.c:
sem_create() : creation of a semphore id and the associated
stucture
sem_init() : set to 1 all semaphores
sem_wait(semaphore_number) : wait until the semaphore =0
sem_clr(semaphore_number) : set to 0 the semaphore
sem_set(semaphore_number) : set to 1 the semaphore
sem_read(semaphore_number) : read the semaphore value
shm_lock(semaphore_number) : lock the resource associated to
the semaphore
shm_unlock(semaphore_number) : unlock the resource associated
to the semaphore
setef(semaphore_number) : equivalent to sys$setef (=sem_clr)
clref(semaphore_number) : equivalent to sys$clref (=sem_set)
waitfr(semaphore_number) : equivalent to sys$waitfr (=sem_wait)
readef(semaphore_number) : equivalent to sys$readef (=sem_read)

The function sem_create() has to be called first in all programs dealing with the semaphores. It returns a
semaphore set identifier for a set of 64 semaphores defined for the key "BURE" and with the permissions
R/W for the set owner, group or others. If the set does not yet exist, it is created with the process owner as
the set owner.

shm_lock() and shm_unlock() are intended to be used for accessing shared memory areas in a safe way.
They locks and unlocks the memory area associated to the semaphore number given as parameter.
flg_s_ant is for instance the semaphore associated to the area identified with the key "ANTE". flg_s_ant is
equal to 0 (see sem.h). (Sometimes and historically the name flag is used for semaphore)

The use of the functions sem_wait(), sem_clr() and sem_set() would not be full proved for accessing a
shared memory area.

The functions setef(), clref(), waitfr() and readef() which recall the VAX/VMS functions may be used for
old code written originally for VMS.

The include files sem.h and sem.f define the assigned semaphore numbers. They are copied to
/control/common/include/

/control/common/include/sem.h:
#define flg_s ant O
#define flg_astro 1
#define flg_tcpip 2

/control/common/include/sem.f:

integer*4 flg_s ant I locks antenna data
integer*4 flg_astro I trigs astro
integer*4 flg_tcpip I synchronizes interp
parameter (flg_s ant = 0)
parameter (flg_astro = 1)
parameter (flg_tcpip = 2)
Create Date:January 2008 Author: A. Perrigouard

interfControl.doc Page 5 of 17

IRAM My Title

Example of program in C (exa.c):
#include <stdlib.h>

#include "sem_h"

int main(int argc,char* argv[])

{
int sem _tcpip = flg_tcpip, sem s ant = flg_s_ant;
sem_create();
shm_lock(&sem_s_ant);
// sub(Q);
shm_unlock(&sem_s_ant);
sem_clr(&sem_tcpip);
exit(0);
}

Example of program in Fortran (exb.f):
include "sem.f"

call sem_create
10 call sem_wait(flg_astro)
call sem_set(flg_astro)
! call sub
go to 10

end
Example of makefile (~/devel/LINUX/burel/common/Makefile):
BINDIR=bin
SRCDIR=src
OBJDIR=0bj
CoOM = .

COMOBJ
SEMOBJ

$(COM)/0bj
$(COMOBJ)/sem_routines.o

$(OBJIDIR)/%.0: $(SRCDIR)/%.cC
$(CC) -c $(CFLAGS) -MMD $< -0 $@

$(OBJIDIR)/%.0: $(SRCDIR)/%.F
gfortran -c $(FFLAGS) $< -0 $@

$(BINDIR)/exa: $(OBIDIR)/exa.o $(SEMOBJ)
$(CC) $(CFLAGS) $™ -0 3@

$(BINDIR)/exb: $(OBJIDIR)/exb.o $(SEMOBJ)
gfortran $" -o $@

INCLUDES= -I1/usr/include -linclude
CFLAGS = -Wall -g $(INCLUDES)
FFLAGS = $(INCLUDES) -fno-underscoring

Create Date:January 2008 Author: A. Perrigouard
interfControl.doc Page 6 of 17

IRAM My Title

3.1 utility program

There is the program sem copied to Zcontrol/common/bin which can be useful for setting, clearing
and reading the semaphores. Its execution without any parameter shows its usage.

burelb :~ $ /control/common/bin/sem
Usage:

sem init

sem clear <semaphore_number>

sem set <semaphore_number>

sem read <semaphore_ number>

burelb :~ $ /control/common/bin/sem read 3
Read
semaphore 3 : 1

4 The functions to include in obs

41 Functions to control the antenna mounts:

write_coo(int* iant_p, int* itel_p, Coo_t* coo_p,
General_t* general_p, Antenna_t* antenna_p)
write_dri(int* iant_p, int* itel_p, Off_t* off _p,
General_t* general_p, Antenna_t* antenna_p)
write_off(int* iant_p, int* itel_p, int* del_p, Off_t off p,
General_t* general_p, Antenna_t* antenna_p)
write_pla(int* iant_p, int* itel_p, Coo_t* coo_p,
General_t* general_p, Antenna_t* antenna_p)
write_point(int* iant_p, Point_t* point_p, Antenna_t* antenna_p)
write_sec(int* iant_p, Subref_t* subref_p, Antenna_t* antenna_p)

The new types are defined in /control/common/include/general.h, general.f, antenna.h and antenna.f

If *itel_p is not null, the parameters are applied to all the antennas of the telescope *itel, a number smaller
or equal to 6. That means for all antennas iant=anttel[*itel-1][i] for i from 0 to IMAX-1(=5) with anttel
being a table set in the shared memory area "GENE" itself defined with the struct general_s declared in
general.h.

If *itel_p is null, the parameters are applied to the antenna *iant_p, a number from 1 to IMAX (=6).

4.2 Functions to control and monitor the SIS and WVR receiver

/I Any function returns 0 when completed successfully.
/I The function returns a value != 0 when an error occurs during its
execution or when a parameter is out of range

typedef enum {

calModelnvalid, /* use by external task status to describe an
invalid position */

calModeObserving,

calModeHotLoad,

calModeColdLoad,

calModeVlbi,

calModeMaxIndex

}

Create Date:January 2008 Author: A. Perrigouard
interfControl.doc Page 7 of 17

IRAM My Title

ReceiverCalibrationMode_t;
// bandNum from 1 to 4. Any function with a wrong bandNum return 1.

/I This function returns when the requested calibration mode is set
/I The mechanical operation may last a moment
int set_calibration_mode(
int* iant,
int* itel,
int* bandNum,
ReceiverCalibrationMode t* calibrationMode,
General_t* general_p,
CabinReceivers_t* sisStatus p)

typedef enum {
polarV,
polarH,
polarMaxlndex,
} ReceiverPolar_t;

/I attenuation from 0. to 20dB. Any other values are truncated
int set_attenuation(

int* iant,

int* itel,

int* bandNum,

ReceiverPolar_t* polar,

float* attenuation,

General_t* general_p,

CabinReceivers_t* sisStatus_p);

int set_attenuationHV(int* iant,
int* bandNum,
float* attenuationH,
float* attenuationV,
CabinReceivers_t* sisStatus _p);

/I This function returns when the requested calibration mode is set
/I The mechanical operation may last a moment
int set_calibration_attenuation(
int* iant,
int* itel,
int* bandNum,
ReceiverPolar_t* polar,
float* attenuation,
ReceiverCalibrationMode_t* calibrationMode,
General_t* general _p,
CabinReceivers_t* sisStatus p);

typedef enum {
sidebandLower,
sidebandUpper,
sidebandMaxlndex

}

ReceiverSideband_t;

typedef enum {
deltaFMinus ,
deltaFPlus ,
deltaFMaxIndex

}

Create Date:January 2008
interfControl.doc

Author: A. Perrigouard
Page 8 of 17

IRAM My Title

ReceiverDeltaF _t;

int set_frequency(
int* iant,
int* itel,
int* bandNum,
float* frequency,
ReceiverSideband_t* sideband,
ReceiverDeltaF _t* deltaF,
General_t* general_p,
CabinReceivers_t* sisStatus _p);

typedef enum {

rlo2A ,
rlo2B ,
rlo2Both ,
rlo2MaxIndex

}

ReceiverRlo2Mode t;

/I This function returns when the LO2(s) is(are) reset. It may last a moment
int reset_lol_ref(
int* iant,
int* itel,
ReceiverRlo2Mode_t* rLolRefMode,
General_t* general_p,
CabinReceivers_t* sisStatus _p);

int switch_to _direct lol ref(
int* iant,
int* itel,
General_t* general_p,
CabinReceivers_t* sisStatus p);

int switch_to crossed lol ref(
int* iant,
int* itel,
General_t* general_p,
CabinReceivers_t* sisStatus p);

int beginObserving(
int* iant,
int* itel,
General_t* general _p,
CabinReceivers_t* sisStatus _p);

void write_wvr(
int* p_iant,
int* p_itel,
WvrRequest_t* request_p,
struct s_general* p_general,
CabinReceivers_t* cabinReceivers p);

43 Practical considerations

All the object files corresponding to these functions are copied to /control/command/obj

Create Date:January 2008 Author: A. Perrigouard
interfControl.doc Page 9 of 17

IRAM My Title

They are commands which call these functions and which can be directly executed from a shell are copied
into /control/command/bin. They are:

coo, dri, off, pla, put (corresponding to write point()), sec, calibrationMode,
attenuation, attenuationHV, calibrationAttenuation, frequency, rLolRef,
directLolRef, crossedLolRef, observingandwvr.

5 Shared Memory Areas

The header files general.h, antenna.h and receiver.h describe the structure of the shared memory areas
defined with the keys "GENE", "ANTE" and "RECE".

These files are copied into /control/common/include/ and they must be included in the C programs dealing
with the shared memory areas.

The description files for the program written in Fortran 95 are general.f, antenna.f and receiver.f. The .f
include files are generated from the .h header files with the utility c2f.

For instance to generate antenna.f in ~/devel/PdB/LINUX/burel/common:
burelb:~/devel/PdB/LINUX/burel/common $ make include/antenna.f
bin/c2f include/antenna.h > include/antenna.f

and for receiver.h:

burelb perrigou:~/devel/PdB/LINUX/burel/common $ make
include/receiver.f

cpp include/receiver.h include/receiver._hh -1
-../.../cabin/receiver/include/

bin/c2f include/receiver.hh > include/receiver.f

(The C preprocessor cpp is required to merge the internal header files).

Once the memory spaces are created, the shell command ipc shows information about the activated shared
memory segments:

burelb :~ $ ipcs -m
—————— Shared Memory Segments -------—-

key shmid owner perms bytes nattch status
0x454e4547 983040 root 666 520 2
0x45544e41 1015809 root 666 5040 2
0x45434552 1048578 root 666 6864 1

"GENE" => 0x454e4547
"ANTE" => 0x45544e41
"RECE" => 0x45434552

And to remove the segments, for instance:

burelb :~$ ipcrm -m 983040 toremove identified shared memory "GENE")
burelb :~$ ipcrm -M 0x45544e41 toremove shared memory "ANTE"

In C the function shm_connect() returns a pointer to the shared memory area identified by its key. For
instance

#include ""general.h"

general_p = (General_t *)shm_connect(*"GENE", sizeof(General_t));

Create Date:January 2008 Author: A. Perrigouard
interfControl.doc Page 10 of 17

IRAM My Title

If the memory area doesn’t yet exist when shm_connect() is executed, the function allocates enough
memory space according to the size indicated as the 2nd input parameter.

In Fortran the subroutine shm_connect_() is called. For instance

include "test2.f"

type(b_s) :: b

common / test2 / b

call shm_connect ("TEST", b, stat)
In this example 'TEST' is the key assigned to the shared memory area, the 2nd argument is the single
variable of the common block and the 3rd variable is a status which is equal to 0 when the connection is
alright.
The variable of the common block is of the derived type b_s i.e. a structure.
A derived-type object has no storage association. In order to access to all the elements of a derived type, the
derived type definition must contains a sequence statement making it a sequence type (see below the
definition of the derived type b_s in test2.f).
The common block test2 is mapped to an arbitrary address at the link operation time.
As the size of the shared memory area is considered only in the C version of shm_connect (2™ argument of
the function shm_connect()) the first reference of a shared memory area, at execution time, should be in a
program written in C to allocate enough memory space (before any other program referencing the same
memory area).

Example of program in C (test2c.c):
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include ""test2.h"
#include "'shm.h"

int main(int argc,char* argv[])
{
B_t* b_p;

int val;
float fval;

b p = (B_t*)shm connect("TEST", sizeof(B_t));

printf("'b_p->ba %d\n", b_p->ba);
printf("'b_p->bb %f %d\n", b_p->bb.aa, b_p->bb.ab);

if (argc > 1)

{
sscanf(argv[1l], "%d", &val);
printf('val %d\n", val);
b_p->ba = val;

}

if (argc > 2)

{
sscanf(argv[2], "%f", &fval);
printf('val %f\n", fval);
b p->bb.aa = fval;

}

if (argc > 3)
{

sscanf(argv[3], "%d", &val);
printf('val %d\n", val);

Create Date:January 2008 Author: A. Perrigouard
interfControl.doc Page 11 of 17

IRAM

b p->bb.ab = val;
}

exit(0);
}

Example of program in Fortran (test2f.f):
program test2f
include “test2.f"
type(b_s) :: b
integer*4 addr, stat
common / test2 / b

call shm_connect ("TEST", b, stat)
if (stat.eq.0) then

My Title

print*, "shared memory ", b%ba, b%bb%aa, b%bb%ab

end if
end
test2.h:

struct a_s {
float aa;
int ab;
};
typedef struct a_s A t;

struct b_s {

int ba;

struct a_s bb;
float bc[2];
double bd[3]1[2]:
}:
typedef struct b_s B t;

test2.f ($ bin/c2f test2.h >test2.f):

type a_s
sequence
real*4 aa
integer*4 ab
end type a_s
type b_s
sequence
integer*4 ba
type(a_s) bb
real*4 bc(2)
real*8 bd(3,2)
end type b_s

and the makefile (~/devel/LINUX/burel/common/Makefile):

BINDIR=bin
SRCDIR=src
OBJDIR=0bj

Create Date:January 2008
interfControl.doc Page 12 of 17

Author: A. Perrigouard

IRAM My Title

COM = .

COMOBJ = $(COM)/obj

SEMOBJ = $(COMOBJ)/sem_routines.o
SHMOBJ = $(COMOBJ)/shm_connect.o

files = size c2f sem test2c exa

binfiles = $(Ffiles:%=$(BINDIR)/%)

sources = $(files:%=%.c) scanner.c analyse.c sem_routine.c
incfiles = general.f antenna.f receiver.f test2.f

Pattern rules

$(OBJIDIR)/%.0: $(SRCDIR)/%.cC
$(CC) -c $(CFLAGS) -MMD $< -0 $@

$(OBJIDIR)/%.0: $(SRCDIR)/%.F
gfortran -c $(FFLAGS) $< -0 $@

$(BINDIR)/test2c: $(OBJIDIR)/test2c.0 $(SHMOBJ)
$(CC) $(CFLAGS) $(LIBS) $" -0 $@

$(BINDIR)/test2f: $(OBJIDIR)/test2f.o $(SHMOBJ)
gfortran $" -o $@ -WI,--defsym -WI,test2=0x40000000

INCLUDES= -1/usr/include -linclude
CFLAGS = -Wall -g $(INCLUDES)
FFLAGS = $(INCLUDES) -fno-underscoring

51 c2f

This utility program translates a structure declared with a struct instruction in a C header file to a derived
type in a Fortran file which later may be correctly interpreted in Fortran 95.

c2f consists of a scanner, a syntax analyzer and finally a translator.

The grammar of the analyzer is the following:

{declaration_list,
declaration, scolon, declaration_list, or,
declaration, scolon, or, end},
{declaration,
class_specifier, or,
struct_specifier, or, end},
{class_specifier,
TYPEDEF, type_ specifier, identifier, or, end},
{struct_specifier,
STRUCT, identifier, lbrace, struct declaration_list, rbrace, or,
STRUCT, Hlbrace, struct declaration_list, rbrace, or,
STRUCT, identifier, or, end},
{struct_declaration_list,
struct _declaration, struct _declaration_list, or,
struct_declaration, or, end},
{struct_declaration,
type_specifier, declarator_list, scolon, or, end},
{declarator_list,
declarator, comma, declarator_list, or,

Create Date:January 2008 Author: A. Perrigouard
interfControl.doc Page 13 of 17

IRAM

declarator, or, end},
{declarator,

identifier, brackets, or,

identifier, or, end},
{brackets,

My Title

Isbracket, constant, rsbracket, brackets, or,

Isbracket, constant, rsbracket, or, end},

{type_specifier,
INT, or,
LONG, or,
FLOAT, or,
DOUBLE, or,
identifier, or,
struct_specifier, or, end}

It is based on the Kernighan and Ritchie C language grammar given in appendix in their book. The
definition of declarator is slightly modified to allow the implementation of a top-down parser (analyzer)

which accepts only right recursivity.
(left recursivity: number = number digit | digit
right recursivity:number = digit number | digit)

The current translation corresponds to the features of the Fortran 95.

Example:
c2f test.h >test.f

/* Tile test_h

*/

typedef int logical;
struct aa {

int b, c;
double e[4];
float f[3][5]; ==>
long g;
logical d;
33
struct bb {

int h;
struct aa 1,j;

¥

6 Initand background tasks

type aa
sequence
integer*4 b, c
real*8 e(4)
real*4 £(3,5)
integer*8 g
logical*4 d
end type aa
type bb
sequence
integer*4 h
type(aa) i, J
end type bb

The script burelb:/control/install creates and initializes the shared memory areas, the

semaphores and then starts the setup and periodic/background tasks.

6.1 Antenna (/control/antenna/bin)

init Creates and initializes the shared memory segment “GENE” and “ANTE”. The command “ipcs —
m” shows the shared memory segment keys: 0x454e4547 for “GENE” and ox45544e41 for “ANTE”.

interp Creates the semaphore set “BURE” and then exchange data with the micros ant*1b. The
transfers are triggered by the semaphore sem_tcpip (2) every second.

Create Date:January 2008

interfControl.doc Page 14 of 17

Author: A. Perrigouard

IRAM My Title

Tlagls Receives each second a message from clockb. At the message reception the semaphores
sem_tcpip(2), sem_ut(6) and sem_ut22GHz (19) are cleared. The message also contains the UT time in
seconds from midnight of the time bus pulse at the origin of the transmission.

6.2 Astro (/control/astro/bin/)

astrj the task prepares the coordinate transformations and provides the sun equatorial position each time
a new source or planet is requested.

6.3 Receiver (/control/receiver/bin/)

statusReceivers collects periodically (1s) essential receiver data and copies them in the shared
memory area “RECE”. The command /control/receiver/bin/dumpReceivers dumps these data.

interp22GHz controls, monitors and downloads data periodically (1s) from the water vapor receivers.
Status and data are also available with the command dumpReceivers.

7 Common (/control/common/bin/)

sem is a simple utility program to display, clear and set semaphores.

8 commands

The main commands are stored in burelb:/control/command/bin.
The commands attenuation, attenuationHV, calibrationAttenuation, calibrationMode, coo, crossedLolRef ,
directLo1Ref, dmp, dri, frequency, io, observing, off, offinc, pla, put, ref, rLol1Ref, sec, sto, tel and wvr
display their usage when they are entered without or wrong number of arguments.

attenuation set the receiver attenuations

calibrationHV set the receiver horizontal or vertical attenuations

calibrationAttenuation set the receiver calibration modes and attenuations

cal ibrationMode set the receiver calibration modes

COO request to move to a source

crossedLolRef switch to crossed Lolref

directLolRef switch to direct Lolref

dmp dump shared memory area(s)

dri request a drift

frequency set the 1% LO frequency

i0 set or read antenna(s) input/output bits

observing to switch from stand-by to observation mode or vice versa

off request antenna offsets

offInc reads IAZ and IEL from ~oper/pdbi-data/base/general.an<antennalD> and executes on the

specified pedestal micro the local command offinc for changing both axis, absolute and incremental

encoder offsets

pla request to move to a planet

put set the pointing parameters

ref set refraction parameters

rLolRef reset the LolRef’s

sec to change antenna subreflector offsets

set_sun sends the sun coordinates to all antennas

sto stop one or several antennas

tel set the antennas members of an interferometer pseudo telescope

Create Date:January 2008 Author: A. Perrigouard
interfControl.doc Page 15 of 17

IRAM My Title

wv I set the water vapor receiver parameters

8.1 Meteo

meteo this task sends the meteo data found in the shared memory area “GENE” every 10s to the system
logger. The log facility LOG_LOCALS and the priority LOG_INFO are the parameters. In the syslog
configuration file /etc/syslog.conf it is mentioned to remote log this logging stream to websrv3 and iralx5.
The task also copies the meteo data every 5 minutes to a file, a new file each day ~oper/Meteo/Data/<dd-
mmm-yy>.met.

9 Graphic User interfaces

9.1 Stsa
] stsa (on burelb) E]@E]

Antenna

Project Source UT 7:E0:30z
El RA 3:41:24,37= Dec V0:B3:42,2" LST 15:23:08s
Offzet CS 00", 0,0"
Antenna
Az 100:29:28,1" 1R6:329:28,1" 1b0:39:28,0" 18L:39:28,1" 155:39:23,0" 155:39:23,1"
El 2Q:30:08,6" 3B:30:07.3" 0 38:30:13.5" 38:30:10,3" 30:30:03,5" 28:30:09,1"
e Az 00" 0,0" 01" 02" 00" n.o"
e El 01" 01" 02" 0,0" 01" n.2"

Commatd

- Al A2 - A3 R4 A5

- AG
Proceszes

28673
280E7T
28077
28E25

The bottom part of the gui display the status of the main tasks.

When a task is running, its process ID is displayed.

These tasks should loop forever at 1Hz. A red background color of the task name indicates a pending or
waiting task, not looping anymore. Orange indicates a running task but with one or more antenna
connection interrupted. A green background indicates a nominal behaviour: Running task connected to all
antennas members of the pseudo telescope.

Create Date:January 2008 Author: A. Perrigouard
interfControl.doc Page 16 of 17

IRAM My Title
9.2 Stsh
] stsh (on burelb) E]@E]
Deicing
Status
Aritenna AL 2 A3 fid A 61
Connect, Remote Remote Remate Renote Remote Remat.e
Deicing Track 25 Track 25 Track 25 Track 25 Track 25 Track 25
Generator off/Ptrack of F/Ptrack of F/Ptrack of f/Ptrack of f/Ptrack of F/Ptrack
Sequence active active active active active active
Fb deice Pb deice Fb deice Pb deice Pb deice
Command
Al A2 dA3 A4 | AR 1 AB

Deicing off —l|

Resetl

Gene On —i

Power Track — |

9.3 stsm

O

SEIEY

stsm (on burelb)

Meteo

Temperature {deg C)
Humidity (23

Wind speed and direction (direction from south, »*0 clockwise)

speed (mfs)
direction {deg)

-2,1
20,6

47,1
23777

Pressure (mbar)

solar (WAm™2)

instantaneous mean over last 5 top owver last &
0,0 0,2 3.9
43,9 31,2 24,3

Create Date:January 2008
interfControl.doc

Author: A. Perrigouard
Page 17 of 17

	Change Record
	REVISION
	DATE
	AUTHOR
	AFFECTED
	SECTION/PAGE
	REMARKS
	Content

	1 Introduction 3
	2 Addressing 3
	3 Semaphores 4
	3.1 utility program 7
	4 The functions to include in obs 7
	4.1 Functions to control the antenna mounts: 7
	4.2 Functions to control and monitor the SIS and WVR receive
	4.3 Practical considerations 9
	5 Shared Memory Areas 10
	5.1 c2f 13
	6 Init and background tasks 14
	6.1 Antenna (/control/antenna/bin) 14
	6.2 Astro (/control/astro/bin/) 15
	6.3 Receiver (/control/receiver/bin/) 15
	7 Common (/control/common/bin/) 15
	8 commands 15
	8.1 Meteo 16
	9 Graphic User interfaces 16
	9.1 Stsa 16
	9.2 Stsh 17
	9.3 stsm 17
	Introduction
	The interferometer software should be compiled and then copi
	The target should be /control mounted as well on bure1b and
	The developers referenced with their UID/GID must have a hom
	Here after an example for the computer group:
	The software written to control and monitor the antennas and
	For instance on bure3b, to download the sources:
	bure3b:~ $ mkdir devel
	bure3b:~ $ cd devel
	bure3b:~/devel $ cvs co -r FC6-branch LINUX
	To build everything, i.e. to compile and link all executable
	bure3b:~/devel/LINUX/bure1 $ make
	By intermediate files one means the direct access binary fil
	To install the executables, the binary files, the include fi
	bure3b :~/devel/LINUX/bure1 $ newgrp interf
	bure3b :~/devel/LINUX/bure1 $ make install
	In bure3b:/control the directories antenna/, astro/, command
	However, in the created directories a new level of sub-direc
	For extra development and in particular for obs and rdi, the
	Addressing
	iramr2b 192.168.10.1
	bureACS 192.168.10.5
	bureKVM 192.168.10.6
	netapp1b 192.168.10.11
	netapp2b 192.168.10.12
	bure1 195.83.131.3 bure1b 192.168.10.51
	bure2 195.83.131.4 bure2b 192.168.10.52
	bure3 195.83.131.5 bure3b 192.168.10.53
	bure4 195.83.131.6 bure4b 192.168.10.54
	bure5 195.83.131.7 bure5b 192.168.10.55
	bure-nfs-master 195.83.131.68 x86nfsrw 192.168.10.98
	ifproc 195.83.131.69 ifprocb 192.168.10.99
	clock 195.83.131.70 clockb 192.168.10.100
	ant11 195.83.131.71 ant11b 192.168.10.101
	ant12 195.83.131.72 ant12b 192.168.10.102
	ant21 195.83.131.73 ant21b 192.168.10.103
	ant22 195.83.131.74 ant22b 192.168.10.104
	ant31 195.83.131.75 ant31b 192.168.10.105
	ant32 195.83.131.76 ant32b 192.168.10.106
	ant41 195.83.131.77 ant41b 192.168.10.107
	ant42 195.83.131.78 ant42b 192.168.10.108
	ant51 195.83.131.79 ant51b 192.168.10.109
	ant52 195.83.131.80 ant52b 192.168.10.110
	ant61 195.83.131.81 ant61b 192.168.10.111
	ant62 195.83.131.82 ant62b 192.168.10.112
	xcorl1 195.83.131.151 xcorl1b 192.168.10.151
	xcorl2 195.83.131.152 xcorl2b 192.168.10.152
	xcorl3 195.83.131.153 xcorl3b 192.168.10.153
	xcorl4 195.83.131.154 xcorl4b 192.168.10.154
	xcorl5 195.83.131.155 xcorl5b 192.168.10.155
	xcorl6 195.83.131.156 xcorl6b 192.168.10.156
	xcorl7 195.83.131.157 xcorl7b 192.168.10.157
	xcorl8 195.83.131.158 xcorl8b 192.168.10.158
	phaser 195.83.131.130 phaserb 192.168.10.171
	Deprecated:
	The names ending with b will stay valid until we definitivel
	As soon as the switch to the new architecture will be decide
	It will be useful to keep some machines on-line like for ins
	At Bure there is also a private network dhcp 192.168.3.* (dh
	We keep in mind to move the personal PCs to a private networ
	The public networks 195.83.131.1/25 and 195.83.131.128/26 wi
	Vmware is installed on bure2b to host a virtual machine with
	Semaphores
	As before, we use semaphores to synchronize interprocess com
	common/src/sem_routines.c is a compilation of the functions
	The function sem_create() creates a set of 64 semaphores. T
	Once created, the shell command ipcs shows information about
	bure1b:~ $ ipcs -s
	------ Semaphore Arrays --------
	key semid owner perms nsems
	0x45525542 851968 root 666 64
	key, 0x45525542, is the string "BURE" in hexadecimal, in rev
	perms are read and write for owner(root), group and others). write permission means permission to alter semaphore values).
	And to remove the semaphore array:
	bure1b:~ $ ipcrm -s 851968
	to remove the semaphore array identified with semid=851968,
	bure1b:~ $ ipcrm -S 0x45525542 to remove semaphore array "
	The list of the semaphore utility functions present in sem_r
	sem_create() : creation of a semphore id and the associated
	stucture
	sem_init() : set to 1 all semaphores
	sem_wait(semaphore_number) : wait until the semaphore = 0
	sem_clr(semaphore_number) : set to 0 the semaphore
	sem_set(semaphore_number) : set to 1 the semaphore
	sem_read(semaphore_number) : read the semaphore value
	shm_lock(semaphore_number) : lock the resource associated to
	the semaphore
	shm_unlock(semaphore_number) : unlock the resource associate
	to the semaphore
	setef(semaphore_number) : equivalent to sys$setef (=sem_cl
	clref(semaphore_number) : equivalent to sys$clref (=sem_se
	waitfr(semaphore_number) : equivalent to sys$waitfr (=sem_wa
	readef(semaphore_number) : equivalent to sys$readef (=sem_re
	The function sem_create() has to be called first in all prog
	shm_lock() and shm_unlock() are intended to be used for acce
	The use of the functions sem_wait(), sem_clr() and sem_set()
	The functions setef(), clref(), waitfr() and readef() which
	The include files sem.h and sem.f define the assigned semaph
	/control/common/include/sem.h:
	#define flg_s_ant 0
	#define flg_astro 1
	#define flg_tcpip 2
	...
	/control/common/include/sem.f:
	integer*4 flg_s_ant ! locks antenna data
	integer*4 flg_astro ! trigs astro
	integer*4 flg_tcpip ! synchronizes interp
	...
	parameter (flg_s_ant = 0)
	parameter (flg_astro = 1)
	parameter (flg_tcpip = 2)
	...
	Example of program in C (exa.c):
	#include <stdlib.h>
	#include "sem.h"
	int main(int argc,char* argv[])
	{
	int sem_tcpip = flg_tcpip, sem_s_ant = flg_s_ant;
	sem_create();
	shm_lock(&sem_s_ant);
	// sub();
	shm_unlock(&sem_s_ant);
	sem_clr(&sem_tcpip);
	exit(0);
	}
	Example of program in Fortran (exb.f):
	include 'sem.f'
	call sem_create
	10 call sem_wait(flg_astro)
	call sem_set(flg_astro)
	! call sub
	go to 10
	end
	Example of makefile (~/devel/LINUX/bure1/common/Makefile):
	BINDIR=bin
	SRCDIR=src
	OBJDIR=obj
	COM = .
	COMOBJ = $(COM)/obj
	SEMOBJ = $(COMOBJ)/sem_routines.o
	$(OBJDIR)/%.o: $(SRCDIR)/%.c
	$(CC) -c $(CFLAGS) -MMD $< -o $@
	$(OBJDIR)/%.o: $(SRCDIR)/%.f
	gfortran -c $(FFLAGS) $< -o $@
	$(BINDIR)/exa: $(OBJDIR)/exa.o $(SEMOBJ)
	$(CC) $(CFLAGS) $^ -o $@
	$(BINDIR)/exb: $(OBJDIR)/exb.o $(SEMOBJ)
	gfortran $^ -o $@
	INCLUDES= -I/usr/include -Iinclude
	CFLAGS = -Wall -g $(INCLUDES)
	FFLAGS = $(INCLUDES) -fno-underscoring
	utility program

	There is the program sem copied to /control/common/bin which
	bure1b :~ $ /control/common/bin/sem
	Usage:
	sem init
	sem clear <semaphore_number>
	sem set <semaphore_number>
	sem read <semaphore_number>
	bure1b :~ $ /control/common/bin/sem read 3
	Read
	semaphore 3 : 1
	The functions to include in obs
	Functions to control the antenna mounts:

	write_coo(int* iant_p, int* itel_p, Coo_t* coo_p,
	General_t* general_p, Antenna_t* antenna_p)
	write_dri(int* iant_p, int* itel_p, Off_t* off_p,
	General_t* general_p, Antenna_t* antenna_p)
	write_off(int* iant_p, int* itel_p, int* del_p, Off_t off_p,
	General_t* general_p, Antenna_t* antenna_p)
	write_pla(int* iant_p, int* itel_p, Coo_t* coo_p,
	General_t* general_p, Antenna_t* antenna_p)
	write_point(int* iant_p, Point_t* point_p, Antenna_t* antenn
	write_sec(int* iant_p, Subref_t* subref_p, Antenna_t* antenn
	The new types are defined in /control/common/include/general
	If *itel_p is not null, the parameters are applied to all th
	If *itel_p is null, the parameters are applied to the antenn
	Functions to control and monitor the SIS and WVR receiver

	// Any function returns 0 when completed successfully.
	// The function returns a value != 0 when an error occurs du
	execution or when a parameter is out of range
	typedef enum {
	calModeInvalid, /* use by external task status to describe
	invalid position */
	calModeObserving,
	calModeHotLoad,
	calModeColdLoad,
	calModeVlbi,
	calModeMaxIndex
	}
	ReceiverCalibrationMode_t;
	// bandNum from 1 to 4. Any function with a wrong bandNum re
	// This function returns when the requested calibration mode
	// The mechanical operation may last a moment
	int set_calibration_mode(
	int* iant,
	int* itel,
	int* bandNum,
	ReceiverCalibrationMode_t* calibrationMode,
	General_t* general_p,
	CabinReceivers_t* sisStatus_p)
	typedef enum {
	polarV,
	polarH,
	polarMaxIndex,
	} ReceiverPolar_t;
	// attenuation from 0. to 20dB. Any other values are truncat
	int set_attenuation(
	int* iant,
	int* itel,
	int* bandNum,
	ReceiverPolar_t* polar,
	float* attenuation,
	General_t* general_p,
	CabinReceivers_t* sisStatus_p);
	int set_attenuationHV(int* iant,
	int* bandNum,
	float* attenuationH,
	float* attenuationV,
	CabinReceivers_t* sisStatus_p);
	// This function returns when the requested calibration mode
	// The mechanical operation may last a moment
	int set_calibration_attenuation(
	int* iant,
	int* itel,
	int* bandNum,
	ReceiverPolar_t* polar,
	float* attenuation,
	ReceiverCalibrationMode_t* calibrationMode,
	General_t* general_p,
	CabinReceivers_t* sisStatus_p);
	typedef enum {
	sidebandLower,
	sidebandUpper,
	sidebandMaxIndex
	}
	ReceiverSideband_t;
	typedef enum {
	deltaFMinus ,
	deltaFPlus ,
	deltaFMaxIndex
	}
	ReceiverDeltaF_t;
	int set_frequency(
	int* iant,
	int* itel,
	int* bandNum,
	float* frequency,
	ReceiverSideband_t* sideband,
	ReceiverDeltaF_t* deltaF,
	General_t* general_p,
	CabinReceivers_t* sisStatus_p);
	typedef enum {
	rlo2A ,
	rlo2B ,
	rlo2Both ,
	rlo2MaxIndex
	}
	ReceiverRlo2Mode_t;
	// This function returns when the LO2(s) is(are) reset. It m
	int reset_lo1_ref(
	int* iant,
	int* itel,
	ReceiverRlo2Mode_t* rLo1RefMode,
	General_t* general_p,
	CabinReceivers_t* sisStatus_p);
	int switch_to_direct_lo1_ref(
	int* iant,
	int* itel,
	General_t* general_p,
	CabinReceivers_t* sisStatus_p);
	int switch_to_crossed_lo1_ref(
	int* iant,
	int* itel,
	General_t* general_p,
	CabinReceivers_t* sisStatus_p);
	int beginObserving(
	int* iant,
	int* itel,
	General_t* general_p,
	CabinReceivers_t* sisStatus_p);
	void write_wvr(
	int* p_iant,
	int* p_itel,
	WvrRequest_t* request_p,
	struct s_general* p_general,
	CabinReceivers_t* cabinReceivers_p);
	Practical considerations

	All the object files corresponding to these functions are co
	They are commands which call these functions and which can b
	coo, dri, off, pla, put (corresponding to write_point()), s
	Shared Memory Areas
	The header files general.h, antenna.h and receiver.h describ
	These files are copied into /control/common/include/ and the
	The description files for the program written in Fortran 95
	For instance to generate antenna.f in ~/devel/PdB/LINUX/bure
	bure1b:~/devel/PdB/LINUX/bure1/common $ make include/antenna
	bin/c2f include/antenna.h > include/antenna.f
	and for receiver.h:
	bure1b perrigou:~/devel/PdB/LINUX/bure1/common $ make includ
	cpp include/receiver.h include/receiver.hh -I .../.../cabin/
	bin/c2f include/receiver.hh > include/receiver.f
	(The C preprocessor cpp is required to merge the internal he
	Once the memory spaces are created, the shell command ipc sh
	bure1b :~ $ ipcs -m
	------ Shared Memory Segments --------
	key shmid owner perms bytes nattch
	0x454e4547 983040 root 666 520 2
	0x45544e41 1015809 root 666 5040 2
	0x45434552 1048578 root 666 6864 1
	"GENE" => 0x454e4547
	"ANTE" => 0x45544e41
	"RECE" => 0x45434552
	And to remove the segments, for instance:
	bure1b :~$ ipcrm -m 983040 to remove identified shared memory "GENE")
	bure1b :~$ ipcrm -M 0x45544e41 to remove shared memory "AN
	In C the function shm_connect() returns a pointer to the sha
	#include "general.h"
	general_p = (General_t *)shm_connect("GENE", sizeof(General_
	If the memory area doesn’t yet exist when shm_connect() is e
	In Fortran the subroutine shm_connect_() is called. For inst
	include 'test2.f'
	type(b_s) :: b
	common / test2 / b
	call shm_connect_('TEST', b, stat)
	In this example 'TEST' is the key assigned to the shared mem
	The variable of the common block is of the derived type b_s
	A derived-type object has no storage association. In order t
	The common block test2 is mapped to an arbitrary address at
	As the size of the shared memory area is considered only in
	Example of program in C (test2c.c):
	#include <stdio.h>
	#include <string.h>
	#include <stdlib.h>
	#include "test2.h"
	#include "shm.h"
	int main(int argc,char* argv[])
	{
	B_t* b_p;
	int val;
	float fval;
	b_p = (B_t*)shm_connect("TEST", sizeof(B_t));
	printf("b_p->ba %d\n", b_p->ba);
	printf("b_p->bb %f %d\n", b_p->bb.aa, b_p->bb.ab);
	if (argc > 1)
	{
	sscanf(argv[1], "%d", &val);
	printf("val %d\n", val);
	b_p->ba = val;
	}
	if (argc > 2)
	{
	sscanf(argv[2], "%f", &fval);
	printf("val %f\n", fval);
	b_p->bb.aa = fval;
	}
	if (argc > 3)
	{
	sscanf(argv[3], "%d", &val);
	printf("val %d\n", val);
	b_p->bb.ab = val;
	}
	exit(0);
	}
	Example of program in Fortran (test2f.f):
	program test2f
	include 'test2.f'
	type(b_s) :: b
	integer*4 addr, stat
	common / test2 / b
	call shm_connect_('TEST', b, stat)
	if (stat.eq.0) then
	print*, 'shared memory ', b%ba, b%bb%aa, b%bb%ab
	end if
	end
	test2.h:
	struct a_s {
	float aa;
	int ab;
	};
	typedef struct a_s A_t;
	struct b_s {
	int ba;
	struct a_s bb;
	float bc[2];
	double bd[3][2];
	};
	typedef struct b_s B_t;
	test2.f ($ bin/c2f test2.h >test2.f):
	type a_s
	sequence
	real*4 aa
	integer*4 ab
	end type a_s
	type b_s
	sequence
	integer*4 ba
	type(a_s) bb
	real*4 bc(2)
	real*8 bd(3,2)
	end type b_s
	and the makefile (~/devel/LINUX/bure1/common/Makefile):
	BINDIR=bin
	SRCDIR=src
	OBJDIR=obj
	COM = .
	COMOBJ = $(COM)/obj
	SEMOBJ = $(COMOBJ)/sem_routines.o
	SHMOBJ = $(COMOBJ)/shm_connect.o
	files = size c2f sem test2c exa
	binfiles = $(files:%=$(BINDIR)/%)
	sources = $(files:%=%.c) scanner.c analyse.c sem_routine.c
	incfiles = general.f antenna.f receiver.f test2.f
	# Pattern rules
	$(OBJDIR)/%.o: $(SRCDIR)/%.c
	$(CC) -c $(CFLAGS) -MMD $< -o $@
	$(OBJDIR)/%.o: $(SRCDIR)/%.f
	gfortran -c $(FFLAGS) $< -o $@
	$(BINDIR)/test2c: $(OBJDIR)/test2c.o $(SHMOBJ)
	$(CC) $(CFLAGS) $(LIBS) $^ -o $@
	$(BINDIR)/test2f: $(OBJDIR)/test2f.o $(SHMOBJ)
	gfortran $^ -o $@ -Wl,--defsym -Wl,test2=0x40000000
	INCLUDES= -I/usr/include -Iinclude
	CFLAGS = -Wall -g $(INCLUDES)
	FFLAGS = $(INCLUDES) -fno-underscoring
	c2f

	This utility program translates a structure declared with a
	c2f consists of a scanner, a syntax analyzer and finally a t
	The grammar of the analyzer is the following:
	{declaration_list,
	declaration, scolon, declaration_list, or,
	declaration, scolon, or, end},
	{declaration,
	class_specifier, or,
	struct_specifier, or, end},
	{class_specifier,
	TYPEDEF, type_specifier, identifier, or, end},
	{struct_specifier,
	STRUCT, identifier, lbrace, struct_declaration_list, rbrace,
	STRUCT, lbrace, struct_declaration_list, rbrace, or,
	STRUCT, identifier, or, end},
	{struct_declaration_list,
	struct_declaration, struct_declaration_list, or,
	struct_declaration, or, end},
	{struct_declaration,
	type_specifier, declarator_list, scolon, or, end},
	{declarator_list,
	declarator, comma, declarator_list, or,
	declarator, or, end},
	{declarator,
	identifier, brackets, or,
	identifier, or, end},
	{brackets,
	lsbracket, constant, rsbracket, brackets, or,
	lsbracket, constant, rsbracket, or, end},
	{type_specifier,
	INT, or,
	LONG, or,
	FLOAT, or,
	DOUBLE, or,
	identifier, or,
	struct_specifier, or, end}
	It is based on the Kernighan and Ritchie C language grammar
	(left recursivity: number = number digit | digit
	right recursivity:number = digit number | digit)
	The current translation corresponds to the features of the F
	Example:
	c2f test.h >test.f
	/* file test.h
	*/
	typedef int logical;
	struct aa { type aa
	sequence
	int b, c; integer*4 b, c
	double e[4]; real*8 e(4)
	float f[3][5]; ==> real*4 f(3,5)
	long g; integer*8 g
	logical d; logical*4 d
	}; end type aa
	struct bb { type bb
	sequence
	int h; integer*4 h
	struct aa i,j; type(aa) i, j
	}; end type bb
	Init and background tasks
	The script bure1b:/control/install creates and initializes t
	Antenna (/control/antenna/bin)

	init Creates and initializes the shared memory segment “GEN
	interp Creates the semaphore set “BURE” and then exchange da
	flag1s Receives each second a message from clockb. At the me
	Astro (/control/astro/bin/)

	astrj the task prepares the coordinate transformations and p
	Receiver (/control/receiver/bin/)

	statusReceivers collects periodically (1s) essential receive
	interp22GHz controls, monitors and downloads data periodical
	Status and data are also available with the command dumpRece
	Common (/control/common/bin/)
	sem is a simple utility program to display, clear and set se
	commands
	The main commands are stored in bure1b:/control/command/bin.
	The commands attenuation, attenuationHV, calibrationAttenuat
	attenuation set the receiver attenuations
	calibrationHV set the receiver horizontal or vertical attenu
	calibrationAttenuation set the receiver calibration modes an
	calibrationMode set the receiver calibration modes
	coo request to move to a source
	crossedLo1Ref switch to crossed Lo1ref
	directLo1Ref switch to direct Lo1ref
	dmp dump shared memory area(s)
	dri request a drift
	frequency set the 1st LO frequency
	io set or read antenna(s) input/output bits
	observing to switch from stand-by to observation mode or vic
	off request antenna offsets
	offInc reads IAZ and IEL from ~oper/pdbi-data/base/general.a
	pla request to move to a planet
	put set the pointing parameters
	ref set refraction parameters
	rLo1Ref reset the Lo1Ref’s
	sec to change antenna subreflector offsets
	set_sun sends the sun coordinates to all antennas
	sto stop one or several antennas
	tel set the antennas members of an interferometer pseudo tel
	wvr set the water vapor receiver parameters
	Meteo

	meteo this task sends the meteo data found in the shared mem
	The task also copies the meteo data every 5 minutes to a fil
	Graphic User interfaces
	Stsa

	The bottom part of the gui display the status of the main ta
	When a task is running, its process ID is displayed.
	These tasks should loop forever at 1Hz. A red background col
	Stsh
	stsm

