

ALMA Correlator Modes

Frédéric Gueth, IRAM Grenoble with inputs from A.Baudry, R.Hills, R.Lucas, P.Salome

ALMA Memo 556

ALMA Memo 556

Observational Modes Supported by the ALMA Correlator B_{y}

R. Escoffier, G. Comoretto, C. Broadwell, R. Lacasse, J. Webber, A. Baudry

Abstract

ALMA Regional Centre || IRAM

EUROPEAN ARC

Observational modes including multi-resolution operation supported by the ALMA correlator hardware and firmware are presented.

Introduction

A lot of work has recently been done on observational mode support in the ALMA correlator. Mode charts outlining the capacity of the baseline correlator were originally presented in the B version of the correlator specifications and requirements document, ALMA-60.00.00.00-001-B-SPE. In developing the firmware necessary to support the modes in the system, 4 modes defined in this spec were discovered to be impossible because of hardware connectivity limitations in the correlator.

The capacity for multi-resolution operation in the correlator has also recently been defined and will be described below.

Discussion in this memo will be from a hardware and firmware standpoint, giving the capabilities of the system.

ALMA Memo 556

Table 1 Mode chart with one baseband channel per quadrant being processed

Mode #	Number of sub- channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
								· · · · · · · · · · · · · · · · · · ·	
1	32	2 GHz	8192	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
19	32	2 GHz	4096	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
38	32	2 GHz	2048	976 kHz	1.28 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
2	16	1 GHz	8192	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
20	16	1 GHz	4096	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
39	16	1 GHz	2048	488 kHz	0.64 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
53	16	1 GHz	1024	976 kHz	1.28 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
3	8	500 MHz	8192	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
21	8	500 MHz	4096	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
40	8	500 MHz	2048	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
54	8	500 MHz	1024	488 kHz	0.64 km/s	4-bit x 4-bit	Twice Nyquist	64 meec	0.99
4	4	250 MHz	8192	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
22	4	250 MHz	4096	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
41	4	250 MHz	2048	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
55	4	250 MHz	1024	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 meec	0.99
5	2	125 MHz	8192	15 kHz	0.02 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
23	2	125 MHz	4096	30 kHz	0.04 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
42	2	125 MHz	2048	61 kHz	0.08 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
56	2	125 MHz	1024	122 kHz	0.16 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
6	1	62.5 MHz	8192	7.6 kHz	0.01 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
24	1	62.5 MHz	4096	15 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
43	1	62.5 MHz	2048	30 kHz	0.04 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
57	1	62.5 MHz	1024	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
25	1	31.25 MHz	8192	3.8 kHz	0.005 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
58	1	31.25 MHz	204.8	15 kHz	0.02 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
68	Time Division Mode	2 GHz	64	31.25 MHz	40.8 km/s	3-bit x 3-bit	Nyquist	16 msec	1.00
71	Time Division Mode	2 GHz	256	7.8125 MHz	10.2 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

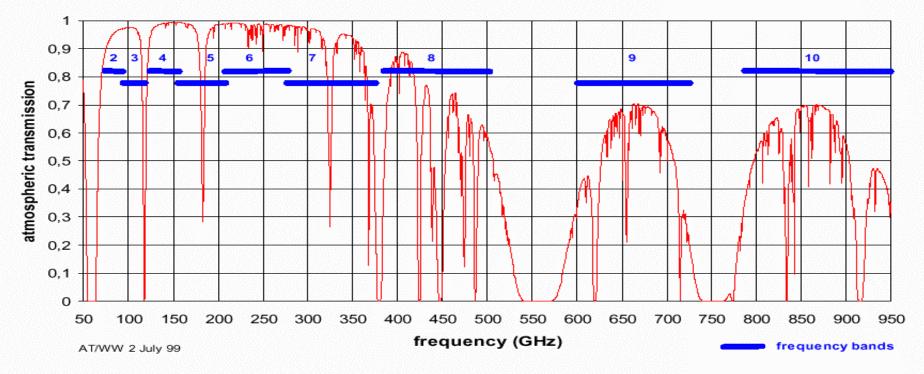
* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

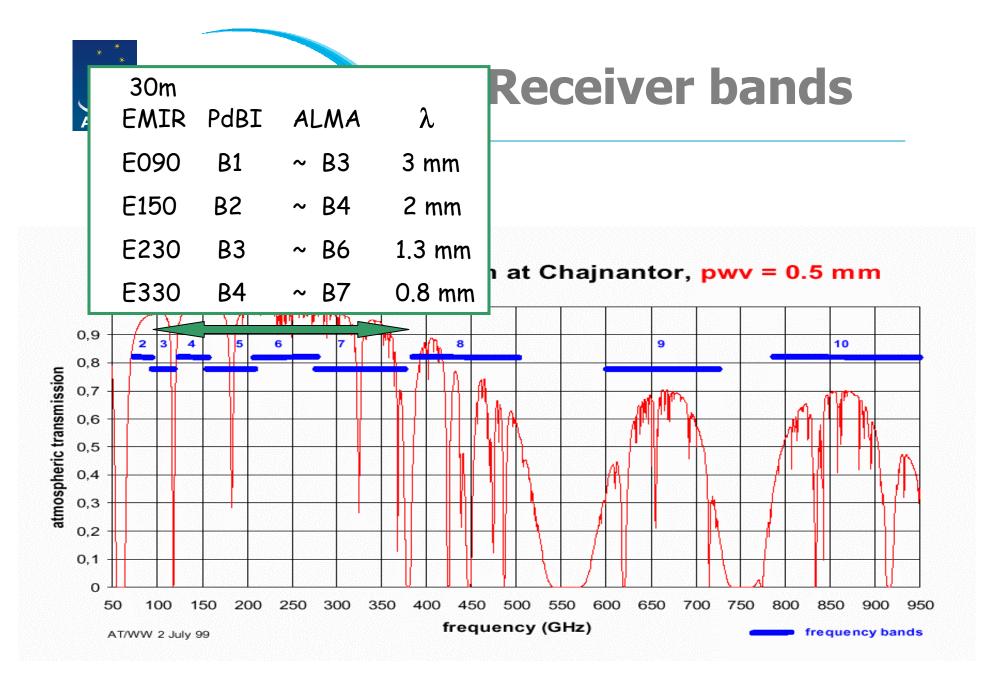
* *Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

ALMA Memo 556

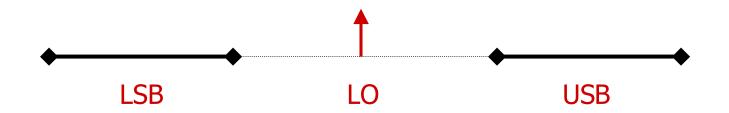
Table 1 Mode chart with one baseband channel per quadrant being processed

Mode #	Number of sub- channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity reso at 230 G		Correlation	Sample Factor	Minimum dump time*	Sensitivity**
1	32	2.68	8102	244 <u>1-</u> H-	0321-	/~ L .	-3 Wr 112	Neroniet		<u> </u>
19 38	32	56		2		1	25 MHz		1024	
2 20	16	6		1		6:	2.5 MHz		8192	
39 53	16	24		1		6:	2.5 MHz		4096	
3	8	43		1		6:	2.5 MHz	-	2048	
40	8	57		1		63	2.5 MHz		1024	
4 22	4	25		1		- 31	.25 MHz		8192	
41 55	4	58		1		- 31	.25 MHz		204.8	
5 23	2	68	Time	Division	Mode		2 GHz		64	
42 56	2	71	Time	Division	Mode		2 GHz		256	
6 24	1									_
43	1	62.5 MHz 62.5 MHz	2048 1024	30 kHz 61 kHz	0.04 km 0.03 km		4-bit x 4-bit 4-bit x 4-bit	Nyquist Twice Nyquist	128 msec 64 msec	0.99
25	1	31.25 MHz	8192	3.8 kHz	0.005 km	-	2-bit x 2-bit	Twice Nyquist	512 msec	0.99
58	1	31.25 MHz	204.8	15 kHz	0.02 km		4-bit x 4-bit	Twice Nyquist	128 msec	0.99
68 71	Time Division Mode Time Division Mode	2 GHz 2 GHz	64 256	31.25 MHz 7.8125 MHz	40.8 km 10.2 km		3-bit x 3-bit 2-bit x 2-bit	Nyquist Nyquist	16 mee 16 mee	1.00 0.88


* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

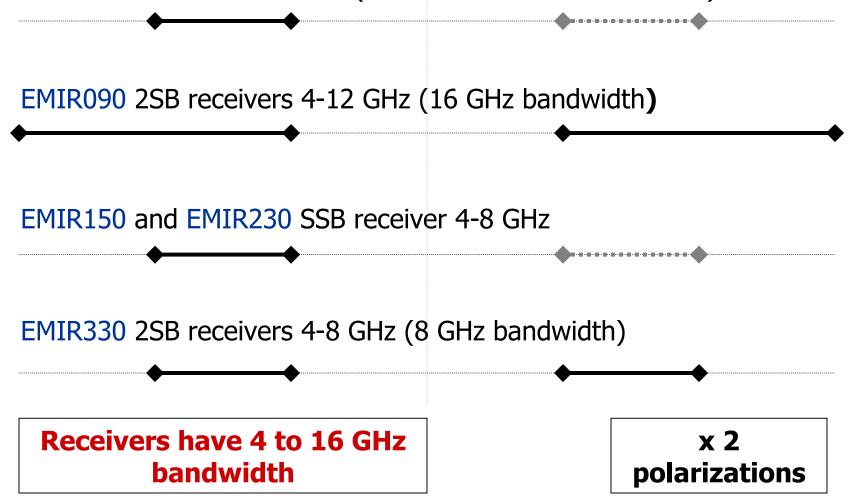

* *Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

Receiver bands

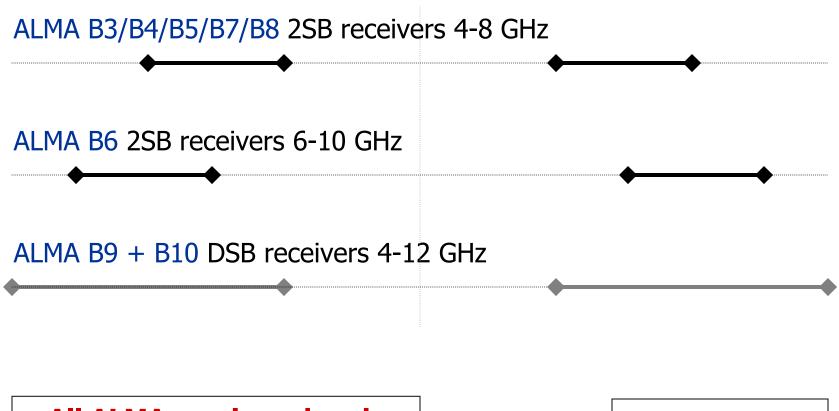


Band 3	Band 6	Band 7	Band 9	Band 4	Band 8	Band 10
HIA	NRAO	IRAM	NOVA	NAOJ	NAOJ	NAOJ
B3	84-116 GHz	HIA	B7	275-3	73 GHz	IRAM
B4	125-163 GHz	NAOJ	B8	385-5	00 GHz	NAOJ
B5	163-211 GHz	OSO	B9	602-7	20 GHz	NOVA
B6	211-275 GHz	NRAO	B10	787-9	50 GHz	NAOJ

Heterodyne receivers are sensitive to Lower Side Band and Upper Side Band



Receivers can be


- **DSB** outputs the sum LSB + DSB \rightarrow separated in the correlator
- **SSB** outputs LSB or DSB
- **2SB** outputs LSB and DSB separately

PdBI SSB receivers 4-8 GHz (4 GHz bandwidth LSB or USB)

All ALMA receivers bands have 8 GHz bandwidth

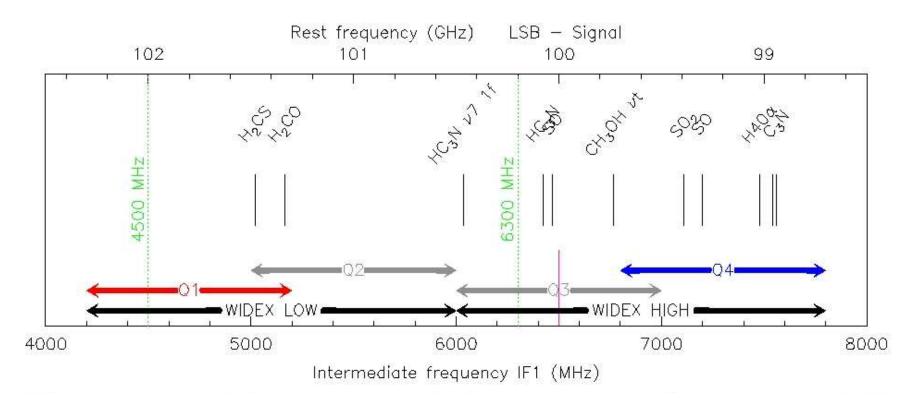
x 2 polarizations

ALMA correlator

- ALMA correlator = **4 basebands**
- Each baseband processes
 - 64 antennas (2016 baselines)
 - 2 polarizations
 - 2 GHz input
- Each baseband can be centered anywhere* in the incoming 8 GHz
- All four basebands can be setup independently

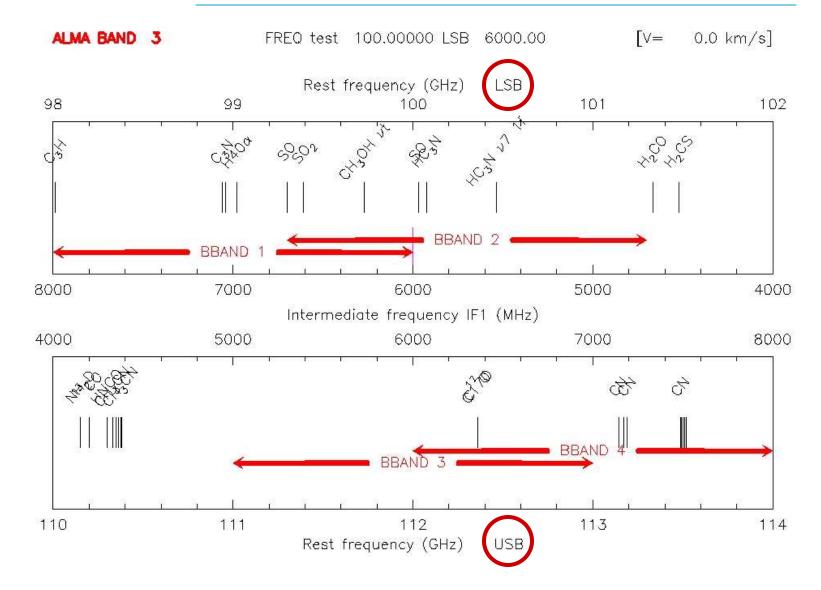
(* Minor limitations because of LOs finite step)

ALMA correlator


- Physically: correlator = 4 quadrants
- Full ALMA: 1 quadrant = 1 baseband
- <16 antennas : 1 quadrant = 4 basebands

PdBI

LINE test 100.00000 LSB LOW 6500.00 7 /RECEIVER 1 [V= 0.0 km/s]

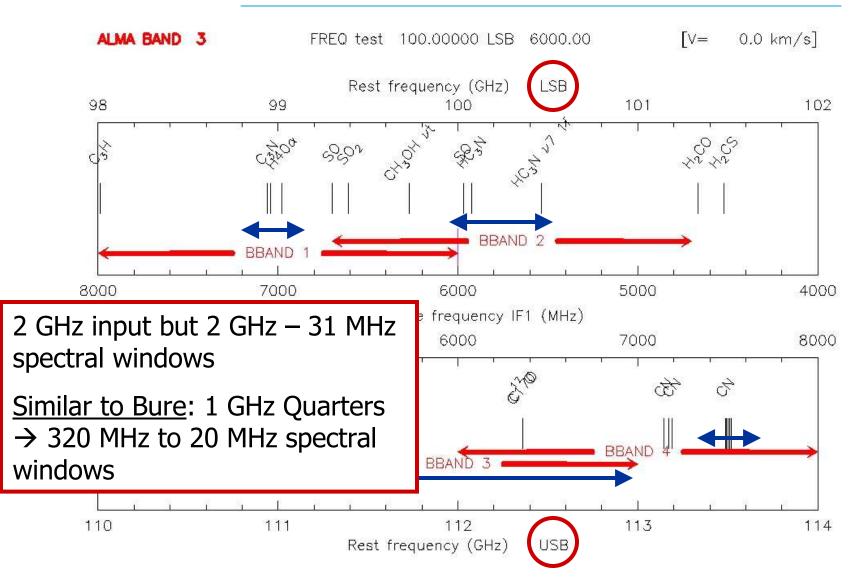


ALMA : basebands

ALMA Regional Centre || IRAM

EUROPEAN ARC

1 polarization output (H or V)


- 2 GHz 8192 channels x 1 Pol = 244 kHz resol.
- 1 GHz 8192 channels x 1 Pol = 122 kHz resol.
- 500 MHz 8192 channels x 1 Pol = 61 kHz resol.
- 250 MHz 8192 channels x 1 Pol = 30 kHz resol.
- 125 MHz 8192 channels x 1 Pol = 15 kHz resol.
- 64 MHz 8192 channels x 1 Pol = 7.5 kHz resol.
- 31.25 MHz 8192 channels x 1 Pol = 3.8 kHz resol.
- Continuum mode 256 ch. x 1 Pol = 7.5 MHz resol.

ALMA : basebands

ALMA Regional Centre || IRAM

EUROPEAN ARC

1 polarization output (H or V)

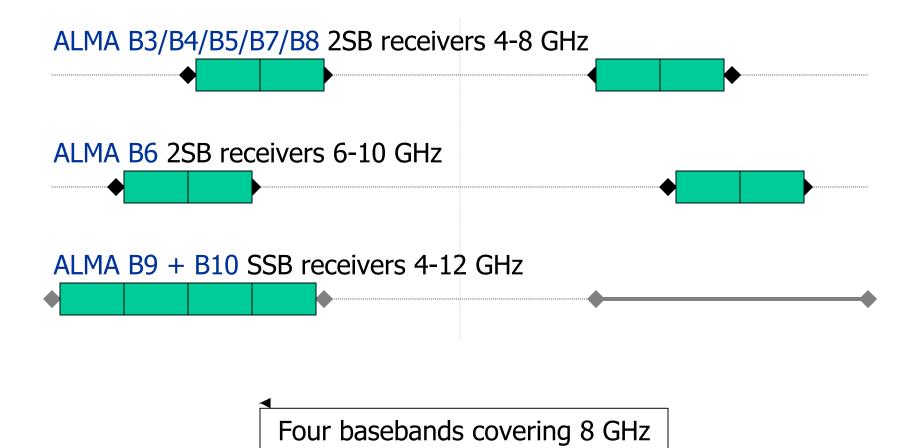
- 2 GHz 8192 channels x 1 Pol = 244 kHz resol.
- 1 GHz 8192 channels x 1 Pol = 122 kHz resol.
- 500 MHz 8192 channels x 1 Pol = 61 kHz resol.
- 250 MHz 8192 channels x 1 Pol = 30 kHz resol. FDM
- 125 MHz 8192 channels x 1 Pol = 15 kHz resol.
- 64 MHz 8192 channels x 1 Pol = 7.5 kHz resol.
- 31.25 MHz 8192 channels x 1 Pol = 3.8 kHz resol.
- Continuum mode 256 ch. x 1 Pol = 7.5 MHz resol. TDM

Frequency/Time division modes

2 polarization outputs (H and V)

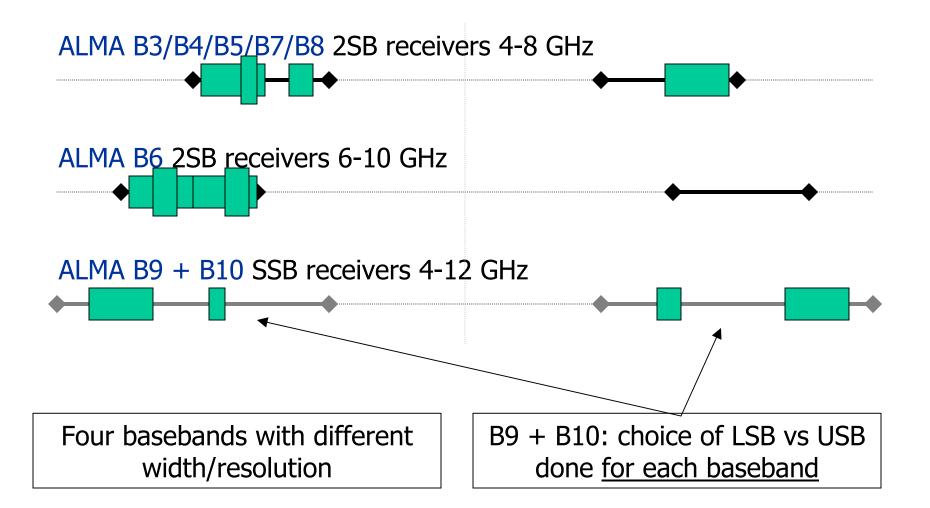
- 2 GHz 4096 channels x 2 Pol = 488 kHz resol.
- 1 GHz 4096 channels x 2 Pol = 244 kHz resol.
- 500 MHz 4096 channels x 2 Pol = 122 kHz resol.
- 250 MHz 4096 channels x 2 Pol = 61 kHz resol.
- 125 MHz 4096 channels x 2 Pol = 30 kHz resol.
- 64 MHz 4096 channels x 2 Pol = 15 kHz resol.
- 31.25 MHz 4096 channels x 2 Pol = 7.5 kHz resol.
- Continuum mode 128 ch. x 2 Pol = 15 MHz resol.

Baseband = 8192 channels


<u>4 polarization outputs (HH, VV, HV, VH)</u>

- 2 GHz 2048 channels x 4 Pol = 976 kHz resol.
- 1 GHz 2048 channels x 4 Pol = 488 kHz resol.
- 500 MHz 2048 channels x 4 Pol = 244 kHz resol.
- 250 MHz 2048 channels x 4 Pol = 122 kHz resol.
- 125 MHz 2048 channels x 4 Pol = 61 kHz resol.
- 64 MHz 2048 channels x 4 Pol = 30 kHz resol.
- 31.25 MHz 2048 channels x 4 Pol = 15 kHz resol.
- Continuum mode 64 ch. x 4 Pol = 31 MHz resol.

Baseband = 8192 channels



Examples

Examples

EUROPEAN ARC ALMA Regional Centre || IRAM

Summary

- 4 independent spectral windows
- 2 GHz to 31.25 MHz bandwidth
 - 1, 2, or 4 polar. products
 - 8192 channels
- *OR* 2 GHz continuum
- NB: real bandwidths are smaller:
 - 1800 instead of 2000 MHz
 - 938 instead of 1000 MHz
 - 469 instead of 512 MHz
 - 234 instead of 256 MHz
 - 117 instead of 128 MHz
 - 58.6 instead of 64 MHz

real resolutions are higher: 1.2 to 2 times the channel spacing

EUROPEAN ARC ALMA Regional Centre || IRAM

Summary

- 4 independent spectral windows
- 2 GHz to 31.25 MHz bandwidth
 - 1, 2, or 4 polar. products
 - 8192 channels
- *OR* 2 GHz continuum
- Anything more?

Each mode comes in 2 to 4 flavors: 2,3, or 4 bits correlation and Nyquist/twice Nyquist sampling \rightarrow gain in sensitivity but loss in spectral points

Mode #	Number of sub- channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
1	32	2 GHz	8192	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	O.88
19	32	2 GHz	4096	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
38	32	2 GHz	2048	976 kHz	1.28 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
2	16	1 GHz	0192	122 kHz	0.16 km/s	2-011 X 2-011	rvyquist	512 msec	0.55
20	16	1 GHz	4096	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
39	16	1 GHz	2048	488 kHz	0.64 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
53	16	1 GHz	1024	976 kHz	1.28 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
3	8	500 MHz	8192	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
21	8	500 MHz	4096	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
40	8	500 MHz	2048	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
54	8	500 MHz	1024	488 kHz	0.64 km/s	4-bit x 4-bit	Twice Nyquist	64 meec	0.99
4	4	250 MHz	8192	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
22	4	250 MHz	4096	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
41	4	250 MHz	2048	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
55	4	250 MHz	1024	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
5	2	125 MHz	8192	15 kHz	0.02 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
23	2	125 MHz	4096	30 kHz	0.04 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
42	2	125 MHz	2048	61 kHz	0.08 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
56	2	125 MHz	1024	122 kHz	0.16 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
6	1	62.5 MHz	8192	7.6 kHz	0.01 km/s	2-bit x 2-bit	Nyquist	512 msee	0.88
24	1	62.5 MHz	4096	$15 \mathrm{kHz}$	0.02 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
43	1	62.5 MHz	2048	30 kHz	0.04 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
57	1	62.5 MHz	1024	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
25	1	31.25 MHz	8192	3.8 kHz	0.005 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
58	1	31.25 MHz	2048	15 kHz	0.02 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
68	Time Division Mode	2 GHz	64	31.25 MHz	40.8 km/s	3-bit x 3-bit	Nyquist	16 msec	1.00
71	Time Division Mode	2 GHz	256	7.8125 MHz	10.2 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

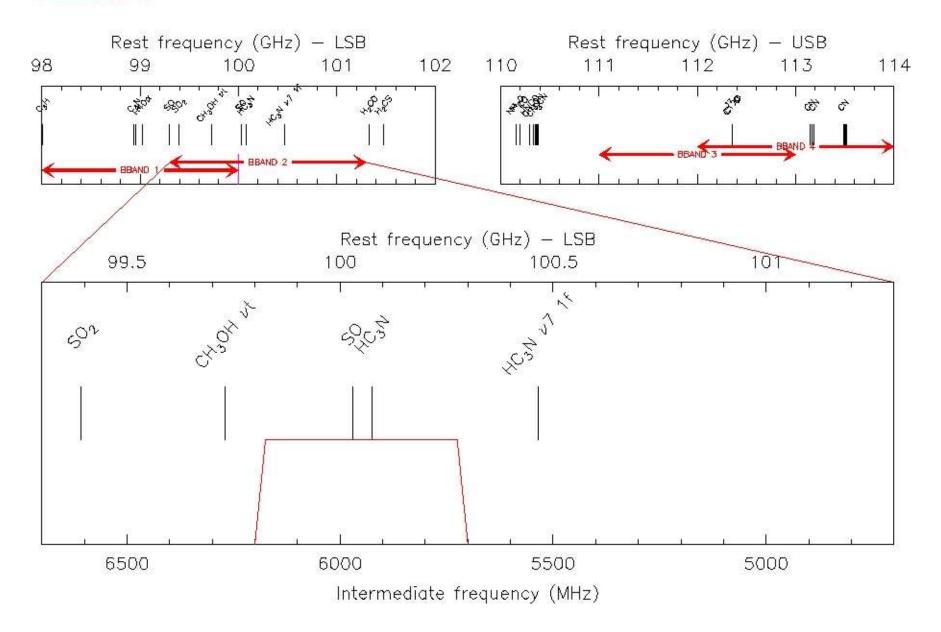
Table 1 Mode chart with one baseband channel per quadrant being processed

* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

* *Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

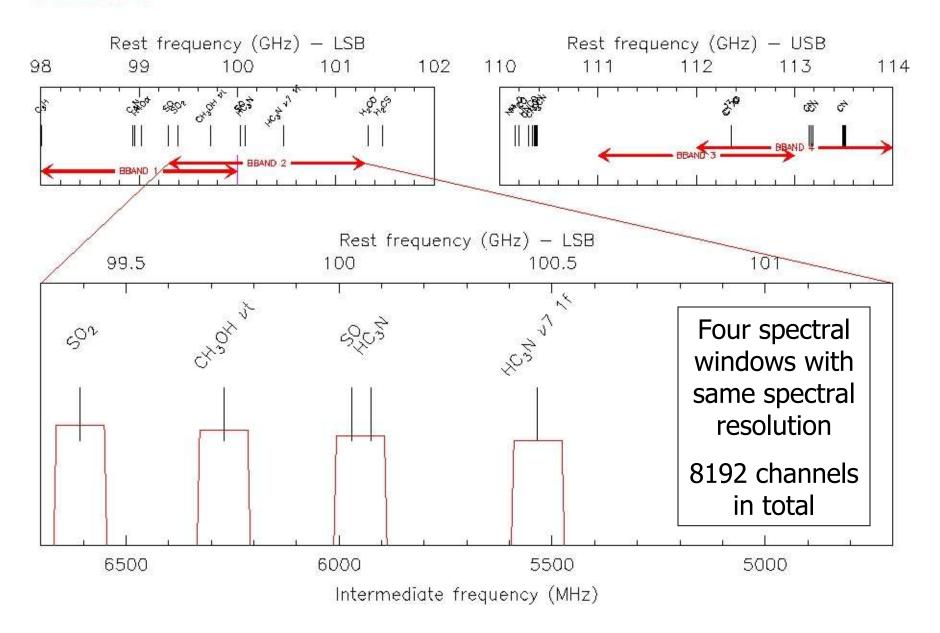
Summary

- 4 independent spectral windows
- 2 GHz to 31.25 MHz bandwidth
 - 1, 2, or 4 polar. products
 - 8192 channels
- *OR* 2 GHz continuum
- The resolution of each mode can be degraded to increase the sensitivity (more bits correlation and/or higher sampling)
- Anything more?



Multi-regions modes

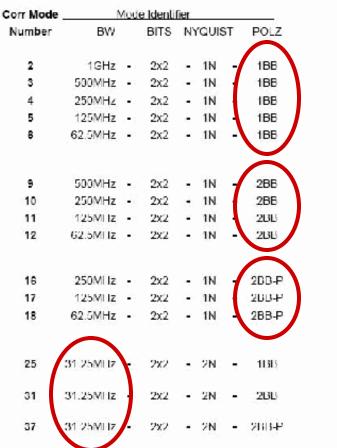
- Goal = observe **several spectral windows in one baseband**
- Multi-regions: basic mode can be **split** in several windows
- Basic unit = 62.5 MHz regions
- Spectral windows share the same mode, i.e. the same resolution, polarization output, etc
- Example: <u>500 MHz</u> x 4096 channels x 2 Pol (122 kHz resol.)
 → <u>8 spectral windows of 62.5 MHz</u> x 1024 channels x 2 Pol (122 kHz resol.)
- Only possible with modes 125 MHz 1 GHz


 ALMA BAND 3
 FREQ test 100.00000 LSB 6000.00
 [V= 0.0 km/s]

 BASEBAND 2 is centered at IF1 = 5700.00 MHz (LSB)
 RF = 100.30000 GHz

 ALMA BAND 3
 FREQ test 100.00000 LSB 6000.00
 [V= 0.0 km/s]

 BASEBAND 2 is centered at IF1 = 5700.00 MHz (LSB)
 RF = 100.30000 GHz

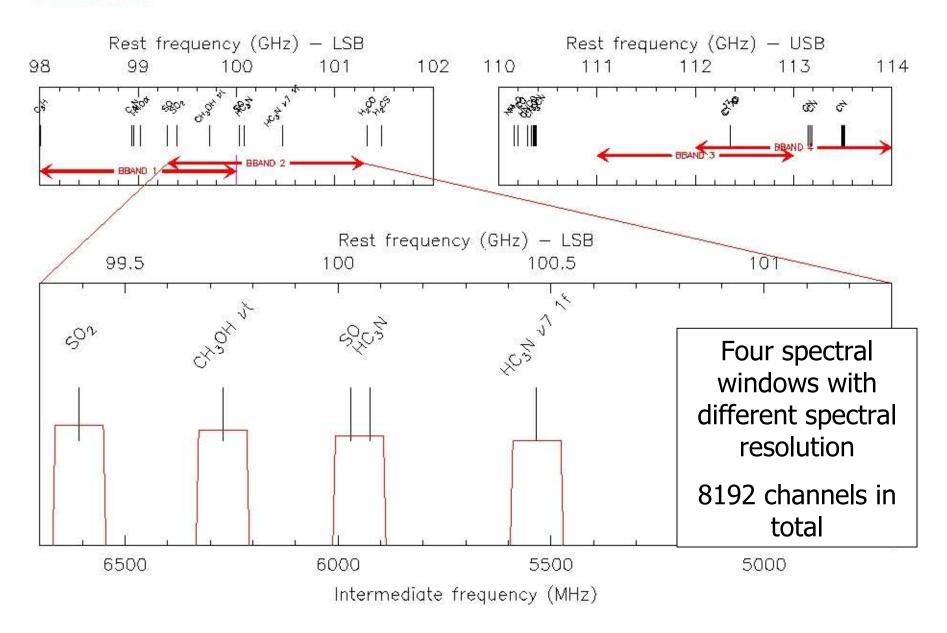


EUROPEAN ARC ALMA Regional Centre II IRAM

Multi-resolution modes

- Goal = observe **several spectral windows in one baseband**
- The modes can be degraded in order to use only a fraction of the correlator → reduce number of channels, free correlator resources for another window
- Spectral windows are **independent**, can have different resolution, polarization output, etc
- 1 GHz x 1 pol x 8192 channels 1 GHz x 1 pol x 4192 channels 125 MHz x 1 pol x 8192 channels 125 MHz x 1 pol x 8192 channels 125 MHz x 1 pol x 4192 channels 50% correlator
- Not all modes/combinations possible (e.g. 2 GHz \rightarrow 100% only)

Table	Multi-resolution	mode	possibilities
-------	------------------	------	---------------



Spectral Channel Resolution for each polarization data set as a function of the fraction of correlator resources assigned in Multi-reslution Mode (Total #spectral channels per polarization data set in parenthesis)

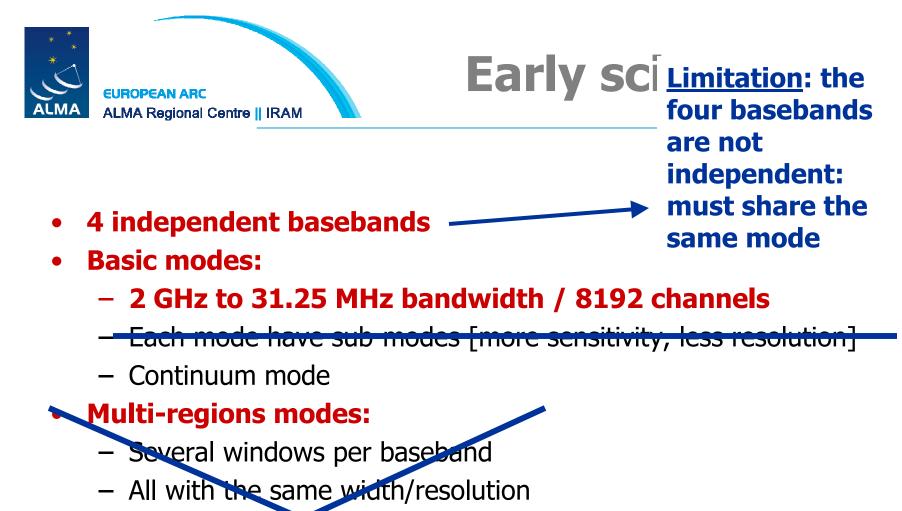
Full	<u>1/2</u>	1/4	<u>1/B</u>	1/16	1/32
122 KHz (8192)	244 KHz (4096)	na	na	па	na
61 KHz (8192)	122 KHz (4096)	244 KHz (2048)	na	па	na
30.5 KHz (8192)	61 KHz (4096)	122 KHz (2048)	244 KHz (1024)	na	na
15.3 KHz (8192)	30.5 KHz (4096)	61 KHz (2048)	122 KHz (1024)	244 KHz (512)	na
7.63 KHz (8192)	15.3 KHz (4096)	30.5 KHz (2048)	61 KHz (1024)	122 KHz (512)	244 KHz (256)
122 KHz (4096)	244 KHz (2048)	na	na	па	na
61 KHz (4096)	122 KHz (2048)	244 KHz (1024)	na	па	na
30.5 KHz (4096)	61 KHz (2048)	122 KHz (1024)	244 KHz (512)	ла	na
15.3 KHZ (4096)	30.5 KHz (2048)	61 KHZ (1024)	122 KHz (512)	244 KHz (256)	na
122 kJ iz (2048)	244 KHz (1024)	na	na	па	na
61 KHz (2048)	122 KHz (1024)	244 KHz (512)	na	па	na
30.5 KHz (2048)	61 KHz (1024)	122 KHz (512)	244 KHz (256)	па	na
3 8 2 KHZ (8192)	7 63 KHz (4096)	15 3 KUz (2048)	30 5 KUZ (1024)	61 KHZ (512)	122 KHz (256)
7.63 KHz (4096)	15.3 KHz (2048)	30.5 KHz (1024)	61 KHz (512)	122 KHz (256)	na
15 3 KHZ (204 8)	30.5 KHz (1024)	6 1 KHZ (512)	122 KHz (256)	па	na

 ALMA BAND 3
 FREQ test 100.00000 LSB 6000.00
 [V= 0.0 km/s]

 BASEBAND 2 is centered at IF1 = 5700.00 MHz (LSB)
 RF = 100.30000 GHz

EUROPEAN ARC ALMA Regional Centre || IRAM

Summary


- 4 independent basebands
- Basic modes:
 - 2 GHz to 31.25 MHz bandwidth / 8192 channels
 - Each mode have sub-modes [more sensitivity, less resolution]
 - Continuum mode
- Multi-regions modes:
 - Several windows per baseband
 - All with the same width/resolution
- Multi-resolution modes:
 - Several windows per baseband
 - Different widths/resolutions [less than in basic modes]

EUROPEAN ARC ALMA Regional Centre || IRAM

Early science

- 4 independent basebands
- Basic modes:
 - 2 GHz to 31.25 MHz bandwidth / 8192 channels
 - Each mode have sub modes [more sensitivity, less resolution]
 - Continuum mode
- Multi-regions modes:
 - Several windows per baseband
 - All with the same width/resolution
- Multi-resolution modes:
 - Several windows per baseband
 - Different widths/resolutions [less than in basic modes]

- Multi-resolution modes:
 - Several windows per baseband

Different widths/resolutions [less than in basic modes]

EUROPEAN ARC ALMA Regional Centre || IRAM

Early Science

TDM modes	5	Point Spacing (MHz)				
Band-	MHz	7.8	15.6	31.3		
width	1800	1	2	4		

FDM mo	odes	Spacir	ng of spe	ctral poir	nts (k	Hz)			
Band-	MHz	7.6	15.3	30.5	61	122	244	488	977
width	1800						1	2	4
	938					1	2	4	
	469				1	2	4		
	234			1	2	4			
	117		1	2	4				
	58.6	1	2	4					

Number of cross-products as a function of bandwidth/resolution for one baseband

Highest priority modes (ASAC)

EUROPEAN ARC ALMA Regional Centre || IRAM

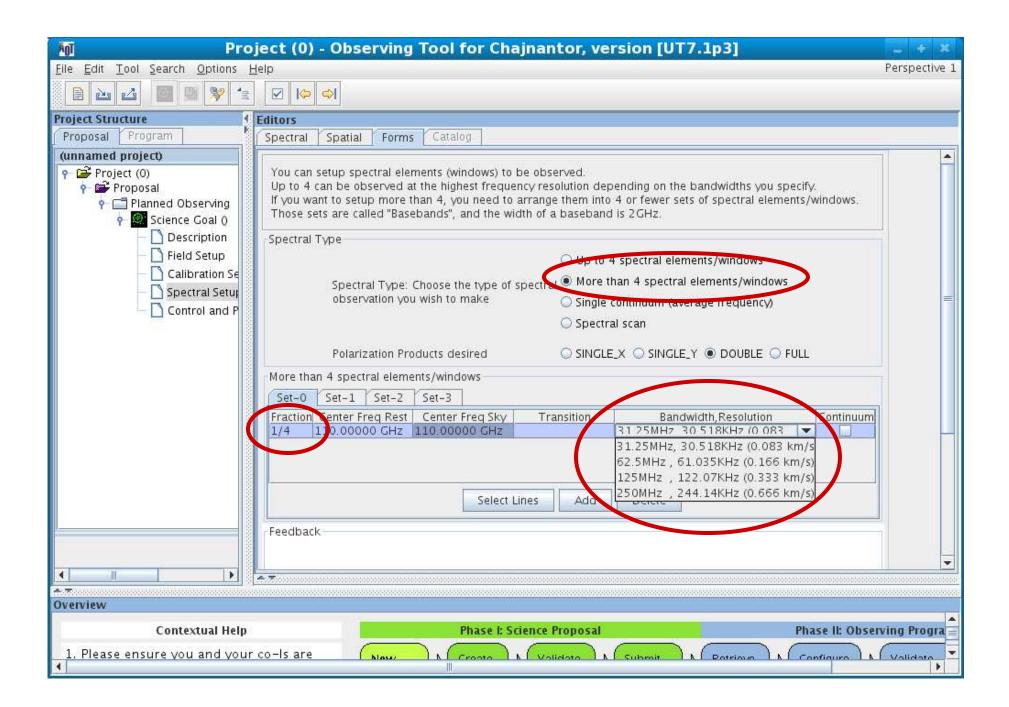
Early Science

TDM modes	5	Point Spacing (MHz)					
Band-	MHz	7.8	15.6	31.3			
width	1800	1	2	4			

FDM mo	odes	Spacir	Spacing of spectral points (kHz)								
Band-	MHz	7.6	15.3	30.5	61	122	244	488	977		
width	1800						1	2	4		
NB: must use 4 cross-products for B7, because											
	IIIUSL	<u>u3c</u> ·		<u> 14-66</u>	<u>uu</u> u			DELa	usc		
<u>IND:</u>				ntical					<u>use</u>		
	pola				on	all an					

Number of cross-products as a function of bandwidth/resolution for one baseband

Highest priority modes (ASAC)



Observing Tool

- In the **Observing Tool** (demo on Wednesday)
 - Choose 4 or more spectral windows
 - Choose lines
 - The OT finds receiver tuning
 - Choose a correlator mode = resolution/width
 - The OT proposes the list of modes available

An Pro	ject (0) - Observing Tool for Chajnantor, version [UT7.1p3]	- + X
<u>File E</u> dit <u>T</u> ool <u>S</u> earch <u>O</u> ptions <u>F</u>	<u>l</u> elp	Perspective 1
<u>2</u> 2 3 9 7 4		
Project Structure 🧃	Editors	
Proposal Program	Spectral Spatial Forms Catalog	
(unnamed project)		
Project (0) Proposal Planned Observing Paramet Observing Pa	You can setup spectral elements (windows) to be observed. Up to 4 can be observed at the highest frequency resolution depending on the bandwidths you specify. If you want to setup more than 4, you need to arrange them into 4 or fewer sets of spectral elements/windows. Those sets are called "Basebands", and the width of a baseband is 2CUE Spectral Type Spectral Type: Choose the type of spectral O More than 4 spectral elements/windows observation you wish to make Polarization Products desired Up to 4 spectral scan Polarization Products desired SiNGLE_X O SINGLE_Y ODUBLE FULL Up to 4 spectral elements/windows Center Freq Rest Center Freq Sky Transition Bandwidth, Resolution Continuum	
	Select Lines Add Delete	
Overview		
Contextual Help	Phase I: Science Proposal Phase II: Obse	rving Progra \equiv
1. Please ensure you and your	co-ls are Nave & Crosto & Volicioto & Cubroit & Rotriovo & Contiguro A	Validata -

M Pro	ject (0) - Observing Tool for Chajnantor, version [UT7.1p3]	_ + X					
<u>Eile Edit Tool S</u> earch <u>O</u> ptions <u>F</u>	<u>d</u> elp	Perspective 1					
🖹 🖄 🗹 💹 🛒 🐄 🖆							
Project Structure 🧃	Editors						
Proposal Program	Spectral Spatial Forms Catalog						
(unnamed project)							
ዋ 🗃 Project (0)	You can setup spectral elements (windows) to be observed. Up to 4 can be observed at the highest frequency resolution depending on the bandwidths you specify.						
Proposal	If you want to setup more than 4, you need to arrange them into 4 or fewer sets of spectral elements/windows.						
Science Goal 0	Those sets are called "Basebands", and the width of a baseband is 2GHz.						
🗌 🗋 Description	-Spectral Type						
— 🗋 Field Setup	Up to 4 spectral elements/windows						
Calibration Se	Spectral Type: Choose the type of spectral O More than 1 spectral elements/windows						
🗌 🗋 Spectral Setur	observation you wish to make O Single continuum (average frequency)	-					
— 🗋 Control and P	⊖ Spectral scan						
	Polarization Products desired						
	Up to 4 spectral elements/windows						
	Center Freq Rest Center Freq Sky Transition Bandwidth, Resolution Continuum 110.00000 GHz 110.00000 GHz 62.5MHz 15.259KHz (0.042 k) Image: Continuum						
	31.25MHz, 7.6294KHz (0.021 km/	ŧ=					
	31.25MHz, 30.518KHz (0.083 km/						
	62.5MHz , 15.259KHz (0.042 km/s	1					
	Select Lines Add 62.5MHz , 50.316KHz (0.065 km/s						
	Feedback 62.5MHz , 122.07KHz (0.333 km/s	##					
	125MHz , 30.518KHz (0.083 km/s						
	125MHz , 61.035KHz (0.166 km/s						
		•					
Overview							
Contextual Help	Phase I: Science Proposal Phase II: Obse	rving Progra					
1. Please ensure you and your	co-ls are New A Crosto A Validato A Submit A Patrice A Configuro A	Validata					
4		•					

Conclusion

- **Early Science**: 4 spectral windows + restrictions
- Full ALMA: a very flexible system
 - Easy to define simple settings
 - Much more difficult to *optimize* complex settings
- Bure-like scripts available in ASTRO
- Exercise with the OT as soon as it is available

ACA?

- ACA (12 x 7m antennas) has its own correlator
- Very different design (XF vs FX)
- But will provide the very same modes (bandwidth/resolution) than the main correlator

 \rightarrow Needed to merge the data into one single set