

The ALMA project and construction status

Wolfgang Wild

European ALMA Project Manager Head of ALMA Division

What is ALMA

Atacama Large Millimetre/Submillimetre Array

- ALMA will be the world's largest interferometer for millimetre and sub-millimetre wavelengths
- It is in full construction in the Atacama desert
- Three sites in Chile
 - ALMA Operations Site (AOS): high, dry site, Chajnantor Plateau (5000m)
 - Operations Support Facility (OSF): Technical base (2900m) near San Pedro de Atacama
 - Santiago headquarters

ALMA Specifications

- 54 12-m antennas, 12 7-m antennas, at 5000m site
- Surface accuracy < 25 μm, 0.6" reference pointing in 9 m/s wind, 2" absolute pointing all-sky
- Array configurations between 150 m and ~15-18 km
- Angular resolution ~40mas at 100 GHz (5mas at 900GHz)
- 10 bands in range 31to 950 GHz + 183 GHz WVR
- 8 GHz IF bandwidth, dual polarization
- Interferometry, mosaicing & total-power observing
- Correlator: 4096 channels/IF (multi-IF), full Stokes
- All data archived (raw + images), pipeline processing

ALMA as an international collaboration

- ALMA is a collaboration between
 - ESO Europe (14 member states of ESO)
 - With contributions from many institutes
 - NRAO North America (USA, Canada), and
 - NAOJ East Asia (Japan, Taiwan),
 - In collaboration with Chile
- Hardware and software is developed and built across the three partner regions
- In Chile, the *Joint ALMA Observatory* (JAO) commissions and operates ALMA
- ALMA costs ~1.2 billion €, shared among the partners

A global collaboration

Top Level Science Goals

- Detect and map CO and [C II] in a Milky Way galaxy at z=3 in less than 24 hours of observation
- 2. Map dust emission and gas kinematics in protoplanetary disks
- Provide high fidelity imaging in the (sub)millimeter at
 0.1 arcsec resolution

- Eight antennas installed at 5000m site and working as interferometer
- Fringes observed at bands 3, 6, 7, and 9
- Phase closure achieved
- CSV (Commissioning & Science Verification) ongoing since Jan 2010 – first exciting results
- ~30 antennas in various stages, 13 conditionally accepted
- 2 antenna transporters on site and in operation
- 11 fronts ends in Chile, more in testing and integration
- Infrastructure close to completion
- Further production underway for antennas, front ends, backends, infrastructure, ...

Eight Antennas at 5000m

Currently eight antennas in use at 5000m Sixteen are scheduled for May 2011

ESO, AUI/NRAO, and NAOJ (the three "Executives") decided to fund and jointly build/operate ALMA

- To this end, the Joint ALMA Observatory (JAO) has been created in Chile
- The ALMA Board has overall responsibility for the JAO
- Technical work is mostly carried out in IPTs
 IPT = "Integrated Product Team"
 Significant contributions from research institutes and industry

ALMA Management Structure during construction phase

ALMA Structure in Operations

- World wide distribution of a large and complex project
- Three administrative systems
- (At least) three mentalities
- (At least) three cultural backgrounds
 - Complex but necessary management structure

IPT /	Europe	North America	East Asia
Subproject	_		
Site	ALMA Road to AOS	Roads at AOS	Financial Contribution
Development	OSF Technical Facilities	AOS Technical	to Costs
	OSF Residencia	Facilities	
	Santiago Central Office		
	ALMA Power Supply		
	192 Antenna Foundations		
Antennas	25 Antennas (12m)	25 Antennas (12m)	4 Antennas (12m)
	Two Antenna Transporters		12 Antennas (7m)
Front End	Band 7 (70)	Band 3	Band 4
	Band 9 (70)	Band 6	Band 8
	Cryostats (70)	Monitor and Control	Band 10
	Water Vapour Radiom. (53)	26 Integrated Receivers	Integrated Receivers
	Calibration System (70)		
	26 Integrated Receivers		
Back End	Photomixers (hundreds)	Optical Transmitters	
	Digitizers	Local Oscillators	
	Digitizer Clocks	Digital Formatters	
	Multiplexers	Digital De-Formatters	
Correlator	Tunable Filter Boards	Correlator for 64 Ant	Correlator for 16 Ant
Computing	Software	Software	Software

ALMA location

Location

AOS (5000m) OSF (2900m)

San Pedro de Atacama (2400m), Atacama desert, Northern Chile

San Pedro de Atacama

Satellite image

Google-Earth view of site with antennas in the most extended configuration – baselines to 16km

Image © 2007 TerraMetrics Image © 2007 DigitalGlobe © 2007 Europa Technologies

K

Three sites in Chile

OSF – Operations Support Facility (2900m)

- Operations Base: control room (operating)
- Antenna integration (ongoing)
- AIV (Assembly, Integration & Verification)=Equipping antennas
- Technical Building etc.: Labs, maintenance, live & eat

AOS – Array Operations Site (5000m) 66 antennas, 192 antenna stations (foundations done) Technical Building: correlator, LO reference (done)

SCO – Santiago Central Office "Home base" of ALMA (in use)

ALMA OSF (2900m)

Antenna integration in three work areas
Technical building, canteen, bedrooms, etc.
About 500 people at the Operations Support Facility (OSF)

ALMA OSF (2900m)

+ES+

Observing with ALMA: Ear

Site Infrastructure OSF

OSF Technical Facility

- Control Room
- Computer Room
- Antenna Assembly, Integration and Verification Area

ALMA OSF (2900m)

Llano de Chajnator (5000m) Array Operations Site -AOS

Picture was taken before ALMA construction started

Site Infrastructure Array Operations Site (AOS)

- AOS Technical Building completed in 2008
- Construction of the 192 antenna foundations making up the entire array configuration completed in 2009
- Construction of the infrastructure needed to make these functional antenna stations underway
 - Network of access roads
 - Power distribution
 - Fiber optic signal connection

ALMA AOS (5000m) Digital correlator

Three (of four) quadrants installed, one in routine usePatch panel installed

Site Infrastructure - Power

ALMA needs 7 MW of electrical power (peak)

- To be generated at the OSF Multi fuel generators
- Transmitted to AOS via a 29 km long 23 kV line
- Power supply includes "fly wheel" system
- Permanent power system construction will be completed August 2011 – meanwhile using generators at 5000m

Site Infrastructure - Roads

43 km of roads from Chilean Highway 23 to OSF and AOS completed

- 14 km from highway to OSF
- 29 km from OSF to AOS (15m wide)
- Road signs and crash barriers still to be installed

\blacksquare >150 km of roads at the AOS under construction

Access to all antenna stations

Santiago Central Office

On ESO premises in Santiago Completed in July 2010, ALMA staff moved in August

ALMA antennas are manufactured to a common specification by three contractors

Partner/Contractor	Number to be supplied	Delivered to Site	Delivered to AIV
North America / Vertex	25 12m	16	10
Europe / AEM Consortium (TAS-EIE-MTM)	25 12m	6	Mar 2011
East Asia / Mitsubishi Electric Corp	4 12m 16 7m	4 5	3 Jan 2011

Antennas

North American 12m antenna

European 12m antenna

East Asian 12m antenna on transporter in foreground 7m in background

North American (Vertex) antennas

16 Vertex antennas in Chile in various stages 10 conditionally accepted

Surface 11 micron rms

Japanese (MELCO) antennas

4 x 12m in Chile (AOS/OSF) 5 x 7m at OSF, more 7m antennas to come

European (AEM) antennas

Built by a consortium of

- Thales-Alenia-Space (TAS) France and Italy
- European Industrial Engineering (EIE) Italy
- MT-Mechatronics Germany

 Subcontractors in Italy, France, Spain, Germany, Denmark, UK, Switzerland, and Chile

 Six antennas in Chile, fully assembled, production line in Europe nominal

First antennas in testing phase

European Antennas

Six on site, fully integrated

Acceptance of first antenna early 2011

First six European Antennas

Shipping from Europe

Reflector assembly

Reflector integration

120 panels per reflector

Laser tracker measurement indicated ~30 micron rms for both reflectors after mechanical installation

Antenna #1 Acceptance Testing

Antenna #1 in acceptance testing

First results promising

- First pointing done 1"
- First reflector result $15 \ \mu m \ rms$

Acceptance testing until at least March 2011

 No schedule contingency included

ALMA Antenna Transporters

- Two 120 ton transporters delivered by ESO
- In routine operation since 2008
- Custom design for special circumstances
 - Operation at 5000m altitude
 - Up to 10% slope
 - High precision positioning of antennas (~1 mm)

Transporters coming past the valley of moon (2008)

First antenna to 5000m (17 Sep 09)

First antenna to 5000m (17 Sep 09)

First antenna – arrival at AOS

Front End Assemblies

10 bands from 30 GHz to 950 GHz in one cryostat
 Bands 3, 4, 6, 7, 8, and 9 in production
 Band 10 prototyping
 Band 5 EU funded (6 units)
 Band 1 under development

ALMA Frequency Bands

Atmospheric transmission at Chajnantor

- Cold and warm cartridge assemblies for the primary four bands are well into production, and two more are close
- Two additional bands in development
- A few "low-tech" components have been late into production and delayed front end integration

Cartridge	Status	Completed
Band 3	Production	33
Band 4	Pre-production	2
Band 5	Development	6 in 2011
Band 6	Production	27
Band 7	Production	38
Band 8	Pre-production	4
Band 9	Production	47
Band 10	Development	prototype

Receiver Cartridges

Band 3Band 6Band 7Band 9Band 4Band 8Band 10HIANRAOIRAMNOVANAOJNAOJNAOJ

Receiver performance

Cryostat production

Three Front End Integration Centers, RAL (UK), NRAO (USA), and ARL (Taiwan) in operation

As of Nov 2010 eleven FE assemblies delivered to site and ten are integrated into antennas

Front End Installation

Dedicated Front End Service Vehicle under development

Photonic Local Oscillator System

- The long, challenging development of the photonic local oscillator system completed in 2009
- Initial version of the central local oscillator installed, tested, and operational at the AOS Technical Building in October 2009
- System performance demonstrated up to 200m in severe environmental conditions

- Digital signal processing components for the Back End Antenna Articles in full production
- 20 BE Antenna Articles delivered to site, 8 integrated into antennas
- All 4 quadrants of the 64-input corr. to be completed in early 2011
- ACA correlator installation, test and acc. to be completed in Q4/2010
 ACA FX correlator at the AOS TB 64-input XF correlator at the AOS TB

 ALMA software development process features incremental CDRs and version releases to progressively increase functionality

 "Off-line" testing of software at the ALMA Test Facility in New Mexico and now with the two-antenna interferometer at the OSF Technical Facility has been invaluable

Early end-to-end software test – single dish OTF simultaneous mapping of the Moon with two antennas

Recent CSV Result – Band 7

Figure 2. ALMA test data in Band 7 of the molecular outflow in NGC1333. The red and blue contours show the high velocity CO(3-2) emission while the 0.85mm continuum emission is shown as greyscale.

Recent CSV Result – Band 9

Difficult high frequency observations
Band 9 map of NGC253, cont.+ CO 6-5 contours
Similar results for Band 6 and Band 7

ALMA test data – not for scientific use

Integrated CO 6-5 spectrum (uncalibrated)

Overall ALMA Timeline

1990's2001

200420072008

2009

20112013

Chajnantor site and meteorology testing Europe, North America and East Asia agree to work towards a unified project **Beginning of construction** Arrival of first antennas in Chile Arrival of antenna transporters in Chile Start of ALMA AIV, 1st antenna transport, Acceptance of 1st ALMA antenna Move of three antennas to 5000m Phase closure with three antennas at Chajnantor Early Science with 16 antennas Full science operations

ALMA in 2012/13

