The ALMA Observing Tool

Andy Biggs
ALMA Regional Centre, ESO

Introduction/Concepts

Phases of Proposal Submission

- Requesting ALMA time has two phases
 - Phase I: Proposal submission
 - Phase II: Submission of observing program
- Observing Tool (OT) is used for both
 - Fill in usual PI/co-I, etc. information
 - Attach scientific/technical justification (single PDF)
 - Define <u>Science Goals</u>
 - Submit!
 - If awarded time, generate <u>Scheduling Blocks</u> from Science Goals and submit

What is a Science Goal?

- Scientific requirements of the observations
- A user must enter:
 - Science targets (including mapping area, velocities)
 - Spectral line and/or continuum frequencies
 - Angular resolution, largest angular scale
 - Required sensitivity (NOT TIME!)
- Output (Scheduling Block) contains
 - Everything needed to run the observation!

What is a Science Goal?

- Scientific requirements of the observations
- A user must enter:

No detailed knowledge of radio astronomy or interferometry should be necessary!

- Array configurations
- Time on source
- Calibration sources and strategy

What is a Scheduling Block?

- A self-contained definition of an observation
 - Generated from the Science Goal automatically
 - Each will last 30-40 minutes i.e. repeated if necessary
- It contains:
 - Source information (science targets + calibrators)
 - Spectral setup
 - Observing parameters
 - Time on source, cycle times, calibration tolerances
 - The name of an observing script
 - E.g. StandardInterferometry.py this does the work!
- A user will not normally interact with an SB!

- Expert users can edit SBs

 - and create arbitrarily
 - complicated setups

What you don't ask for...

- Time on source
 - OT will report an estimated time based on likely weather
 - Observations will proceed until sensitivity is reached
 - Additional time can be requested
 - (u,v) coverage at Cycle 0 is relatively poor
 - Must justify in proposal
- Calibration sources
 - The observatory will provide all necessary calibration
 - Choose "system-defined" calibration (the default)
 - Own calibrators can be requested
 - Must justify in proposal!

Implementation

- The OT is a Java application
 - Java 6 must be installed on your computer!
 - Now ship with built-in Java (for Linux only at the moment)
- Download and run locally
 - Web Start (recommended) and tarball versions
- Internet connection required intermittently
 - PI/co-I information from user database
 - Source catalogues and image servers
 - Spectral line catalogues
 - Submission!

A guide to the OT's layout

Project navigation

- Navigate through project using the Project Tree
- Content of Editor panel will change depending on which "node" you are in
- Two tabs
 - Proposal (Phase I)
 - Program (Phase II)
 - Not visible during Phase I

Editor tabs

- Three kinds of editor are available
 - Forms
 - Basic textual input always available
 - Name reflects which node in the Project Tree is currently selected
 - Spectral
 - Visualiser tool only available with Spectral Setup
 - Spatial
 - Visualiser tool only available with Spatial Setup
- Spatial/spectral editors also include the Forms editor
 - Can make these views the default in Preferences

Spatial Visual Editor

- Downloads and displays an image of the sky
 - Image servers include DSS, 2MASS, NVSS, FIRST...
 - Local image files (FITS) can also be displayed
 - Galactic coordinates not yet supported
- Rectangular mapping regions can be defined
 - Mosaic patterns are calculated and displayed
 - Maximum 50 pointings for Cycle 0
- Other required information (also via Forms editor)
 - Coordinate and velocity information
 - Source properties (peak flux density, polarization, line width)

Spatial Visual Editor

Spectral Visual Editor

- User defines spectral windows (also in Forms editor)
 - OT calculates a tuning solution automatically
 - Spectral windows and solution are shown in SVE
 - Sidebands and LO1
- Spectral Visual Editor also displays
 - Atmospheric transmission
 - Other spectral lines...
- Feedback includes
 - Textual warnings if solution cannot be found
 - Sidebands change colour (yellow to grey)

Spectral Visual Editor

Where can you put your lines?

- For Cycle 0, 4 spectral windows are allowed
 - Must have the same bandwidth and resolution
 - 21 combinations of bw and resolution are available
- The spws must fit inside the sidebands
 - Width and separation of sidebands differs between bands
- Bands 3, 6 and 7 have a specific restriction
 - 2 spws in each sideband or all in the same sideband
 - 3 in 1 sideband and 1 in the other is not allowed
- The OT knows about all these restrictions!

Spectral Line Picker

- The OT's interface to NRAO's Splatalogue
 - Online search of 5.8 million lines
 - The OT has a smaller internal version
- Lines can be filtered and sorted e.g. by
 - Name (text search with wildcards)
 - Strength
 - Maximum upper state energy
 - Location (hot cores, comets, dark clouds, etc.)
 - Sideband (do the lines all fit? EXPERIMENTAL!)

Spectral Line Picker

Calibrator Selection Tool

- Shouldn't normally be required!
 - ALMA will select appropriate calibrators
- Two kinds of calibrator definition
 - Dynamic
 - Define a cone search based on position, radius, flux, etc.
 - ALMA catalogue is searched during observations
 - Query can be tested in OT using current ALMA catalogue
 - Fixed
 - Define an actual source e.g. 3C 273

Calibrator Selection Tool

Control and Performance

- Constrain time and configurations here
 - Two Cycle-0 configurations (125 and 400-m baselines)
- OT reports
 - Representative frequency (sets opacity and thus time)
 - Max. angular resolution of each configuration (suggestions)
 - Field of view (will your source "fit"?)
- User must enter
 - Desired angular resolution (choose from above)
 - Desired sensitivity and associated bandwidth
 - Common choices for bandwidth are provided
 - Can also choose a user-defined value

Control and Performance

Control and Performance		
Representative Frequency	212.91835 GHz 🕶	?
Antenna Beamsize (λ/D)	12m24.2 arcsec	
Early Science Extended Configuration: Max Baseline(L) and corresponding beam size(λ/	400.0 m 0.7 arcsec	
Early Science Compact Configuration: Max Baseline(L) and corresponding beam size(\(\lambda\)	125 0 m 2 3 arcsoc	
Desired Angular Resolution	0.7	
Largest Angular Scale of source	Point Source Extended Source	
Desired Sensitivity per Pointing	1.00000 mJy ▼ equivalent to 60.68906 mK ▼	
Bandwidth used for Sensitivity	FinestResolution Frequency Width 15.625 MHz	
	Sensitivity Calculator Time Estimate	
Does your setup need more time than is indicated by the time estimate?	○ Yes No	
Is this observing time constrained (occultations, coordinated observing,)?	○ Yes No	
ACA Use: (ACA Not yet available)		

Sensitivity calculator is available for experimentation

Time Estimate will report how long observation will take (including calibration!)

Proposal Submission

- When ready, validate your proposal
- **~**
- OT will check that all necessary information is present
- Errors will appear in Feedback panel
- A project cannot submit without validating
 - Submission server will validate if you don't!
- For your records...
 - Email will acknowledge submission
 - Printable summary of proposal can be produced
- OT will ask you to save to disk at this point
 - Project code assigned at this point

Proposal resubmission

- Resubmission is possible up to the deadline
 - Proposal can be retrieved from archive or from disk
- Things to be aware of
 - Your previous submission is overwritten
 - You can change almost every detail still overwrites
 - A version saved before submission is a new submission
- OT will warn you about these dangers
 - e.g. new status panel

Usage tips

- The OT shows a <u>lot</u> of information
 - Running it in full-screen mode is recommended
- Panels can be hidden
 - Use the arrows in the corner of each panel
- Various default settings can be changed
 - Preferences dialogue is available through the File menu
- Extensive built-in help is available
 - Help menu (User Manual and Reference Manual)
 - Contextual help (Question Mark buttons)
 - Plus external videos and Quickstart guide (Science Portal)

Known Issues

- A few bugs and features have been identified
 - None stop you doing anything legitimate!
 - Access through OT Troubleshooting page in Science Portal
 - This list will be added to as they are found
- A patched OT version will probably be issued
 - The OT will warn you when a new version is available
 - Web Start will automatically fetch this
- The ALMA Archive doesn't open until 1 June
 - Submission not possible until then!