Calibration and imaging with ALMA

Frédéric Gueth

IRAM Grenoble

1

ALMA calibration

Atmospheric Phase Correction :

- either by Fast Switching
- \bullet or by Water Vapor Radiometry at 183 GHz
- \bullet or (in some cases) by Self-Calibration
- \bullet or a combination

Accurate Pointing Calibration :

- Re-pointing every 30 minutes
- \bullet Goal 0.6" i.e. beamwidth/30 at 350 GHz...
- \bullet Compare to 2", i.e. beamwidth/10 at 230 GHz for PdBI

Focus :

• High sensitivity allow frequent re-focus

ALMA calibration

Accurate Amplitude Calibration :

- Excellent site
- High surface accuracy antennas
- High pointing accuracy
- High sensitivity
- \bullet Goal 1–2 % at millimeter wavelengths, 3–5 % at sub-mm

Bandpass Calibration :

- \bullet No common noise source (100 % correlated signal) because the samplers are in the antennas
- Not as easy than at PdBI
- May be really difficult at sub-mm wavelengths
- We are working on it...

Imaging: what's new with ALMA

Number of baselines :

• 64 antennas \longrightarrow 2016 instantaneous baselines

A complete imaging instrument :

- ALMA = 64 12–m antennas
- 4 antennas equipped for single-dish observations \longrightarrow zero spacing
- ACA = 12 7–m antennas $(?) \longrightarrow$ short spacings

$\mathsf{ALMA}/\mathsf{ACA}\ \mathsf{simulations}$

The simulator :

- ALMA/ACA/SD imaging calibrator
- Implemented in (and distributed with) GILDAS

Inputs :

- Source model
- \bullet Source size \longrightarrow number and location of mosaic fields automatically found
- Hour angle range to be observed
- Array configurations (incl. the real ones!)
- Observing frequencies

ALMA+ACA Simulation (email: alma-simulation@iram.fr)			
GO ABOR	रा		HELP
LOAD	COMPUTE	COMPARE DISPLAY	EXPERT
Input model file m51ha.gdfĭ̆			
Output directory name 👔			
Simulation kind	A11		Choices
Observation Setup	SHOW SOURCE	Parameters	Help
Configuration Setup	SHOW CONF	Parameters	Help
Pointing Errors	SHOW POINT	Parameters	Help
Amplitude conditions	SHOW AMP	Parameters	Help
Phase conditions	Show Phase	Parameters	Help
Deconvolution setup	COMPUTE	Parameters	Help
Display results	DISPLAY	Parameters	Help
Expert setup	EXPERT	Parameters	Help
File location	SETUP	Parameters	Help

(Parameters)				
Source				
Change Declination ?	TYes			
New declination	-23ĭ			
Change image size ?	T Yes			
New image size	55 55 <u>ĭ</u>			
Mosaic	definition			
Mosaic size (arcsec)	55 55 <u>ĭ</u>			
Circular or rectangular shape ?	T Yes			
SD sampling parameters				
Number of points per beam	3			
Grid position	Centered			
Frequency				
Observing frequency (GHz)	230 <u>ĭ</u>			
Bandwidth (MHz)	8000 <u>ĭ</u>			
Observing time				
ALMA hour angle range	-0.15 0.15			
ACA hour angle range	-0.6 0.6ĭ			
SD (on+off) integration time (hour)	1.2			
Go	ismiss			

$\mathsf{ALMA}/\mathsf{ACA}\ \mathsf{simulations}$

Visibility simulation :

- Pointing errors
 - Thermal
 - Wind
 - Both
- Errors on amplitude calibration
- Atmospheric phase noise (phase screen)
- Several calibration schemes
- Pointing errors associated to dynamic (anomalous) refraction

$\mathsf{ALMA}/\mathsf{ACA}\ \mathsf{simulations}$

Deconvolution :

- Mosaic deconvolution as standard method (CLEAN)
- Joint (ALMA–ACA–SD) deconvolution
- \bullet Hybridization in the uv plane

Results analysis :

- Comparison with input model in the image plane
- \bullet Comparison with input model in the uv plane
- Fidelity estimators

Atmospheric phase model

Model:

- 2-D screen generated in the Fourier plane (statistical properties correct)
- Elevation dependence as $\sqrt{\text{Air} \text{mass}}$

ALMA

11

Atmospheric phase model

Model :

- 2-D screen generated in the Fourier plane (statistical properties correct)
- Elevation dependence as $\sqrt{\text{Air} \text{mass}}$

Dynamic (anomalous) refraction :

- Anisotropic when the wind direction is constant (observable?)
- But effect negligible compared to direct phase noise effect

Calibration schemes

- Standard calibration: continuum curve fitted through the calibrator data
- Fast switching: linear interpolation of the phase between two consecutive calibrator measurements
- Water Vapor Radiometry: a WVR is used to correct the phase in real time. Still need a subsequent phase calibration.
- WVR + FS: a WVR is used, and the last calibration phase is removed (offset)

Phase rms [rad]

Joint ALMA+ACA+SD deconvolution

A multi-scale CLEAN approach

- (1) Start with two dirty mosaics (ALMA and ACA+SD) $\,$
- (2) Selection of mosaic with highest SNR
- (3) Search for clean components using
 - Clark algorithm for the ALMA image
 - SDI algorithm for the ACA+SD image
- (4) Remove components from both images
- (5) Go to (2)
- (6) Convolve CLEAN components with the ALMA clean beam
- (7) Add weighted residuals

Hybridization in the uv plane

Combine data in the uv plane

- (1) Deconvolution of ALMA+SD
- (2) Deconvolution of ACA+SD
- (3) FFT of the two clean images
- (4) Linear combination:
 - ALMA+SD data for $\sqrt{u^2 + v^2} > 15$ m
 - ACA+SD data for $\sqrt{u^2 + v^2} < 15$ m
- (5) Inverse FFT of resulting data

Fidelities

Fidelity image :

 $fidelity = \frac{input model}{difference}$

Histogram of cumulated fidelity:

number of pixels whose fidelities are larger than a given value

Fidelity range :

fidelity range = $\frac{\max(abs(model))}{rms(difference)}$

Fourier space estimators :

the fidelity can also be computed in the uv plane

ALMA/ACA Imaging study

 $http://iram.fr/\sim alma$

ALMA/ACA Imaging study

ALMA/ACA Imaging study

Concluding remarks

- ALMA(+ACA) will provide excellent images
- ... but not perfect images
- A proper data analysis will still require to understand the image formation principles and the data processing techniques

• Simulator available for ALMA prospective studies (example: Wolf & Klahr 2002, ApJL)