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Problems when mapping an extended source

• Non-coplanar baselines problem

Solution: use appropriate algorithm if necessary
mm-interferometers: problem can be forgotten

• The largest structures are filtered out due to the lack of the short spacings

Solution: add the short spacings information

• The field of view is limited by the antenna primary beam width

Solution: observe a mosaic = several adjacent overlapping fields

• Deconvolution algorithms are not very good at recovering small- and large-scale
structures

Solution: try SDI CLEAN, Multi-Scale CLEAN, Multi-Resolution CLEAN, ...
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Short spacings
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The short spacings problem

Missing short spacings :

• Shortest baseline Bmin = 24 m at Plateau de Bure

• Projection effects can reduce the minimal baseline (to the antenna diameter d
in the best case)

• Deconvolution recovers some information (extrapolation in the uv plane)

• In any case: lack of the short spacings information

Consequence :

• The most extended structures are filtered out

• Maximal size is ∼ λ/Bmin

• The largest structures that can be mapped are ∼ 2/3 of the primary beam
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Short spacings: example
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Short spacings: example

Lack of short spacings
can introduce complex ar-
tifacts leading to wrong sci-
entific interpretation
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Obtaining short spacings

Interferometer vs. single-dish :

• An interferometer with smaller antennas (e.g. BIMA vs. PdBI) can provide
short spacings information, but still with a central hole

• A single-dish of diameter D measures all spatial frequencies from 0 to D

• The zero spacing ( = visibility at u=0 v=0 = total flux) can only be measured
by a single-dish

Optimal solution: PdBI + 30–m

• 30 > 15 −→ uniformity, even overlap, in the uv plane

• Same calibration procedures

• Same softwares

• Same program committee
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Short spacings from SD data

Bad solution :

• Combine the 30–m and the PdBI map in the image plane

Good solution :

• Combine the 30–m and the PdBI data before imaging and deconvolution −→
this drastically improves the deconvolution

Method :

1. Use the 30–m map to simulate what would have observed the PdBI, i.e. extract
pseudo-visibilities

2. Merge with the interferometric visibilities

3. Process (gridding, FT, deconvolution) all data together
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Extracting visibilities

SD map = SD beam ∗ Sky

Int. map = Dirty beam ∗ (Int beam × Sky)

• Image plane Gridding of the single-dish data

• Image plane Extrapolation to zero outside the mapped region, with a function twice
broader than the single-dish beam

• uv plane Correction for single-dish beam and gridding function

• Image plane Multiplication by interferometer primary beam

• uv plane Extract visibilities up to D − d
• uv plane Apply a weighting factor before merging with the interferometer data

Short spacings 9



Spatial frequencies: measurements

• A single-dish of diameter D is sensitive to spatial frequencies from 0 to D

• An interferometer baseline B is sensitive to spatial frequencies from B − d to B + d
(d = antenna diameter)
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Spatial frequencies: what can be extracted from SD data

Single-dish data =⇒ interferometer pseudo-visibilities from 0 to D − d
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Weighting factor

Weighting factor to SD data :

• Produce different images and dirty beams

• Same result after deconvolution, if methods were perfect

• Methods are not perfect, noise −→ weight to be optimized

• Usually, it is better to downweight the SD data (as compared to natural weight)

Optimal weight: proven good criteria

• Adjust the weights so that there is almost no negative sidelobes while keeping
the highest angular resolution possible

• Adjust the weights so that the weight densities in 0–D and D–2D areas are
equal −→ mathematical criteria
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GILDAS implementation: user interface
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Example

Gueth et al. 1997
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Example
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Mosaics
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Interferometer field of view

Measurement equation of an interferometric observation:

F = D ∗ (B × I) + N

F = dirty map = FT of observed visibilities
D = dirty beam (−→ deconvolution)
B = primary beam
I = sky brightness distribution
N = noise distribution

• An interferometer measures the product B × I
• B has a finite support −→ limits the size of the field of view

• B is a Gaussian −→ primary beam correction possible (proper estimate of the
fluxes) but strong increase of the noise
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Primary beam width

Aperture function 
 Voltage pattern

?
y y |·|2

Transfert function T (u, v) 
 Power pattern B(`,m)
= Primary beam

Gaussian illumination =⇒ to a good approximation, B is a Gaussian of 1.2λ/d FWHM

Plateau de Bure
d = 15 m

Frequency Wavelength Field of View
85 GHz 3.5 mm 58′′

100 GHz 3.0 mm 50′′

115 GHz 2.6 mm 43′′

215 GHz 1.4 mm 23′′

230 GHz 1.3 mm 22′′

245 GHz 1.2 mm 20′′
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Mosaicing with the PdBI

Mosaic :

• Fields spacing = half the primary beam FWHM i.e. one field each 11′′ at
230 GHz

• Observations with two receivers: choice of the spacing for one frequency −→
under- or oversampling for the other frequency

• Mosaic at 3 mm −→ no mosaic at 1 mm

Observations :

• Fields are observed in a loop, each one during a few minutes −→ similar
atmospheric conditions (noise) and similar uv coverages (dirty beam,
resolution) for all fields
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Mosaicing with the PdBI

Size of the mosaic :

• Observing time to be minimized, uv coverage to be maximized −→ maximal
number of fields ∼ 20

Calibration :

• Procedure identical with any other Plateau de Bure observations (only the
calibrators are used)

• Produce one dirty map per field

Short spacings :

• Visibilities from 30–m data are computed and merged with Plateau de Bure
data for each field −→ process as a normal mosaic
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Mosaic reconstruction

• Forgetting the effects of the dirty beam:

Fi = Bi × I + Ni

• This is similar to several measurements of I , each one with a “weight” Bi

• Best estimate of I in least-square formalism (assuming same noise):

J =

∑
i
Bi Fi∑
i
B2
i

• J is homogeneous to I , i.e. the mosaic is corrected for the primary beam
attenuation
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Mosaic deconvolution

• “Linear” mosaicing: deconvolution of each field, then mosaic reconstruction

“Non-linear” mosaicing: mosaic reconstruction, then global deconvolution

• The two methods are not equivalent, because the deconvolution algorithms are
(highly) non-linear

• Non-linear mosaicing gives better results

• sidelobes removed in the whole map

• better sensitivity

• estimate of the missing spacings (Ekers & Rots’s analysis)

• Plateau de Bure mosaics: non-linear joint deconvolution based on CLEAN
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Noise distribution

In practice: truncated primary beam (Bmin = 0.1− 0.3) to avoid noise propagation

Mosaic: J =

∑
Bt
i Fi∑
Bt
i
2

=

∑
Bt
i

[
Di ∗ (Bi I) + Ni

]
∑

Bt
i

2

Noise distribution: N =

∑
Bt
i Ni∑
Bt
i

2

Noise rms: σJ = σ
1√∑
Bt
i

2

The noise depends on the position and
strongly increases at the edges of the
field of view
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Noise distribution
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Mosaic CLEAN

Signal-to-noise distribution:

H =
J

σJ
=

1

σ

∑
Bt
i

[
Di ∗ (Bi I) + Ni

]
√∑

Bt
i
2

Mosaic CLEAN :

• J has a non-uniform noise level

• It is safer to search for CLEAN components on H

• Find positions of components on H

• Correct J
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Mosaic CLEAN

(1) Find CLEAN component: position of the maximum of H and intensity of J (even if
it is not the maximum of J)

(2) Remove corresponding point source from J and H

Jk+1 = Jk −

∑
Bt
i

[
Di ∗

[
Bi δk

]]
∑

Bt
i

2

Hk+1 = Hk −

∑
Bt
i

[
Di ∗

[
Bi δk

]]
σ
√∑

Bt
i

2

Mosaics 26



Mosaic CLEAN

(3) Identify I and the sum of CLEAN components

(4) Clean map:

M = C ∗
∑

δk + Jkmax

C = clean beam
Jkmax

= final residuals

• The algorithms Clark, SDI, and MX can be adapted in a similar way: find position
of CLEAN components on H , and correct J

• This is not feasible for MRC – because this method relies on a linear measurement
equation, which is not the case for mosaics
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GILDAS implementation

• Create a dirty map for each field (task UV MAP), with the same phase center
(UV SHIFT = YES)

• Task MAKE MOSAIC combines the fields to produce the dirty mosaic. Input
parameters: primary beam width and truncation level (Bmin ∼ 0.1− 0.3)

• Deconvolution has to be done with MAPPING. Implemented deconvolution methods:
HOGBOM, CLARK, SDI

• Mosaic mode switched on when loading a mosaic. Same parameters as normal
deconvolution: windows, maximal number of iterations,...

• Clean beam is computed from the first field

• Mosaic has to be truncated at some value of σJ . Default: truncation at
σJ/σ = 1/

√
Bmin
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Mosaics and short spacings
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Mosaics and short spacings

• Effect of missing short spacings more severe on mosaics than on single-field images:

• Extended structures are filtered out in each field

• Lack of information on an intermediate scale as compared to the mosaic size

• Possible artefact: extended structures split in several parts

• In most cases cases, adding the short spacings is required
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Mosaic and short spacings
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Mosaics and short spacings

• Effect of missing short spacings more severe on mosaics than on single-field images:

• Extended structures are filtered out in each field

• Lack of information on an intermediate scale as compared to the mosaic size

• Possible artefact: extended structures split in several parts

• In most cases cases, adding the short spacings is required

• However, mosaics are able to recover part of the short spacings information (Ekers
& Rots’s analysis)
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Image formation in a mosaic

Ekers & Rots’s analysis: ideal “on-the-fly” mosaic: (u, v) fixed, (`p,mp) continuously
modified, visibility Vmes monitored

• Phase center = Pointing center = (0, 0)

Vmes(u, v) = [FT(B × I)](u, v) =

∫∫ +∞

−∞
B(`,m) I(`,m) e−2iπ(u`+vm) d` dm

• Phase center (0, 0) 6= Pointing center (`p,mp)

Vmes(u, v, `p,mp) =

∫∫ +∞

−∞
B(`− `p,m−mp) I(`,m) e−2iπ(u`+vm)︸ ︷︷ ︸

F(u, v, `,m)

d` dm
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Image formation in a mosaic

• Vmes can be written as a convolution product:

Vmes(u, v, `p,mp) = B(`p,mp) ∗ F(u, v, `p,mp)

• Fourier transform of Vmes with respect to (`p,mp):

[FTp(Vmes)] (up, vp) = T (up, vp)V (up + u, vp + v)

• T = FT(B) = transfer function T (up, vp) = 0 if
√
u2
p + v2

p > d

• V = “true” visibility = FT(I)

• F = I×(phase term) ⇒ FT(F) = V at a shifted point
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Image formation in a mosaic

• For
√
u2
p + v2

p < d:

V (up + u, vp + v) =
[FTp(Vmes)] (up, vp)

T (up, vp)

• The measurements were done at (u, v), but the “true” visibility can be recovered in
a disk of radius d, centered in (u, v)

• Redundancy of the adjacent pointings allows to estimate the source visibility at
points which were not sampled!
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Interpretation

• Baseline B, antenna diameter d =⇒ interferometer sensitive to all spatial
frequencies from B − d to B + d =⇒ an interferometer measures a local average of
the “true” visibilities

• Measured visibilities: Vmes = FT(B × I) = T ∗ V

• Pointing center 6= Phase center: phase gradient across the antenna aperture

Vmes(u, v) =
[
T (u, v) e−2iπ(u`p+vmp)

]
∗ V (u, v)

• Combination of measurements at different (`p,mp) should allow to derive V −→
recovery algorithm is a Fourier transform
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Consequence: short spacings

• Mosaicing can recover information in a disk of radius d around each sample in the
uv plane

• Minimal baseline Bmin −→ Recovery down to Bmin − d

• Mosaics are able to recover part of the short spacings information

• In practice:

• Noisy data, rapidly decreasing function T −→ expect only gain of d/2

• Analysis not used: instead, direct reconstruction of the mosaic + deconvolution
−→ more complex properties
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Consequence: image quality

• Mosaicing can recover information in a disk of radius d around each sample in the
uv plane! Mosaicing can recover part of the short spacings information!

• The resulting image should be wonderful! NO!

• The image quality is not drastically improved in a mosaic because of additional
information being recovered. The “equivalent” uv coverage is denser, but the region
to be imaged is larger.

Mosaics and short spacings 38



Consequence: fields spacing

• In practice: not on-the-fly measurements, but sampling of the pointing positions

• Primary beam is a Gaussian (of 1.2λ/d FWHM) −→ large overlap between the
adjacent fields is needed

• Ekers and Rots’s analysis includes Fourier transform on a support which extends up
to ±d/λ

=⇒ same information can be recovered with pointing centers separated by λ/2 d

=⇒ optimal separation between pointing centers = half the primary beam FWHM
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