Wide-field imaging

Frédéric Gueth

IRAM Grenoble

1

IRAM mm-Interferometry School

Problems when mapping an extended source

• Non-coplanar baselines problem

Solution: use appropriate algorithm if necessary mm-interferometers: problem can be forgotten

- The largest structures are filtered out due to the lack of the short spacings Solution: add the short spacings information
- The field of view is limited by the antenna primary beam width Solution: observe a mosaic = several adjacent overlapping fields
- Deconvolution algorithms are not very good at recovering small- *and* large-scale structures

Solution: try SDI CLEAN, Multi-Scale CLEAN, Multi-Resolution CLEAN, ...

Short spacings

The short spacings problem

Missing short spacings :

- \bullet Shortest baseline $B_{\min}=24$ m at Plateau de Bure
- Projection effects can reduce the minimal baseline (to the antenna diameter d in the best case)
- Deconvolution recovers some information (extrapolation in the uv plane)
- In any case: lack of the short spacings information

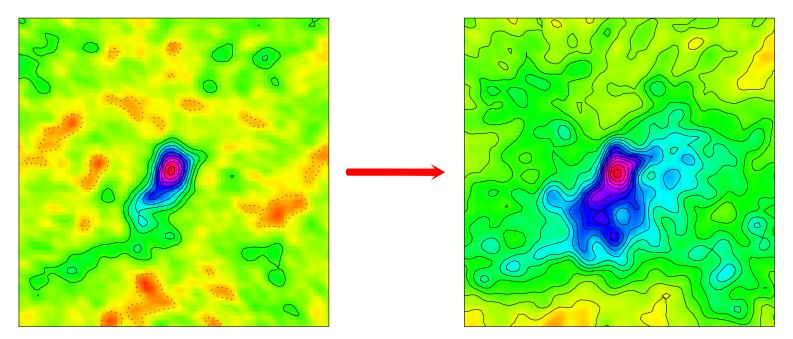
Consequence :

- The most extended structures are filtered out
- Maximal size is $\sim \lambda/B_{\min}$
- The largest structures that can be mapped are $\sim 2/3$ of the primary beam

Short spacings: example

Without short spacings

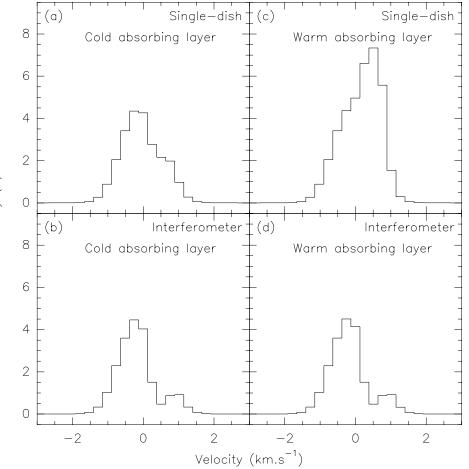
With short spacings



13CO(1-0) in the L1157 protostar

Short spacings: example

Lack of short spacings can introduce complex artifacts leading to wrong scientific interpretation



Obtaining short spacings

Interferometer vs. single-dish :

- An interferometer with smaller antennas (e.g. BIMA vs. PdBI) can provide short spacings information, but still with a central hole
- \bullet A single-dish of diameter D measures all spatial frequencies from 0 to D
- The zero spacing (= visibility at u=0 v=0 = total flux) can only be measured by a single-dish

Optimal solution: PdBI + 30–m

- $30 > 15 \longrightarrow$ uniformity, even overlap, in the uv plane
- Same calibration procedures
- Same softwares
- Same program committee

Short spacings from SD data

Bad solution :

 \bullet Combine the 30–m and the PdBI map in the image plane

Good solution :

• Combine the 30–m and the PdBI data before imaging and deconvolution \longrightarrow this drastically improves the deconvolution

Method :

- 1. Use the 30–m map to simulate what would have observed the PdBI, i.e. extract pseudo-visibilities
- 2. Merge with the interferometric visibilities
- 3. Process (gridding, FT, deconvolution) all data together

Extracting visibilities

SD map = SD beam * Sky

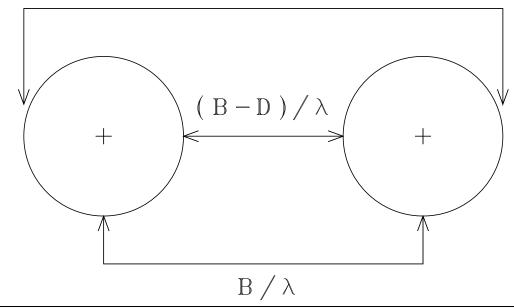
Int. map = Dirty beam * (Int beam \times Sky)

- Image plane Gridding of the single-dish data
- Image plane Extrapolation to zero outside the mapped region, with a function twice broader than the single-dish beam
- uv plane Correction for single-dish beam and gridding function
- Image plane Multiplication by interferometer primary beam
- uv plane Extract visibilities up to D d
- uv plane Apply a weighting factor before merging with the interferometer data

Spatial frequencies: measurements

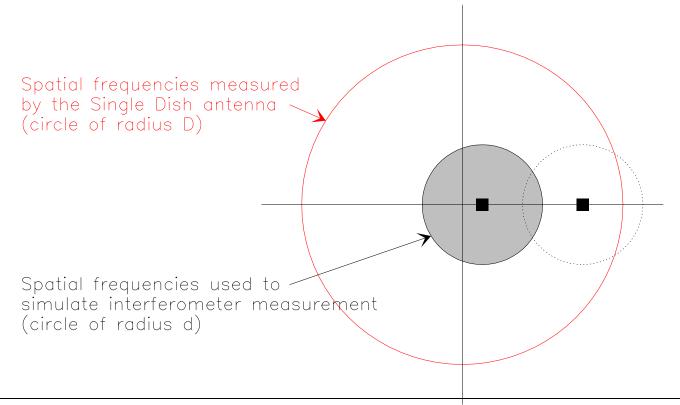
- \bullet A single-dish of diameter D is sensitive to spatial frequencies from 0 to D
- An interferometer baseline B is sensitive to spatial frequencies from B d to B + d(d = antenna diameter)

(B + D) / λ



Spatial frequencies: what can be extracted from SD data

Single-dish data \implies interferometer pseudo-visibilities from 0 to D - d



Weighting factor

Weighting factor to SD data :

- Produce different images and dirty beams
- Same result after deconvolution, if methods were perfect
- \bullet Methods are not perfect, noise \longrightarrow weight to be optimized
- Usually, it is better to downweight the SD data (as compared to natural weight)

Optimal weight: proven good criteria

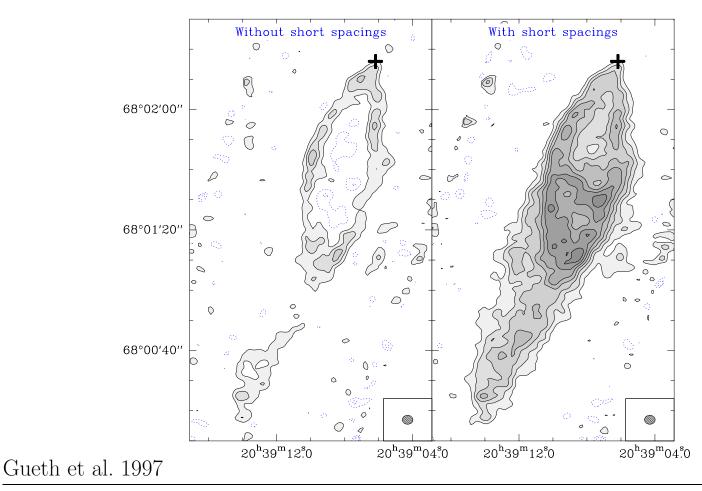
- Adjust the weights so that there is almost no negative sidelobes while keeping the highest angular resolution possible
- Adjust the weights so that the weight densities in 0–D and D–2D areas are equal \longrightarrow mathematical criteria

GILDAS implementation: user interface

	Short-spacings processi	ng		
GO ABORT			HELP	
COMPLETE PROCESSING				
Single-Dish input table (.tab)	Ĭ		File	
Interferometer uv-tables (GENERIC name)	I		File	
Output merged uv-tables (GENERIC name)	I		File	
Single-Dish data unit	ТмЬ		Choices	
SD amplitudes scaling factor	1			
SD weights scaling factor	1			
Check input data	CHECK		Help	
Create short-spacings UV tables from SD data	SHORT SPACINGS	Check parameters	Help	
Merge SD and interferometer UV tables	MERGE DATA	Check parameters	Help	
Go to mapping procedure	MAPPING		Help	

Short spacings

Example

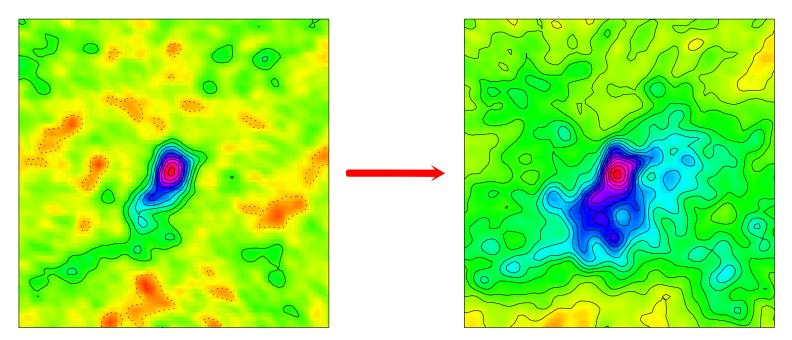


Short spacings

Example

Without short spacings

With short spacings



13CO(1-0) in the L1157 protostar

Mosaics

Interferometer field of view

Measurement equation of an interferometric observation:

 $F = D \ast (B \times I) + N$

- F = dirty map = FT of observed visibilities
- $D = \text{dirty beam} (\longrightarrow \text{deconvolution})$
- B = primary beam
- I = sky brightness distribution
- N = noise distribution
- An interferometer measures the product $B \times I$
- B has a finite support \longrightarrow limits the size of the field of view
- B is a Gaussian \longrightarrow primary beam correction possible (proper estimate of the fluxes) but strong increase of the noise

Primary beam width

Gaussian illumination \implies to a good approximation, B is a Gaussian of $1.2 \lambda/d$ FWHM

Plateau de Bure $d = 15 \text{ m}$	Frequency	Wavelength	Field of View
	85 GHz	$3.5 \mathrm{mm}$	58"
	100 GHz	3.0 mm	50"
	$115 \mathrm{~GHz}$	$2.6 \mathrm{mm}$	43"
	$215 \mathrm{~GHz}$	1.4 mm	23"
	$230 \mathrm{~GHz}$	$1.3 \mathrm{mm}$	22"
	$245~\mathrm{GHz}$	1.2 mm	20"

Mosaicing with the PdBI

Mosaic :

- Fields spacing = half the primary beam FWHM i.e. one field each 11'' at 230 GHz
- Observations with two receivers: choice of the spacing for one frequency \longrightarrow under- or oversampling for the other frequency
- \bullet Mosaic at 3 mm no mosaic at 1 mm

Observations :

• Fields are observed in a loop, each one during a few minutes \longrightarrow similar atmospheric conditions (noise) and similar uv coverages (dirty beam, resolution) for all fields

Mosaicing with the PdBI

Size of the mosaic :

• Observing time to be minimized, uv coverage to be maximized \longrightarrow maximal number of fields ~ 20

Calibration :

- Procedure identical with any other Plateau de Bure observations (only the calibrators are used)
- Produce one dirty map per field

Short spacings :

• Visibilities from 30–m data are computed and merged with Plateau de Bure data for each field \longrightarrow process as a normal mosaic

Mosaic reconstruction

• Forgetting the effects of the dirty beam:

$$F_i = B_i \times I + N_i$$

- This is similar to several measurements of I, each one with a "weight" B_i
- Best estimate of I in least-square formalism (assuming same noise):

$$J = \frac{\sum_{i} B_i F_i}{\sum_{i} B_i^2}$$

• J is homogeneous to I, i.e. the mosaic is corrected for the primary beam attenuation

Mosaic deconvolution

- "Linear" mosaicing: deconvolution of each field, then mosaic reconstruction "Non-linear" mosaicing: mosaic reconstruction, then global deconvolution
- The two methods are not equivalent, because the deconvolution algorithms are (highly) non-linear
- Non-linear mosaicing gives better results
 - sidelobes removed in the whole map
 - better sensitivity
 - estimate of the missing spacings (Ekers & Rots's analysis)
- Plateau de Bure mosaics: non-linear joint deconvolution based on CLEAN

Noise distribution

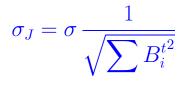
In practice: truncated primary beam $(B_{\min} = 0.1 - 0.3)$ to avoid noise propagation

Mosaic:
$$J = \frac{\sum B_i^t F_i}{\sum B_i^{t^2}} = \frac{\sum B_i^t \left[D_i * (B_i I) + N_i \right]}{\sum B_i^{t^2}}$$

Noise distribution: $N = \frac{1}{2}$

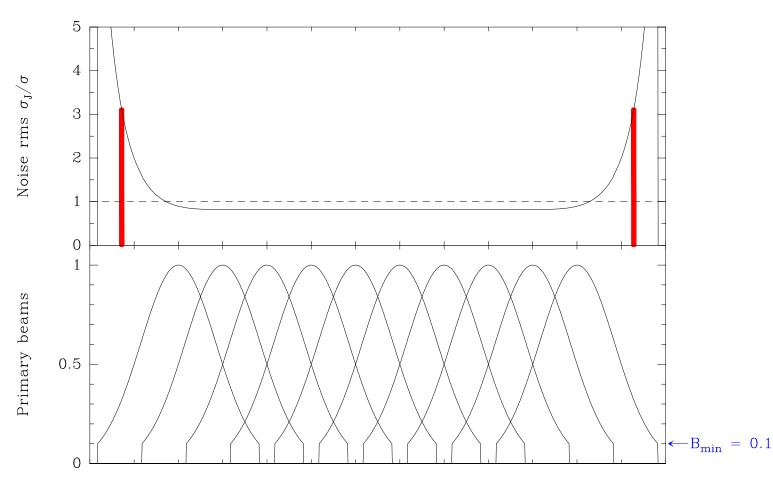
$$\frac{\sum B_i^t N_i}{\sum B_i^{t^2}}$$

Noise rms:



The noise depends on the position and strongly increases at the edges of the field of view

Noise distribution



Mosaic CLEAN

Signal-to-noise distribution:

$$H = \frac{J}{\sigma_J} = \frac{1}{\sigma} \frac{\sum B_i^t \left[D_i * (B_i I) + N_i \right]}{\sqrt{\sum B_i^{t^2}}}$$

Mosaic CLEAN :

- $\bullet~J$ has a non-uniform noise level
- \bullet It is safer to search for CLEAN components on H
- \bullet Find positions of components on H
- Correct J

Mosaic CLEAN

(1) Find CLEAN component: position of the maximum of H and intensity of J (even if it is not the maximum of J)

(2) Remove corresponding point source from J and H

$$J_{k+1} = J_k - \frac{\sum B_i^t \left[D_i * \left[B_i \, \delta_k \right] \right]}{\sum B_i^{t^2}}$$

$$H_{k+1} = H_k - \frac{\sum B_i^t \left[D_i * \left[B_i \, \delta_k \right] \right]}{\sigma \, \sqrt{\sum B_i^{t^2}}}$$

Mosaic CLEAN

(3) Identify I and the sum of CLEAN components

(4) Clean map:

$$M = C * \sum \delta_k + J_{k_{\max}}$$

C = clean beam $J_{k_{\text{max}}} = \text{final residuals}$

- The algorithms Clark, SDI, and MX can be adapted in a similar way: find position of CLEAN components on H, and correct J
- This is not feasible for MRC because this method relies on a linear measurement equation, which is not the case for mosaics

GILDAS implementation

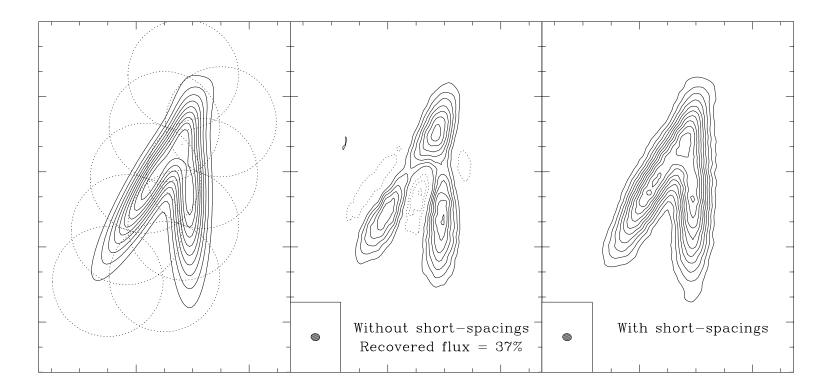
- Create a dirty map for each field (task UV_MAP), with the *same* phase center (UV_SHIFT = YES)
- Task MAKE_MOSAIC combines the fields to produce the dirty mosaic. Input parameters: primary beam width and truncation level $(B_{\min} \sim 0.1 0.3)$
- Deconvolution has to be done with MAPPING. Implemented deconvolution methods: HOGBOM, CLARK, SDI
- Mosaic mode switched on when loading a mosaic. Same parameters as normal deconvolution: windows, maximal number of iterations,...
- \bullet Clean beam is computed from the $f\!irst$ field
- Mosaic has to be truncated at some value of σ_J . Default: truncation at $\sigma_J/\sigma = 1/\sqrt{B_{\min}}$

Mosaics and short spacings

Mosaics and short spacings

- Effect of missing short spacings more severe on mosaics than on single-field images:
 - Extended structures are filtered out in each field
 - Lack of information on an intermediate scale as compared to the mosaic size
 - Possible artefact: extended structures split in several parts
 - In most cases cases, adding the short spacings is required

Mosaic and short spacings



Mosaics and short spacings

- Effect of missing short spacings more severe on mosaics than on single-field images:
 - Extended structures are filtered out in each field
 - Lack of information on an intermediate scale as compared to the mosaic size
 - Possible artefact: extended structures split in several parts
 - In most cases cases, adding the short spacings is required
- However, mosaics are able to recover part of the short spacings information (Ekers & Rots's analysis)

Image formation in a mosaic

Ekers & Rots's analysis: ideal "on-the-fly" mosaic: (u, v) fixed, (ℓ_p, m_p) continuously modified, visibility $V_{\rm mes}$ monitored

• Phase center = Pointing center = (0, 0)

$$V_{\rm mes}(u,v) = [{\rm FT}(B \times I)](u,v) = \iint_{-\infty}^{+\infty} B(\ell,m) I(\ell,m) \, {\rm e}^{-2i\pi(u\ell+vm)} \, d\ell \, dm$$

• Phase center $(0,0) \neq$ Pointing center (ℓ_p, m_p)

$$V_{\rm mes}(u,v,\ell_p,m_p) = \iint_{-\infty}^{+\infty} B(\ell-\ell_p,m-m_p) \underbrace{I(\ell,m)\,{\rm e}^{-2i\pi(u\ell+vm)}}_{\mathcal{F}(u,v,\ell,m)} d\ell \, dm$$

Image formation in a mosaic

• V_{mes} can be written as a convolution product:

$$V_{\rm mes}(u,v,\ell_p,m_p) = B(\ell_p,m_p) * \mathcal{F}(u,v,\ell_p,m_p)$$

• Fourier transform of V_{mes} with respect to (ℓ_p, m_p) :

$$[\mathrm{FT}_{\mathrm{p}}(V_{\mathrm{mes}})](u_p, v_p) = T(u_p, v_p) V(u_p + u, v_p + v)$$

- $T = FT(B) = transfer function T(u_p, v_p) = 0 \text{ if } \sqrt{u_p^2 + v_p^2} > d$
- V = "true" visibility = FT(I)
- $\mathcal{F} = I \times (\text{phase term}) \Rightarrow FT(\mathcal{F}) = V$ at a shifted point

Image formation in a mosaic

• For
$$\sqrt{u_p^2 + v_p^2} < d$$
:

$$V(u_p + u, v_p + v) = \frac{\left[\mathrm{FT}_{\mathrm{p}}(V_{\mathrm{mes}})\right](u_p, v_p)}{T(u_p, v_p)}$$

- The measurements were done at (u, v), but the "true" visibility can be recovered in a disk of radius d, centered in (u, v)
- Redundancy of the adjacent pointings allows to estimate the source visibility at points which were not sampled!

Interpretation

- Baseline *B*, antenna diameter $d \Longrightarrow$ interferometer sensitive to all spatial frequencies from B d to $B + d \Longrightarrow$ an interferometer measures a local average of the "true" visibilities
- Measured visibilities: $V_{\text{mes}} = FT(B \times I) = T * V$
- Pointing center \neq Phase center: phase gradient across the antenna aperture

$$V_{\rm mes}(u,v) = \left[T(u,v)\,\mathrm{e}^{-2i\pi(u\ell_p+vm_p)}\right] * V(u,v)$$

• Combination of measurements at different (ℓ_p, m_p) should allow to derive $V \longrightarrow$ recovery algorithm is a Fourier transform

Consequence: short spacings

- Mosaicing can recover information in a disk of radius d around each sample in the uv plane
- Minimal baseline $B_{\min} \longrightarrow$ Recovery down to $B_{\min} d$
- Mosaics are able to recover part of the short spacings information
- In practice:
 - Noisy data, rapidly decreasing function $T \longrightarrow$ expect only gain of d/2
 - Analysis not used: instead, direct reconstruction of the mosaic + deconvolution \longrightarrow more complex properties

Consequence: image quality

- Mosaicing can recover information in a disk of radius d around each sample in the uv plane! Mosaicing can recover part of the short spacings information!
- The resulting image should be wonderful! NO!
- The image quality is not drastically improved in a mosaic because of additional information being recovered. The "equivalent" uv coverage is denser, but the region to be imaged is larger.

Consequence: fields spacing

- In practice: not on-the-fly measurements, but sampling of the pointing positions
- Primary beam is a Gaussian (of $1.2\,\lambda/d$ FWHM) —> large overlap between the adjacent fields is needed
- • Ekers and Rots's analysis includes Fourier transform on a support which extends up to $\pm d/\lambda$
 - \implies same information can be recovered with pointing centers separated by $\lambda/2 d$
 - \implies optimal separation between pointing centers = half the primary beam FWHM