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17.1 Introduction

For a single-field interferometric observation, the dirty map F' is obtained by Fourier Transform of the
observed visibilities. It is related to the actual sky brightness distribution I by:

F=Dx(BxI)+N (17.1)

where D is the dirty beam, B the antenna primary beam, and N a noise distribution!. Hence, an
interferometer only measures the product B x I. B is a rapidly decreasing function, and it therefore limits
the size of the region it is possible to map. Correcting for the primary beam attenuation (i.e. dividing the
map by B) is possible, and necessary for a proper estimate of the flux densities, but it does not enlarge
the field of view, because of the noise distribution strongly increasing with the distance to the map center
after such a correction.

Due to the coupling between the receiver horn and the primary mirror of the antennas (see Chapter
1 by A. Greve), the primary beam B is, to a good approximation, a Gaussian. Its FWHM, proportional
to the ratio of the wavelength A to the antenna diameter D, can therefore be used to quantify the field of
view. Note that this size does not correspond to a clear cut of the map, but to the 50% attenuation level.
Table 17.1 gives the resulting values for the Plateau de Bure interferometer, for different frequencies. To
map regions more extended than the primary beam width, it is necessary to observe a mosaic of several

'Tn the following, we will assume an uniform noise rms, i.e. we do not take into account variation of the noise introduced
by the imaging process (see Chapter 15 by S. Guilloteau).
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Frequency Wavelength Field of View Largest structure

(GHz) (mm) () ()
85 35 58 36
100 3.0 50 31
115 2.6 43 27
215 14 23 14
230 1.3 21.5 13
245 1.2 20 12

Table 17.1: Field of view of the Plateau de Bure interferometer (15 m dishes). The two groups of frequencies
correspond to the two receivers that are currently available. The last column gives rough estimates of the
size of the largest structure which can be observed.

adjacent fields. Clearly, due to the gaussian-shape of the primary beam attenuation, these fields have to
strongly overlap to ensure a roughly uniform sensitivity over the whole mapped region.

A further complication arises from the lack of the short-spacings information in the interferometer data
set. Due to their diameter, the antennas cannot be put too close to each other, which results in a minimal
measured baseline (24 m at the Plateau de Bure). Even if projection effects reduce the effective baselines,
a central “hole” in the data distribution in the uv plane cannot be avoided. As a consequence, the extended
structures (whose visibilities are confined in a small region in the uv plane) are filtered out. The largest
structure it is possible to map with a single-field interferometric observation is thus even smaller than the
field of view, and can be very roughly estimated by the ratio of the wavelength to the minimal baseline
(Table 17.1).

17.2 TImage formation in a mosaic

Some important mosaic properties can be understood by analyzing the combination of the data directly
in the wv plane. This analysis was first proposed by [Ekers & Rots 1979]. The reader is also referred to
[Cornwell 1989]. We consider a source with a brightness distribution I(z,y), where z and y are two angular
coordinates. The “true” visibility, i.e. the Fourier Transform of I, is noted V(u,v). An interferometer
baseline, with two identical antennas whose primary beam is B(z, y), measures a visibility at a point (u,v)
which may be written as:

Vines (u, v) = //_+°° B(z,y) I(z,y) e 2im(uz +vY) gy gy (17.2)

If the observation is performed with a phase center in (z = 0,y = 0) but with a pointing center in (zp,yp),
the measured visibility (whose dependence on (zp,yp,) is here explicitly indicated) is:

Vines (U, 0, Tp, Yp) = //+OO B(z — 2p,y — yp) I(z,y) o 2im(uz +vy) g, dy (17.3)
Using the symmetry properties of the primary beam B, this last relation can be rewritten:

Vines (U, v, Tp, Yp) = B(Zp, yp) * F(u, v, Tp, yp) (17.4)
where * denotes a convolution product and the function F is defined as:

F (0,9, p) = L@y, p) e~ 207 (407 + V) (17.5)

Now, let’s imagine an ideal “on-the-fly” mosaic experiment: for a given, fixed, (u, v) point, the pointing
direction is continuously modified, and the variation of the visibility Vimes with (2, yp) can thus be
monitored. The Fourier Transform of these data with respect to (z,y,) would give (from Eq. 17.4):

[FTp(Vimes)] (up, vp) = T (up, vp) V(u + up, v + vp) (17.6)

where:
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e FT, denotes the Fourier Transform with respect to (zp,yp).
e (up,v,) are the conjugate variables to (zp,yp)-
o [FT,(Vines)] (up,vp) is the Fourier Transform of the observations.

o T'(up,vp) is the Fourier Transform of the primary beam B(z,,y,). T is thus the transfer function of
each antenna. For a dish of diameter D, T(up, v,) = 0 if (u2 +v2)1/2 > D/A.

o V(u+ up,v + vp) is the Fourier Transform of F(u, v, zp, yp) with respect to (2p,yp). Indeed, F is
the product of the sky brightness distribution (whose Fourier Transform is V) by a phase term (see
Eq. 17.5). Hence, its Fourier Transform is V' taken at a shifted point.

For , /u2 4+ v2 < D/, we can thus derive:

_ [FTp (Vines)] (up; vp)

V(w+ up, v+ vp) Ty, 0y)
p>Up

(17.7)

This relation illustrates an important property of the experiment we have considered. The observations
were performed at a given (u,v) point but with a varying pointing direction. Eq. 17.7 shows that is possible
to derive from this data set the visibility V(u + up,v +v,) at all (up, v,) which verify (u2 + v2)}/2 < D/A.
In other terms, the measurements have been done at (u,v) but the redundancy of the observations allows
to compute (through a Fourier Transform and a division by the antenna transfer function) the source
visibility at all the points of a disk of radius D/A, centered in (u,v).

Interpretation

In very pictorial terms, one can say that the adjacent pointings reinforce each other and thereby yield
an estimate of the source visibility at unmeasured points. Note however that the resulting image quality
is not going to be drastically increased: more information can be extracted from the data, but a much
more extended region has now to be mapped?. The redundancy of the observations has only allowed to
rearrange the information in the uv-plane. This is nevertheless extremely important, as e.g. it allows to
estimate part of the missing short-spacings (see below).

How is it possible to recover unmeasured spacings in the uv-plane? It is actually obvious that two
antennas of diameter D, separated by a distance B, are sensitive to all the baselines ranging from B — D
to B + D. The measured visibility is therefore an average of all these baselines: Vies is actually the
convolution of the “true” visibility by the transfer function of the antennas. This is shown by the Fourier
Transform of Eq. 17.2, which gives: Vipes = T % V. Now, if the pointing center and the phase center differ,
a phase gradient is introduced across the antenna apertures, which means that the transfer function is
affected by a phase term. Indeed, the Fourier Transform of Eq. 17.3 yields:

Vines (u,v) = [T(u,v) o—2im(uzy + pr)] * V(u,v) (17.8)

Hence, the measured visibilities are (still) a linear combination of the “true” visibilities. Measurements
performed in various directions (z,y,) give many such linear combinations. One can thus expect to derive
from this linear system the initial visibilities, in the baseline range from B — D to B + D. Eq. 17.7 just
shows that a Fourier Transform allows to do that operation.

Field spacing in a mosaic

In the above analysis, a continuous drift of the pointing direction was considered. However, the same
results can be reached in the case of a limited number of pointings, provided that classical sampling
theorems are fulfilled. We want to compute the visibility in a finite domain, which extends up to £D/A
around the nominal (u,v) point, and therefore the pointing centers have to be separated by an angle of

2We have considered observations in different directions, performed with the same uv-coverage. The analysis presented
here shows that such an experiment is somehow equivalent to a single observation of the whole source, but with a denser
uv-coverage.
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A/2D radians (see [Cornwell 1988]). In practice, the (gaussian) transfer function of the millimeter dishes
drops so fast that one can use without consequences a slightly broader, more convenient, sampling, equal
to half the primary beam width (i.e. 1.2A/2D).

Mosaics and short-spacings

As with any other measured point in the uv plane, it is possible to derive visibilities in a small region (a
disk of diameter D/)\) around the shortest measured baseline. This is the meaning of the statement that
mosaics can recover part of the short-spacings information: a mosaic will include (u, v) points corresponding
to the shortest baseline minus D/\.

In practice, however, things are more complex. First, we have to deal with noisy data. As a consequence,
it is not possible to expect a gain of D/A: the transfer function 7' which is used in Eq. 17.7 is strongly
decreasing, and thus signal-to-noise ratio limits the gain in the uv plane to a smaller value, typically D/2A
([Cornwell 1988]). This is still a very useful gain: for the Plateau de Bure interferometer, this corresponds
to a distance in the uv plane of 7.5 m/\, while the shortest (unprojected) baseline is 24 m/A. Secondly, the
analysis described above would be rather difficult to implement with real observations, which have a limited
number of pointing centers and different uv-coverages. Instead, one prefers to combine the observed fields
to directly reconstruct the sky brightness distribution. The resulting image should include the information
arising from the redundancy of the adjacent fields, among them part of the short-spacings. However, the
complexity of the reconstruction and deconvolution algorithms that have to be used precludes any detailed
mathematical analysis of the structures in the maps. For instance, the (unavoidable) deconvolution of the
image can also be interpreted as an interpolation process in the uv plane (see [Schwarz 1978] for the case
of the CLEAN algorithm) and its effects can thus hardly be distinguish from the intrinsic determination of
unmeasured visibilities that occur when mosaicing.

17.3 Mosaicing in practice

Observation and calibration

The observation of a mosaic with the Plateau de Bure interferometer and the calibration of the data
do not present any specific difficulties. We just mention here a few practical remarks:

e As shown in the previous paragraph, the optimal spacing between adjacent fields is half the half-
power primary beam width. Larger separations can be used (e.g. to map larger field of view in the
same amount of time) but the image reconstruction is not optimal in that case. Since observations
are performed with dual-channel receivers (operating at 1.3 and 3 mm), the field spacing has to be
chosen for one of the frequencies. Consequently, the mosaic observed at the other frequency is either
under- or oversampled.

e Even if this is not formally required by the reconstruction and deconvolution algorithm described
in the following section, it seems quite important to ensure similar observing conditions for all the
pointing centers. Ideally, one wants the same noise level in each field — so that the noise in the final
image is uniform — and the same uv-coverage — to avoid strong discrepancies (in terms of angular
resolution and image artifacts) between the different parts of the mosaic. In practice, the fields are
observed in a track-sharing mode, i.e. in a loop with a few minutes integration time per pointing
direction: hence, atmospheric conditions and uv-coverage are similar for all the fields.

e In most cases, a mosaic is not observed during an amount of time significantly larger than normal
projects. As the observing time is shared between the different pointing centers, the sensitivity of
each individual field is thus smaller than what would have been achieved with normal single-field
observations. Note however that the sensitivity is further increased in the mosaic, thanks to the
strong overlap between the adjacent fields (see below, Fig. 17.1).

e The number of fields, and therefore the size of the mosaic, is limited by the requirement to get good
enough sensitivity and uv-coverage for all the fields in a reasonable amount of observing time. The
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current observing mode used at the Plateau de Bure limits the maximum number of fields to about
20. Observing more fields is in principle possible, but would require (much) more observing time
and/or an other approach (e.g. mosaic of several mosaics). Note that in any case, the uv-coverage
obtained for each field is sparse as compared to normal synthesis observations. Finally, a potential
practical limitation is the disk and memory sizes of the computers, as mosaicing requires to handle
very large data cubes.

e The calibration of the data, including the atmospheric phase correction, is strictly identical with any
other observation performed with the Plateau de Bure interferometer, as only the observations of
the calibrators (quasars) are used. At the end of the calibration process, a uv table and then a dirty
map are computed for each pointing center.

Mosaic reconstruction

The point is now to reconstruct a mosaic from the observations of each field, in an optimal way in terms
of signal-to-noise ratio. For the time being, let’s forget the effects of the convolution by the dirty beam.
Each field ¢ can then be written: F; = B; x I + N;, where B; is the primary beam of the interferometer,
centered in a different direction for each observation ¢, and N; is the corresponding noise distribution. In
practice, the same phase center (i.e. the same coordinate system) is used for all the fields.

Hence, the mosaic observations can be described as several measurements of the same unknown quantity
I, each one being affected by a weighting factor B;. This is a classical mathematical problem: the best
estimate J of I, in the least-square sense, is given by:

B.
B2
2.7

(3

J= (17.9)

where the sum includes all the observed fields and o; is the rms of the noise distribution N;. (Note that in
Eq. 17.9 as well as in the following equations, ¢; is a number while other letters denote two-dimensional
distributions).

Linear vs. non-linear mosaicing

The problem which remains to be address is the deconvolution of the mosaic. This is actually the
main difficulty of mosaic interferometric observations. Two different approaches have been proposed (e.g.
[Cornwell 1993]):

o Linear mosaicing: each field is deconvolved using classical techniques, and a mosaic is reconstructed
afterwards with the clean images, using Eq. 17.9.

o Non-linear mosaicing: a joint deconvolution of all the fields is performed, i.e. the deconvolution is
performed after the mosaic reconstruction.

The deconvolution algorithms are highly non-linear, and the two methods are therefore not equivalent.
The first one is straightforward to implement, but the non-linear mosaicing algorithms give much better
results. Indeed, the combination of the adjacent fields in a mosaic allows to estimate visibilities which
were not observed (see previous paragraph), it allows to remove sidelobes in the whole mapped area, and
it increases the sensitivity in the (large) overlapping regions: these effects make the deconvolution much
more efficient.

Non-linear deconvolution methods based on the Maximum Entropy Method (MEM) have been proposed
by [Cornwell 1988] and [Sault et al 1996]. As CLEAN deconvolutions are usually applied on Plateau de
Bure data, a CLEAN-based method adapted to the case of the mosaics has been developed. The initial
idea was proposed by F. Viallefond (DEMIRM, Paris) and S. Guilloteau (IRAM), and the algorithm is
now implemented in the MAPPING software.



214 CHAPTER 17. MOSAICING

17.4 A CLEAN-based algorithm for mosaic deconvolution

The dirty mosaic

The dirty maps of each field i are computed with the same phase center (i.e. the same coordinate
system) and can thus be written:

Note that the dirty beams D; are a priori different for each pointing center, because the uv-coverages,
even if similar, are slightly different. The dirty mosaic J can then be constructed according to Eq. 17.9:

B.
>k > Bio? [Di % (Bi x I) + N;

s B > Bio”
% o"% ¢

This relation is homogeneous to the sky brightness distribution I: the mosaic is corrected for the primary
beams attenuation. In practice, a slightly modified mosaic is computed, in order to avoid noise propagation
(it makes no sense to add to the center of a field noise coming from the external, attenuated regions of an
adjacent field). For that purpose, the primary beams used to construct the mosaic are truncated to some

value, typically 10 to 30% of the maximum. The mosaic is thus defined by:

B
J_Zig_ngi_Z,.BfUz'2 [Di= (B x D) + N} (17.12)
e S 5o |

i o?

J= (17.11)

where B! denotes the truncated primary beam of the field i. This relation is the “measurement equation”
of a mosaic, connecting the observed quantity J to the sky brightness distribution I (Eq. 17.1 was the
measurement equation of a single-field observation).

Noise distribution

Due to the correction for the primary beams attenuation, the noise distribution in a mosaic is not
uniform. From Eq. 17.12, it can be written:

_ Zi Blo7% N;
> Blo?

Accordingly, the noise rms o5 depends on the position and is given by:

\/W 1
2Bl (17.14)

gy = =
Z t2 -2 /Z 12 __o
iBl O'i sz o'l.

Hence, the noise strongly increases at the edges of the mosaic, and the resulting image has thus to
be truncated (see Fig. 17.1). The non-uniformity of the noise level with the position makes it impossible
to use classical CLEAN methods to deconvolve the mosaic: the risk to identify a noise peak as a CLEAN
component would be too important. It is thus necessary to identify the CLEAN components on another
distribution. For that purpose, the “signal-to-noise”’ distribution is computed:

t —2
goo L 2Dtk

gyJ t2 2
V 2, B; o

D [D,. «(Bix I) + N,»]
ie.: H = &= (17.15)

V2. B o

N (17.13)
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Figure 17.1: One-dimensional mosaic of 10 half-power overlapping fields, with identical noise level o. Lower
panel: Normalized primary beams, truncated to Bni, = 0.1. Upper panel: Resulting noise distribution
(Eq. 17.14). The noise rms in the mosaic is roughly constant, about 20% lower than the noise of each
individual field, but strongly increases at the edges. The two thick vertical lines indicate the truncation
of the mosaic done by the algorithm at o5 = 0/+v/Bmin-

Deconvolution algorithm

The main idea of the algorithm is to iteratively find the positions of the CLEAN components on H,
and then to correct the mosaic J. The initial distributions Jy and Hy are computed from the observations
and the truncated primary beams, using Eqs. 17.12 and 17.15. The following operations have then to be
performed at each iteration k:

1. Find the position (zj,y) of the maximum of H.
2. Find the value jj of J at the position (xx,yr), whether it is the maximum of J or not.

3. Remove from J the contribution of a point-like source of intensity vji, located at (zx,yr) (v is the
loop gain, as in the normal CLEAN algorithm):

Zi Blo;? [Di * ['ij Bi(xk;yk)‘s(mk;yk)“
> Bo

d(zk,yr) denotes a Dirac peak located at (xp, yx)-

Jp = Jp—1 — (17.16)

4. Do the same for H: remove the contribution of a point-like source of intensity 7j, located at (z, yg):
Zi Bio;? [Dz‘ * ['ij Bz’(iﬂk,yk)5($k;yk)”

V2. B oy

Note that in the two last relations, the CLEAN component is multiplied by the true, not truncated,
primary beam (taken at the (zg,yy) position).

Hy = Hy_y — (17.17)
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After knax iterations, the mosaic J can thus be written:

kmax

ZiBfUi_z [Di * (Bi X [Z ’ij‘s(wk;yk)])]
= T
Zi Bf 0;2

Enough iterations have to be performed to ensure that the residual Hj__  is smaller than some user-
specified threshold (typically 1 to 3). The comparison between Eqgs. 17.12 and 17.18 shows that, within
the noise, the sum of the CLEAN components can be identified with the sky brightness distribution I. As

with the normal CLEAN algorithm, the final clean image is then reconstructed as:

J=

(17.18)

kmax

M=Cx lz Y Jk (ks Yk)

k=1

+ T (17.19)

where C' is the chosen clean beam. Note that the algorithm takes into account the dirty beams being
different, for each field, but the restoration is done using a single clean beam, which implicitly assumes
that the dirty beams have similar widths. In practice, the observing mode of mosaics with the Plateau de
Bure interferometer yields similar uv-coverages, and therefore similar dirty beams, for all the fields.

The modified CLEAN algorithms proposed e.g. by [Clark 1980] or [Steer et al. 1984] can be similarly
adapted to handle mosaics, the main idea being to identify CLEAN components on H and to correct J.
Note however that the multi-resolution CLEAN [Wakker & Schwartz 1988] cannot be directly adapted, as
it relies on a linear measurement equation, which is not the case for a mosaic.

The MAPPING software

MAPPING is a superset of the GRAPHIC software, which has been developed to allow more sophisticated
deconvolutions to be performed. For instance, it allows to choose a support for the deconvolution (clean
window) or to monitor the results of the deconvolution after each iteration. Several enhancements of
CLEAN (e.g. multi-resolution CLEAN) as well as the WIPE algorithm (see [Lannes et al. 1997]) are also
available. The deconvolution of a mosaic has to be done with MAPPING. The implemented algorithm
assumes that the noise levels in each field are similar (i.e. Vi o; = o), which is a reasonable hypothesis
for Plateau de Bure observations. In that case, the equations of the previous paragraphs are slightly
simplified: J is independent from o, and H can be written as the ratio H'/o, where H' is independent
from ¢ and is used in practice to localize the CLEAN components.

We refer to the Mapping Cookbook for a description of the MAPPING software. To deconvolve mosaics,
the following steps are performed:

o Create a uv table for each observed field. Then, run the UV_MAP task to compute a dirty map and a
dirty beam for each field, with the same phase center (variable UV_SHIFT = YES).

o The task MAKE_MOSAIC is used to combine the fields to construct a dirty mosaic. Two parameters
have to be supplied: the width and the truncation level By, of the primary beams. Three images
are produced: the dirty mosaic® (yourfile.lmv), all the dirty beams written in the same file (your-
file.beam), and a file describing the positions and sizes of the primary beams (yourfile.lobe). The
dirty maps and beams of each individual field are no longer used after this step and can thus be
removed if necessary.

o The data have to be loaded into the MAPPING buffers. This is done by the READ DIRTY yourfile.lmv,
READ BEAM yourfile.beam, and READ PRIMARY yourfile.lobe commands. The latter automati-
cally switches on the mosaic mode of MAPPING (the prompt is now MOSAIC>). From now, the
deconvolution commands HOGBOM, CLARK and SDI (for Steer-Dewdney-Ito) can be used and will ap-
ply the algorithm described above. Use the command MOSAIC to switch on or off the mosaic mode
if necessary.

3More precisely, this file contains the non normalized mosaic EBf X F;. The proper normalization (see Eq. 17.12) is
further done by the deconvolution procedures.
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o The clean beam of the final image can be specified by the user (variables MAJOR and MINOR). Other-
wise, the clean beam computed from the first field is used. To check if there are differences between

the various dirty beams, just use the FIT 4 command, which computes the clean beam for the ith
field.

o The deconvolution uses the same parameters as a classical CLEAN: support, loop gain, maximal
number of iterations, maximal value of the final residual, etc.

o In addition, two other parameters, SEARCH_W and RESTORE_W, can be supplied. Due to the strong
increase of the noise at its edges, the mosaic has to be truncated above some value of o, and these
two variables are used to define this truncation level, in terms of (o7 /o) 2. More precisely, SEARCH_W
indicates the limit above which CLEAN components have not to be searched, while RESTORE_W in-
dicates the limit above which the clean image is not reconstructed. Default values of these two
parameters (both equal to Bpin) are strongly recommended. The corresponding truncation is shown
in Fig. 17.1.

Tests of the method

Several tests of the method described in this paragraph have been performed, either with observations
(including the comparison of independent mosaics from the same source) or with simulations. They show
that very satisfactory results can be achieved with typical Plateau de Bure observations. Interestingly,
deconvolution of the same data set using MEM (e.g. the task VTESS in AIPS) seems to give worse results:
this is most probably related to the limited uv-coverage obtained with the Plateau de Bure interferometer,
as compared to typical VLA observations (MEM is known to be vulnerable when there is a relatively small
number of visibilities).

17.5 Artifacts and instrumental effects

The behaviour of the mosaicing algorithm towards deconvolution artifacts and/or instrumental effects can
be studied by the means of simulations of the whole mosaicing process. The simulations presented below
were computed with several models of sky brightness distributions. uwwv-coverages of real observations were
used (4-antennas CD configuration of a source of declination § = 68°). No noise has been added to the
simulations shown in the figures, so that pure instrumental effects can directly be seen.

Stripes

A well-known instability of the CLEAN algorithm is the formation of stripes during the deconvolution
of extended structures. After the dirty beam has been subtracted from the peak of a broad feature, the
negative sidelobes of the beam are showing up as positive peaks. The next iterations of the algorithm
will then identify these artificial peaks as CLEAN components. A regular separation between the CLEAN
components is thereby introduced and the resulting map shows ripples or stripes. [Steer et al. 1984]
proposed an enhancement of CLEAN (implemented as the command SDI in MAPPING) which prevents
such coherent errors: the CLEAN components are identified and removed in groups. As mosaics are
precisely observed to map extended sources, the formation of stripes can a priori be expected. Indeed,
the algorithm described in the previous paragraph presents this instability. Fig. 17.2 shows an example of
the formation of such ripples. To make them appear so clearly, an unrealistic loop gain (7 = 1) was used.
Interestingly, the algorithm of [Steer et al. 1984], adapted to the mosaics, does not result in these stripes,
even with the same loop gain. It seems thus to be a very efficient solution to get rid of this problem, if it
should occur. Note however that more realistic simulations, including noise and deconvolved with normal
loop gain, do not show stripes formation. This kind of artifacts seems thus not to play a significant role
in the image quality, for the noise and contrast range of typical Plateau de Bure observations. In practice,
they are never observed.
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CLARK SDI

Figure 17.2: Mosaic deconvolved with the CLARK or SDI algorithms. Deconvolution parameters were
identical (with a loop gain = 1) and contours are the same in the two images. The formation of stripes
does not occur when using the SDI algorithm.

Short-spacings

The mosaicing technique allows, at least in theory, to recover part of the short-spacings information
(see Section 17.2). In practice, however, the lack of the short-spacings cannot be fully compensated,
and thus still introduces severe artifacts in the reconstructed images. The mosaic case is actually more
complex than the single-field case, because the most extended structures are filtered out in each field, thus
introducing a lack of information on an intermediate scale as compared to the size of the mosaic. As a
consequence, a very extended emission can be split into several pieces, each one having roughly the size of
the primary beam. This effect can be very well seen on the simulation presented in Fig. 17.3. To correct
for this problem, it is necessary to add the short-spacings informations (deduced typically from single-dish
observations) to the interferometric data set. Note however that the effects of the missing short-spacings
on the reconstructed mosaic strongly depend on the actual uv-coverage of the observations, as well as on
the size and morphology of the source: the artifacts can be small or negligible if the observed emission is
confined into reasonably small regions. From this point of view, the example shown in Fig. 17.3 represents
the worst case.

In any case, CLEAN is known to be not optimal to deconvolve smooth, extended structures. In order
to partially alleviate this problem and the effects of the missing short-spacings, [Wakker & Schwartz 1988]
proposed an enhanced algorithm, the so-called multi-resolution CLEAN: deconvolutions are performed at
low- and high-resolution, and the results are combined to reconstruct an image which then accounts for
the extended structures much better than in the case of a classical CLEAN deconvolution. As already
quoted before, this algorithm cannot be applied to a mosaic, because it relies on a linear measurement
equation. A multi-resolution CLEAN adapted to mosaics has however been developed ([Gueth 1997]) and
is implemented in MAPPING. This method will not be described here.

Pointing errors

Pointing errors during the observations can of course strongly affect the images obtained by mosaicing.
The rms of the pointing errors of the antennas of the Plateau de Bure interferometer is about 3". By
comparison, the primary beam size at 230 GHz is ~22"” (Table 17.1). The pointing errors are difficult
to model precisely: they are different for each antenna, random errors as well as slow drifts occur, the
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Without short—spacings | With short—spacings
R Recovered flux = 37% - Recovered flux = 987% -
| | | | |

Figure 17.3: Left: Initial model of a very extended sky brightness distribution. Dotted circles indicate the
primary beams of the simulated observation. Middle: Reconstructed mosaic, without the short-spacings
information. Right: Reconstructed mosaic, with the short-spacings information. The contours are the
same in the two simulated observations.

amplitude calibration partially corrects them, etc. A complete simulation should therefore introduce
pointing errors during the calculation of each visibility. For typical Plateau de Bure observations, such
a detailed modeling is probably not necessary, as the final image quality is dominated by deconvolution
artifacts. To get a first guess of the influence of pointing errors, less realistic simulations were thus
performed, in which each field is shifted as a whole by a (random) quantity. Such a systematic effect most
probably maximizes the distortions introduced in the images. (Note that for a single field, the source would
simply be observed at a shifted position in such a simulation. For a mosaic, the artifacts are different,
because each individual field has a different, random pointing error. See [Cornwell 1987] for a simplified
analysis in terms of visibilities. Figure 17.4 presents typical reconstructed mosaics for different rms of the
pointing errors of the Plateau de Bure antennas. Obviously, the larger the pointing error, the worse the
image quality. With a pointing error rms of 3", reasonably correct mosaics can be reconstructed even
at 230 GHz. Clearly, care to the pointing accuracy has however to be exercised when mosaicing at the
highest frequencies.

17.6 Concluding remarks

Mosaic observations are now routinely performed with the Plateau de Bure interferometer, at both A 3 mm
and A 1.3 mm. It has proven to be a very efficient method to map extended sources, including using the
most extended configuration of the array. The number of fields are usually < 6, but can be more important
in some cases: as of the date of writing, the largest observed mosaic has 20 fields. Data processing
requires a few more operations than normal observations, but does not present any specific difficulties.
Reconstruction and deconvolution algorithms are available in the MAPPING software.
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Figure 17.4: Simulations of a 10-fields mosaic observed with the Plateau de Bure interferometer. Each
field is affected by a pointing error (see text). The corresponding rms are indicated in the lower left
(observations performed at 115 GHz) and lower right (230 GHz) corners of each panel.



