

Frédéric Gueth

**IRAM Grenoble** 

1

IRAM mm-Interferometry School 2004

- The data are now **calibrated** as best as we can
  - Caution: data are calibrated, but not perfect: phase fluctuation remains!
- Next step: produce a (multichannel) **image** by Fourier transform

 $\begin{array}{rcl} \text{Calibration} & \longrightarrow & uv\text{-table} & \longrightarrow & \text{Imaging \& Deconvolution} \\ (\text{CLIC}) & & & (\text{MAPPING}) \end{array}$ 

• Some work can/must be done directly in the *uv* plane

- data checking and editing before imaging
- analysis (model fitting, continuum subtraction, ...)

# uv tables (1)

- $\bullet~uv$  tables are used to store the calibrated data needed to produce a map
- Why this intermediate file?
  - many parameters are not needed any more at this point: atmospheric parameters, total powers, correlator setup, image side band visibilities, ...
  - data selection (e.g. with the Data quality assessment tool)
  - small files
  - **flexible data format**, fully editable in GILDAS
- A uv table is created for each line and continuum band

# uv tables (2)

- $\bullet$  GILDAS .uvt format, very similar to <code>UVFITS</code>
- Content for each visibility point:
  - 1. u in meters
  - 2. v in meters
  - 3. Scan number
  - 4. Observation date (CLASS day number)
  - 5. Time in seconds since above date
  - 6. Start antenna of baseline
  - 7. End antenna of baseline
  - 8. First frequency point: real part
  - 9. First frequency point: imaginary part
  - 10. First frequency point: weight
  - 11. Same for second frequency point,  $\ldots$

## uv table creation in CLIC (1)

```
Select correlations on NGC 2264
FIND /SOURCE NGC2264 /PROCEDURE CORRELATION
 Apply the calibrations
SET RF
             ANTENNA ON
SET PHASE
              ANTENNA RELATIVE INTERNAL ATMOSPHERE
SET AMPLITUDE ANTENNA RELATIVE
 Create the UV table
SET SELECTION LINE LSB LO1
TABLE hcn.uvt NEW /RESAMPLE 19 10 -27 2.12 V
```

## uv table creation in CLIC (2)

### • SET SELECTION LINE LSB LO1

- the table will be a line table (i.e. with more than one spectral channel)
- the lower side band data will be used
- only the first subband of the correlator: **L01**

### • TABLE hcn.uvt NEW /RESAMPLE 32 10 -27 2.12 V

- the data is **resampled** to a velocity grid of 32 channels
- the reference channel 10 correspond a to the LSR velocity -27 km/s
- the channel spacing will be 2.12 km/s

# uv table creation in CLIC (3)

- Without /RESAMPLE, all channels in the subband L01 are written with their original velocity separation
- /RESAMPLE option
  - avoid creating tables with too many channels (unused parts of correlator subbands are discarded)
  - choose the resolution that is actually needed: improves signal to noise ratio

### It is better to resample the data before imaging than after!

- Other useful option of TABLE command: /FREQUENCY to redefine reference frequency in uv table
  - if several lines were observed simultaneously
  - if exact line frequency was unknown (high-z sources...)

## uv table creation in CLIC (4)

• Continuum table:

SET SELECTION CONTINUUM DSB LO1 TO LO5 -/WINDOW 214405 214726 217476 217796 TABLE cont-1mm NEW

- Use the correlator subbands #1 to #5, DSB data, but only in two **frequency** windows
  - 214.405 to 214.726 GHz
  - 217.476 to 217.796 GHz

This is of course to **discard the line emission** of some molecules

## uv table creation in CLIC (5)

| CLIC Window interface     |                                             |  |  |  |
|---------------------------|---------------------------------------------|--|--|--|
| CONTINUE STOP? SIC Window | CLIC Help                                   |  |  |  |
| P                         | Raw data file directories                   |  |  |  |
|                           | Open raw data file                          |  |  |  |
|                           | First look                                  |  |  |  |
|                           | Standard calibration                        |  |  |  |
|                           | Data quality assessment                     |  |  |  |
|                           | Self-cal on point source                    |  |  |  |
|                           | Holography reduction                        |  |  |  |
|                           | Write a UV Table                            |  |  |  |
|                           | Prepare/write UV tables (single datafile)   |  |  |  |
|                           | Prepare/write UV tables (several datafiles) |  |  |  |

### $uv \ {\rm data} \ {\rm plots:} \ {\rm UVALL}$

• Procedure UVALL is used to do various plots:

- U, V, radius, angle, time, date, scan, number
- amplitude, phase, real, imaginary, weight

• Examples:

uv coverage (U vs. V): basic property of the observations
weight vs. scan: e.g. to look for spurious weights
amplitude vs. antenna spacing: useful if the source is strong
amplitude vs. weight: spurious high-amplitude points with non-negligible weights can cause a lot of harm in a map







Amplitude (Janskys)

# Data editing (1)

- Reminder: data selection has occured before *uv* table creation (e.g. using the Data quality assessment tool)
- Reminding problems: corrupted scans
- Data editing in uv table: remove bad points, e.g. by setting their weight to zero

### • Good practices:

- -uv plots used to look for the wrong/corrupted data
- go back to **CLIC** to do a full diagnostic (all relevant parameters are available)
- flag the data
- re-create the uv table

# Data editing (2)

- Interactive program: UV\_FLAG in MAPPING
- Tasks automatically edit the data in uv tables, e.g. to
  - flag all visibilities larger than a given flux (wrong values)
  - delete visibility points in a given time interval for a given baseline

These tasks work by setting the corresponding weight to zero  $\longrightarrow$  their action is irreversible

• Content of *uv* tables fully editable in GILDAS

DEFINE TABLE AA mytable.uvt WRITE LET AA[34,10] 2264 DELETE /VARIABLE AA







# Data editing (2)

- Interactive program: UV\_FLAG in MAPPING
- Tasks automatically edit the data in uv tables, e.g. to
  - flag all visibilities larger than a given flux (wrong values)
  - delete visibility points in a given time interval for a given baseline

These tasks work by setting the corresponding weight to zero  $\longrightarrow$  their action is irreversible

• Content of *uv* tables fully editable in GILDAS

DEFINE TABLE AA mytable.uvt WRITE LET AA[34,10] 2264 DELETE /VARIABLE AA

# Circular averaging: UV\_CIRCLE

• Each visibility has a very low signal-to-noise  $\longrightarrow$  difficult to see any signal

- must average data in uv plane
- or compute a map ( $\sim$  weighted average)
- UV\_CIRCLE averages visibilities in rings in the *uv* plane
  - only meaningful for sources with **circular symmetry**
  - the source position must coincide with the phase center, otherwise the amplitude of the visibility average on long spacings will decrease
- Output has the format of a uv table (but all v 's are zero), may be plotted with <code>UVALL</code>





## Model fitting

- Assume a **simple source model** that can be describes **analytically** with a limited number of parameters (source position, flux, sizes)
- Fit the FT of that model to the visibility data → avoid any artefact introduced by imaging/deconvolution process
- A linear combination of several source models may be used
- Task **UV\_FIT** knows
  - point source
  - circular and elliptic gaussian
  - circular and elliptic disk
  - $-\operatorname{ring}$
  - exponential and power laws

## Model fitting

For source models with a circular symmetry, the visibility function is split into a **radial dependent amplitude** and a **phase factor which depends only on the source position** 

| Parameters:                                                                                                                             | Name     | Model                                                     | Visibility                               |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------|------------------------------------------|
| $ \begin{array}{ll} x_0 & \text{RA position} \\ y_0 & \text{DEC position} \\ S & \text{Source flux} \\ b & \text{HP size} \end{array} $ | Point    | $S \delta(x-x_0,y-y_0)$                                   | $S e^{-2i\pi(ux_0+vy_0)}$                |
|                                                                                                                                         | Gaussian | $\frac{4S}{\pi b^2 \log 2} e^{-(4\log 2)\frac{r^2}{b^2}}$ | $S \ e^{-rac{\pi^2}{4\log 2} \ (bq)^2}$ |
| Variables:                                                                                                                              |          |                                                           |                                          |
| $\begin{array}{ll} x,y & \text{sky position} \\ r & \sqrt{(x-x_0)^2 + (y-y_0)^2} \end{array}$                                           | Disk     | $\frac{4S}{\pi b^2}$ where $ r  < b$                      | $2Srac{J_1(\pi bq)}{\pi bq}$            |
| u, v projected spacing                                                                                                                  |          |                                                           |                                          |
| $q \qquad \sqrt{u^2 + v^2}$                                                                                                             | Ring     | $\frac{S}{2\pi b} \delta(r-b/2)$                          | $SJ_0(\pi bq)$                           |

|                              | UV_FIT parameters |         |
|------------------------------|-------------------|---------|
| First channel                | q                 |         |
| Last channel                 | ď                 |         |
| UV range(min, max) (meters)  | 0 500 <u>ĭ</u>    |         |
| Number of Functions (1 or 2) | 1                 |         |
| Function 1:                  | POINT             | Choices |
| Parameters                   | 000000            |         |
| Starting range               | 000000            |         |
| numb. of starts              | 0 0 0 0 0 0       |         |
| Subtract function            | II No             |         |
| Function 2:                  |                   | Choices |
| Parameters                   | 000000            |         |
| Starting range               | 000000            |         |
| numb. of starts              | 0 0 0 0 0 0       |         |
| Subtract function            | Li No             |         |
| Go                           | Dismiss Help      |         |







Figure 5: Real part of the CO(1 0) continuum visibilities observed at the IRAM Plateau de bure Interferometer after applying a self-calibration procedure and Mars continuum visibilities model (red points)

### Model fitting: DISK (Mars)

### Model fitting: POINT SOURCE

Multi-channel point source fit to the Orion SiO maser:



## Model fitting: POINT SOURCE

### Multi-channel point source fit to the Orion SiO maser:



## Model fitting: POINT SOURCE flux measurement

- Possible **bias**: decorrelation from residual phase noise (e.g. on long baselines) will decrease the flux this is the radio **seeing**
- Solution: fit a Gaussian (or compute a map)



### Model fitting

I-UV\_FIT, 420 data points for channel 1 I-UV\_FIT, Starting minimization on channel 1 Velocity= .0 I-UV\_FIT, Starting from .00000E+00 .00000E+00 2.0000 r.m.s.= .7263 Jy. POINT R.A. = -.01289 ( .02275) 20:15:28.7089 POINT DEC. = -.06380 ( .01770) 37:10:59.6262 POINT FLUX = 2.05698 (...01754) S-UV\_FIT, Successful completion I-UV\_FIT, 420 data points for channel 1 I-UV\_FIT, Starting minimization on channel 1 Velocity= .0 I-UV\_FIT, Starting from .00000E+00 .00000E+00 2.0000 1.0000 r.m.s.= .7256 Jy.  $C_GAUSS R.A. = -.01276 ( .02280) 20:15:28.7089$ C\_GAUSS Dec. = -.06363 ( .01783) 37:10:59.6264 C\_GAUSS Flux = 2.09275 ( .03266)  $C_{GAUSS}$  F.W.H.P. = .68809 ( .26371)

S-UV\_FIT, Successful completion

### Continuum source subtraction

It is better to **subtract the continuum in the** *uv* **plane** to avoid error amplification due to the **non-linearity of the deconvolution** 

- To subtract a point source at the phase center in the uv data: simply subtract a real number (the source flux) from all visibilities
- The task  ${\tt UV\_SUBTRACT}$  subtracts a time-averaged continuum uv table from a spectral line table observed simultaneously
  - If the source to be subtracted is too complex, the time averaging (needed to avoid increasing the noise level in the resulting table), may affect the structure of the subtracted continuum image
- The task  $UV\_MODEL$  can be used to build a uv table (from a model or another image) with the same uv coverage as the observations

## Spectra of a point source

- Just compute a data cube and extract a spectrum
- Point source  $\longrightarrow$  visibilities must be independent on baseline
  - amplitude = source flux
  - phase = zero
- Just sum all visibilities!
- CLIC can write spectra that can then be read by CLASS
- This is implemented in "self-calibration" procedure (often used for line absorption in spectra of strong quasars)
- Caution: only meaningful for a point source located at the phase center

## MAPPING: Interferometric UV operations menu

| UV actions control panel |          |                     |      |
|--------------------------|----------|---------------------|------|
| GO                       | ABORT    |                     | HELP |
| Generic name             | Ĭ        |                     |      |
| UV Clip                  | UV_CLIP  | UV_CLIP parameters  | Help |
| UV Plots                 | UVALL    | UVALL parameters    | Help |
| UV_SHIFT                 | UV_SHIFT | UV_SHIFT parameters | Help |
| UV fit(SLATEC)           | UV_FIT-S | UV_FIT parameters   | Help |
| Plotting UV fits         | PLOTFIT  | PLOTFIT parameters  | Help |

uv\_applyphase uv\_ascal uv atm uv\_average uv\_cal uv\_ccmodel uv\_cct uv\_center uv\_circle uv\_clip uv\_compress uv\_cuts

uv dft uv\_extract uv\_fidelity uv\_fit-s uv\_flag uv\_fmodel uv\_gain uv\_hanning uv\_hybrid uv\_list uv\_map uv\_mcal

uv\_merge uv\_mflag uv\_model uv\_mult uv\_noise uv\_observe uv\_pointing uv\_selfcal uv\_shift uv\_short uv\_single uv\_sinusphase

uv\_solve uv\_sort uv\_splitfield uv\_stat uv\_subtract uv\_table uv\_timeaverage uv\_timebase uv\_track uv\_track uv\_track\_phase uv\_zero