

PdBI data calibration

Frédéric Gueth

IRAM Grenoble

1

IRAM mm-Interferometry School 2006

PdBI data processing

(1) What did happen at the Plateau

- Instrument calibrated
 - pointing, focus
 - -antenna positions $^{\boldsymbol{*}}$
 - delays
- Raw data are writen in an .ipb file
- Calibration applied on-site:
 - **IF bandpass** (measured on noise diode)
 - **atmospheric absorption** (\longrightarrow unit = Kelvin, not counts) *
 - real-time atmospheric phase correction
- * can be corrected/modified off-line if necessary

PdBI data processing

(2) Off-line data calibration

- Four main steps
 - RF bandpass
 - phase fluctuations vs. time
 - absolute flux calibration
 - amplitude fluctuations vs. time
- Off-line calibrations are stored in a **.hpb file**

(3) After the data calibration: imaging

 $\begin{array}{rcl} \text{Calibration} & \longrightarrow & uv\text{-table} & \longrightarrow & \text{Imaging \& Deconvolution} \\ (\text{CLIC}) & & & (\text{MAPPING}) \end{array}$

GILDAS

- **Data reduction package for millimeter astronomy** (interferometer and single-dish)
- Developed at IRAM and Observatoire de Grenoble
 - MPIfR, IEM-CSIC, Observatoire de Bordeaux, LERMA
- Collection of software sharing the same environment and scripting language (SIC)
 - **GREG** Graphical library, image manipulation
 - **CLASS** Single-dish spectra calibration
 - **CLIC** PdBI calibration
 - **MAPPING** PdBI imaging

http://www.iram.fr/IRAMFR/GILDAS

gildas@iram.fr

Standard PdBI calibration user interface

	Standard calibration package	
GO ABORT		HELP
SELECT	PHCOR RF PHASE FLUX R1 FLUX R2 At	MPL. PRINT
Use previous settings ?	⊨ Yes	
Use phase correction ?	T Yes	
Receiver numbers	1 2	
File name	not yet defined	File
First and last scan	0 10000 <u>ĭ</u>	
Min. Data quality ?	AVERAGE	Choices
Array configuration ?	*	

Input parameters to reduce an observation

One button per calibration step The user can check/modify the results

	Standard calibration package	
GO ABORT		HELP
SELECT AUTOFLAG	PHCOR RF PHASE FLUX R1 FLUX R2 AMPL.	PRINT
Use previous settings ?	T Yes	
Use phase correction ?	F Yes	
Receiver numbers	1 Ž	
File name	not yet defined Fi	le
First and last scan	0 10000	
Min. Data quality ?	AVERAGE Choices	5
Array configuration ?	*	_

All calibration steps in a row (pipeline)

	Standard calibration package	
GO ABORT		HELP
SELECT AUTOFLAG	PHCOR RF PHASE FLUX R1 FLUX R2 AF	MPL. PRINT
Use previous settings ?	T Yes	
Use phase correction ?	F Yes	
Receiver numbers	1 2	
File name	not yet defined	File
First and last scan	0 1000Q	
Min. Data quality ?	AVERAGE	Choices
Array configuration ?	*	

Input parameters

- Use previous settings? In case the calibration was already done
- Use phase correction? Use or not atmospheric phase correction: should always be **yes**
- Receivers numbers Receiver 1 = 3 mm (85-115 GHz)Receiver 2 = 1 mm (210-245 GHz)
- File name File to be calibrated
- First and last scan To select only part of the data
- Min. Data Quality? To select only part of the data
- Array configuration? In case of configuration change

In most cases, only the file name must be entered

SELECT: Open the file

	Standard calibration package	
GO ABORT		HELP
SELECT	PHCOR RF PHASE FLUX R1 FLUX R2 A	MPL. PRINT
Use previous settings ?	⊏ Yes	
Use phase correction ?	F Yes	
Receiver numbers	1 2	
File name	not yet defined	File
First and last scan	0 10000	
Min. Data quality ?	AVERAGE	Choices
Array configuration ?	×	

SELECT

- Open the file
- Basic checks, initializations of pipeline variables
- Automatic determination of the **receiver tuning (LSB/USB/DSB)**
- Detect possible **re-tuning of the receivers during the observations**
- Find the **bandpass calibrator** (= strongest quasar)

AUTOFLAG: Automatic flagging

	Standard calibration package	
GO ABORT		HELP
SELECT	PHCOR RF PHASE FLUX R1 FLUX R2 A	MPL. PRINT
Use previous settings ?	T Yes	
Use phase correction ?	F Yes	
Receiver numbers	1 2	
File name	not yet defined	File
First and last scan	0 1000Q	
Min. Data quality ?	AVERAGE	Choices
Array configuration ?	*	

AUTOFLAG

- Instrumental problems are detected on site → data are flagged with keywords (e.g. LOCK, L01, TSYS, ...)
- Off-line flagging of the data to **detect and flag possible corrupted scans**: loop on all scans and look for
 - timing error problems
 - wrong amplitude points (not yet implemented)
- Also: check observing date and warn for known problems at the time of the observations

PHCORR: Atmospheric phase correction

	Standard calibration package	
GO ABORT		HELP
SELECT AUTOFLAG	PHCOR RF PHASE FLUX R1 FLUX R2 A	MPL. PRINT
Use previous settings ?	T Yes	
Use phase correction ?	T Yes	
Receiver numbers	1 2	
File name	not yet defined	File
First and last scan	0 10000į́	
Min. Data quality ?	AVERAGE	Choices
Array configuration ?	*	

Atmospheric phase correction

- Water emission \longrightarrow Atmospheric model \longrightarrow Path length \longrightarrow Phase
- Water emission measurement
 - used to be based on **1 mm total power** measurements
 - now based on **22 GHz water vapour radiometers**
- Plateau de Bure real-time phase correction
 - applied to scan-averaged ($\sim 1 \text{ min}$) data in the correlator
 - mostly a correction of the amplitude decorrelation
 - both corrected and non-corrected data are stored in the file

PHCORR

- For all calibrator measurements: check whether the real-time atmospheric phase correction improves or the result or not
 - compare corrected and uncorrected data for each scan
 - amplitude should be higher on the corrected data...
 - store antenna-based flag in each scan
- Test done at 3 mm, then used also at 1 mm
- Astronomical targets: the result obtained on the closest (in time) calibrator measurement is used
- In all further processing, the **phase correction is used only if it improves the result** (default behaviour of CLIC)

PHCORR – Example

Real-time atmospheric phase correction Scans 1390 to 1390 : phase correction disabled (ant 1 2 3 4) Scans 1403 to 1403 : phase correction disabled (ant 1 3 4) Scans 1409 to 1425 : phase correction disabled (ant 1 3 4) Scans 2075 to 2096 : phase correction disabled (ant 1 2 3 4) Scans 2097 to 2097 : phase correction disabled (ant 1 4)

Ant. 1: real-time phase correction based on Total Power monitor Ant. 2: real-time phase correction based on Total Power monitor Ant. 3: real-time phase correction based on Total Power monitor Ant. 4: real-time phase correction based on Total Power monitor

RF: RF Bandpass calibration

	Standard calibration package	
GO ABORT		HELP
SELECT	PHCOR RF PHASE FLUX R1 FLUX R2 A	MPL. PRINT
Use previous settings ?	T Yes	
Use phase correction ?	T Yes	
Receiver numbers	1 2	
File name	not yet defined	File
First and last scan	0 10000	
Min. Data quality ?	AVERAGE	Choices
Array configuration ?	*.	

RF Bandpass calibration

• Basic assumption: the frequency- and time- variations are independent

- RF bandpass constant during the observations
- RF bandpass mainly originates from the receiver \longrightarrow must be re-calibrated after each re-tuning
- Calibration method:
 - a strong quasar is observed at the beginning of each project (typically: 10–15 minutes)
 - its phase must be zero, its amplitude must be constant \longrightarrow fit a gain vs. frequency curve to estimate the RF bandpass
 - correct all subsequent data for this bandpass

RF

- Select the bandpass calibrator observations
- Self-calibration and average in time (improves SNR)
- Smooth to 5 MHz resolution (improves SNR)
- Solve for **antenna-based gain** (both amplitude and phase)
- Fit polynomial amplitude and phase vs. frequency curves
- Store calibration curves in all observations (calibrators + sources)
- Do this calibration for:
 - each scan range (receiver re-tuning)
 - $\ 3 \ \mathrm{mm}$ and $1 \ \mathrm{mm}$ receivers
 - USB and LSB

PdBI data calibration

RF: Uncal.

Am: Abs.

Ph: Rel.(A) Atm.

CLIC - 22-NOV-2004 11:19:21 - visitor WOON09W05E03 26 1361 KG5A 3C345 P FLUX 12CO(4-3 5D-N05 01-JUN-2001 23:14 -0.4 36 1371 KG5A 3C345 P CORR 12CO(4-3 5D-N05 01-JUN-2001 23:24 -0.2

Scan Avg. Vect.Avg.

Interactive mode

```
(...)
I-SOLVE_RF,[1361] Pha. Bas. 14 LO1 LO2 LO3 LO4 LSB rms: 1.006
I-SOLVE_RF,[1361] Pha. Bas. 24 LO1 LO2 LO3 LO4 LSB rms: 0.5631
I-SOLVE_RF,[1361] Pha. Bas. 34 LO1 LO2 LO3 LO4 LSB rms: 0.4665
LSB Bandpass Calibration for receiver 1:
Command was SOLVE RF 6 18 /PLOT
CLIC_3> SIC\PAUSE
CLIC_4>
```

- RF calibration very robust, no input usually required
- CO absorption in front of quasars \longrightarrow usually does not affect the fit, no need to flag data

PHASE: Phase calibration

	Standard calibration package	
GO ABORT		HELP
SELECT	PHCOR RF PHASE FLUX R1 FLUX R2 A	MPL. PRINT
Use previous settings ?	T Yes	
Use phase correction ?	F Yes	
Receiver numbers	1 2	
File name	not yet defined	File
First and last scan	0 10000	
Min, Data quality ?	AVERAGE	Choices
Array configuration ?	×	

Phase calibration

- Time dependence of the phase is caused by the atmosphere **and** the instrument (drifts, baseline errors)
- Calibration method:
 - a point source calibrator (quasar) is observed every ~ 20 minutes
 - its phase must be zero \longrightarrow fit a gain vs. time to the data to estimate the phase variations
 - in practice: two calibrators are observed

• Phase transfer

- atmospheric fluctuation should scale with frequency
- one can use the 3 mm curve (highest SNR) to correct the 1 mm data
- the residual fluctuations at 1 mm must still be calibrated

PHASE

- Select the phase calibrator observations
- Find possible phase jumps (focus)
- Apply RF bandpass calibration
- Receiver 2: apply Receiver 1 calibration, scaled by ratio of frequency (phase transfert)
- Derive antenna-based gain
- Least-square fit of cubic splines (phase vs. time)
- Store calibration curves in all observations (calibrators + sources)

RF: Fr.(A) Am: Scaled

Ph: Abs. Atm.

CLIC - 19-NOV-2004 10:37:08 - visitor WOONO9W05E03 26 1361 KG5A 3C345 P FLUX 12CO(4-3 5D-N05 01-JUN-2001 23:14 -0.4 923 2098 KG5A 3C454.3 P CORR 12CO(4-3 5D-N05 02-JUN-2001 10:45 5.0

Bas. 12 L01 L02 L03 L04 LSB Bas. 13 L01 L02 L03 L04 LSB 50 0 -50 -5010 10 0 5 0 5 Phase vs. Time Phase vs. Time Bas. 23 L01 L02 L03 L04 LSB Bas. 14 L01 L02 L03 L04 LSB 20 50 0 0 -20-40-50 -60 10 10 0 5 0 Phase vs. Time Phase vs. Time Bas. 24 L01 L02 L03 L04 LSB Bas. 34 LO1 LO2 LO3 LO4 LSB 50 4 30454.3 50 0 0 -50 -5010 0 10 \cap 5 5 Phase vs. Time Phase vs. Time

PdBI data calibration

Scan Avg.

Vect.Avg.

PdBI data calibration

PdBI data calibration

Interactive mode

(...)

I-SOLVE_CAL,[2098] Pha. Bas. 14 CO1 CO2 CO3 CO4 LSB rms: 6.65 deg. I-SOLVE_CAL,[2098] Pha. Bas. 24 CO1 CO2 CO3 CO4 LSB rms: 18.88 deg. I-SOLVE_CAL,[2098] Pha. Bas. 34 CO1 CO2 CO3 CO4 LSB rms: 17.15 deg. Phase calibration for receiver 1: Command was SOLVE PHASE /PLOT You may try SOLVE PHASE /PLOT /BREAK 0 23.5 CLIC_3> SIC\PAUSE CLIC_4>

- Potential problems
 - very noisy data (too weak calibrator)
 - strong drifts (baseline)
 - difference between the two phase calibrators (baseline)
 - phase jumps (focus) \longrightarrow **SOLVE PHASE /BREAK**

 RF:
 Fr.(A)
 CLIC - 22-NOV-2004 11:24:13 - visitor
 WOON09W05E03
 Scan Avg.

 Am:
 Abs.
 697 5856 L--1 3C454.3 P
 FLUX 12CO(109 5D-N05 19-JUN-2001 03:17 -1.4
 Vect.Avg.

 Ph:
 Abs. Atm. Ext.1265 6304 L--1 3C454.3 P
 CORR 12CO(109 5D-N05 19-JUN-2001 10:06 5.4
 Vect.Avg.

PdBI data calibration

 RF:
 Fr.(A)
 CLIC - 22-NOV-2004 11:24:32 - visitor
 WOON09W05E03
 Scan Avg.

 Am:
 Abs.
 697 5856 L--1 3C454.3 P
 FLUX 12CO(109 5D-N05 19-JUN-2001 03:17 -1.4
 Vect.Avg.

 Ph:
 Abs. Atm. Ext.1265 6304 L--1 3C454.3 P
 CORR 12CO(109 5D-N05 19-JUN-2001 10:06 5.4
 Vect.Avg.

PdBI data calibration

FLUX: Flux scale calibration

	Standard calibration package	
GO ABORT		HELP
SELECT AUTOFLAG	PHCOR RF PHASE FLUX R1 FLUX R2 A	MPL. PRINT
Use previous settings ?	F Yes	
Use phase correction ?	F Yes	
Receiver numbers	1 2	
File name	not yet defined	File
First and last scan	0 10000	
Min. Data quality ?	AVERAGE	Choices
Array configuration ?	*	

Flux and Amplitude calibration

Backend counts \longrightarrow Temperature (Kelvin) (Ta^{*} scale)

- Done by chopper-wheel calibration at PdBI (every ~ 20 minutes)
- Correct for
 - variation in electronic gains
 - variation of atmospheric absorption

Temperature (Kelvin) \longrightarrow Flux (Jansky)

- Scaling by antenna efficiency (Jy/K)
- Not sufficient for mm-interferometers, because
 - amplitude loss due to decorrelation (phase noise)
 - variation of the antenna gain (pointing, focus, ...)

Flux and Amplitude calibration

- Need to do amplitude referencing to a point source (quasar) to calibrate out the temporal variation of the antenna efficiency
- **Problem: all** quasars have varying fluxes and spectral indexes (several 10% in a few months)
- Consequence: amplitude calibration is done in three steps
 - **1.** Atmospheric calibration on site (temperature scale)
 - 2. Find flux of quasars (FLUX button)
 - 3. Find temporal variation of amplitude (AMPL button)

In most project, finding the absolute flux scale (2) is the most difficult step in the calibration

Step 2: Flux calibration

- Principle:
 - fix the flux of one or several **reference source(s)**
 - divide the measured temperature by this flux = antenna efficiencies (Jy/K)
 - apply antenna efficiencies to other sources to derive their flux
- Reference sources:
 - Planets are primary calibrators
 - Strong quasars (used as RF calibrator) have fluxes regularly measured against planets
 - **MWC 349**: 0.95 ($\nu/87$)^{0.6} Jy
 - **CRL 618**: 1.55 Jy at 3 mm, 2 Jy at 1 mm
 - MWC 349 and/or CRL 618 are observed in all projects

	Flux Receiver 1	
GO	ABORT HELF	<u> </u>
CHECK	SOLVE GET RESULT STORE PLOT >> CALIB	RATE
	Frequency 99,224 GHz	
Efficiencies:	24.06 21.74 23.11 23.27 20.65 23.09	
Scan list ?	0 10000	[
	Calibrator 3C84	
Input Flux?	3.658	
Fixed flux?	II No	
Solved Flux:	0	
Flux in File:	3.658	
	Source CRL618, Model Flux 1.55 Jy	_
Input Flux?	1.617	
Fixed flux?	II No	
Solved Flux:	0]
Flux in File:	1.617]
	Calibrator 2345-167	-
Input Flux?	0.935	
Fixed flux?	II No	
Solved Flux:	0]
Flux in File:	0.935	
	Calibrator 0135-247	_
Input Flux?	0.92	
Fixed flux?	II No	
Solved Flux:	0]
Flux in File:	0.92]
	Source MWC349, Model Flux 1.03 Jy	
Input Flux?	0.86	
Fixed flux?	II No	
Solved Flux:	0	
Flux in File:	0.86	

PdBI data calibration

	Flux Receiver 1	
GO	ABORT	HELP
СНЕСК	SOLVE GET RESULT STORE PLOT	>> CALIBRATE
	Frequency 99,224 GHz	
Efficiencies:	24.06 21.74 23.11 23.27 20.65 23.09	
Scan list ?	0 10000	
	Calibrator 3C84	
Input Flux?	3,658	
Fixed flux?	II No	
Solved Flux:	0	
Flux in File:	3,658	
	Source CRL618, Model Flux 1.55 Jy	
Input Flux?	1.617	
Fixed flux?	II No	
Solved Flux:	0	
I data calibration	1,617	

$\mathsf{FLUX} \ \mathsf{window}$

- CHECK plot (inverse of) antenna efficiencies as a function of time using values currently in data file
- SOLVE solve for the fluxes using the selected reference sources
- GET RESULT accept the results
- STORE store the fluxes in data file
- PLOT plot (inverse of) antenna efficiencies as a function of time
- >> CALIBRATE back to main calibration window

 RF:
 Fr.(A)
 CLIC - 19-NOV-2004 10:33:19 - visitor
 WOON09W05E03

 Am:
 Scaled
 27 1362 KG5A 3C345 P CORR 12CO(4-3 5D-N05 01-JUN-2001 23:15 -0.4

 Ph:
 Rel.(A) Atm.
 923 2098 KG5A 3C454.3 P CORR 12CO(4-3 5D-N05 02-JUN-2001 10:45 5.0

PdBI data calibration

Scan Avg.

Vect.Avg.

SOLVE FLUX

Flux and efficiency result for receiver 1 at 90.2 GHz:

	in file		solve	flux			
3C345		read:	1.00 Jy	found:	5.32 Jy		
MWC349		read:	1.00 Jy	fixed:	0.97 Jy	(model:	0.97 Jy)
3C454.3		read:	1.00 Jy	found:	6.16 Jy		-
2230+114		read:	1.00 Jy	found:	2.12 Jy		
Antenna	1	(A1)	23.3 Jy/K	(0.94)			
Antenna	2	(A3)	20.6 Jy/K	(1.02)			
Antenna	3	(A4)	19.5 Jy/K	(1.07)			
Antenna	4	(A5)	20.5 Jy/K	(1.07)			

RF:	Fr.(A)	CLIC — 19-NOV-2004 10:33:53 — visitor WOON09W05E03	Scan Avg.
Am:	Scaled	27 1362 KG5A 3C345 P CORR 12CO(4-3 5D-N05 01-JUN-2001 23:15 -0.4	Vect.Avg.
Ph:	Rel.(A) Atm.	923 2098 KG5A 3C454.3 P CORR 12CO(4-3 5D-N05 02-JUN-2001 10:45 5.0	

PdBI data calibration

FLUX: recommended practices

- Ideally: select data that are close in time and that follow pointing/focus calibration
- Check the data quality of CRL 618 and MWC349 before using them as reference (may have been observed at low elevation)
- \bullet Check for the antenna efficiencies: cannot be better than 22 Jy/K at 3 mm, 35 Jy/K at 1 mm
- **Cross-check flux calibration** between observations obtained within a short time interval (quasar fluxes are constant over a week)

• A consistent flux calibration between observations is critical

- an error in the relative flux calibration between observations can mimic source structure
- better have a wrong flux scale (scaling factor) than a wrong map (artefacts)

Flux calibration

Flux calibration

Flux calibration

AMPL: Amplitude calibration

	Standard calibration package	
GO ABORT		HELP
SELECT	PHCOR RF PHASE FLUX R1 FLUX R2 A	MPL, PRINT
Use previous settings ?	T Yes	
Use phase correction ?	F Yes	
Receiver numbers	1 ຊຶ	
File name	not yet defineď	File
First and last scan	0 1000ų̃	
Min, Data quality ?	AVERAGE	Choices
Array configuration ?	*	

AMPL

- Select the phase calibrator observations
- Apply RF and PHASE calibration
- \bullet Divide visibility amplitudes by source fluxes to have all calibrators on the same scale (in K/Jy)
- Compute **antenna-based gain**
- Least-square fit of amplitude vs. time
- Store calibration curve in all observations (calibrators + sources)

 RF:
 Fr.(A)
 CLIC - 19-NOV-2004 10:42:25 - visitor
 WOON09W05E03

 Am:
 Scaled
 26 1361 KG5A 3C345 P FLUX 12CO(4-3 5D-N05 01-JUN-2001 23:14 -0.4

 Ph:
 Rel.(A) Atm.
 923 2098 KG5A 3C454.3 P CORR 12CO(4-3 5D-N05 02-JUN-2001 10:45 5.0

PdBI data calibration

Scan Avg.

Vect.Avg.

Interactive mode

```
(...)
I-SOLVE_CAL,[2098] Amp. Bas. 14 L01 L02 L03 L04 LSB rms: 5.70 %
I-SOLVE_CAL,[2098] Amp. Bas. 24 L01 L02 L03 L04 LSB rms: 2.84 %
I-SOLVE_CAL,[2098] Amp. Bas. 34 L01 L02 L03 L04 LSB rms: 3.04 %
Amplitude calibration for receiver 1:
Command was SOLVE AMPLITUDE /PLOT
You may try SOLVE AMPLITUDE /PLOT /BREAK 0 23.5
CLIC_3> SIC\PAUSE
CLIC_4>
```

- Potential problems
 - focus or pointing errors strong amplitude loss or jumps
 - amplitude noise is biased too weak calibrators may give wrong results
 - decorrelation is baseline-based, fit is antenna-based too high decorrelation may introduce systematic errors on some baselines

PRINT: Print calibration report

	Standard calibration package	
GO ABORT		HELP
SELECT	PHCOR RF PHASE FLUX R1 FLUX R2 A	MPL. PRINT
Use previous settings ?	T Yes	
Use phase correction ?	T Yes	
Receiver numbers	1 2	
File name	not yet defined	File
First and last scan	0 1000Q	
Min. Data quality ?	AVERAGE	Choices
Array configuration ?	*.	

Project KG5A Data File 01-jun-2001-kg5a Observed on 02-JUN-2001 Configuration 5D-N05 (W00N09W05E03)

Automatic calibration report by CLIC @ x_calib

November 23, 2004

Scan range: Une P1 whenen for P0:	0 to 10000		Receiver 1	Receiver 2
Self cal. phases $R1 \rightarrow R2$:	YES	Bandpass:	Excellent	Good
Use phase correction:	YES (1mm)	Phase: Seeing:	Excellent 1.20"	Poor -
Munimum quanty: Auto. flag procedure:	NO	Amplitude:	Good	Correct

1 Summary

1.1 Calibrators

Fluxes (Jy)	90	0.2 GHz	230).5 GHz		
3C345	5.32	Computed	3.12	Computed		
MWC349	0.97	Fixed	1.70	Fixed	$(Model = 0.97 \ 1.7)$	ļ
3C454.3	6.16	Computed	4.49	Computed		
2230+114	2.12	Computed	1.17	Computed		

Radio seeing

• Phase fluctuations have different timescales:

- Phase noise translates into position errors: the flux of a point source is spread over a seeing disk
- Radio seeing is estimated by averaging **phase rms/baseline length** over all baselines (overestimation)
- Estimated at 3 mm only (because of phase transfert)
- Typically 0.2" to 1.5"

Other tools

CLIC Window interface	
CONTINUE STOP? SIC Window	CLIC Help
<u>v</u>	Raw data file directories
	Open raw data file
	First look
	Standard calibration
	Data quality assessment
	Self-cal on point source
	Holography reduction
	Write a UV Table
	Prepare/write UV tables (single datafile)
	Prepare/write UV tables (several datafiles)

Other tools

- Open raw data file create hpb file from ipb file
- First look Basic checks of observing conditions: Tsys, Tracking, Pointing, Focus, Total Power, Water, etc...
- Data quality assessment Select data to be used for imaging based on calibration results
- Self-cal on point source self-calibration
- Write a UV Table -uv-table creation

• PdBI Pipeline

- First Look + Calibration + Data quality assessment + UV Table
- For internal use (IRAM staff) for the time being

Data quality assessment

	Data quality assessment - 3mm only	
GO ABORT		HELP
File name	not yet definedį	File
Project type	Detection	Choices
Max seeing (arcs)	1.5]	
Max phase RMS (deg)	40	
Max amplitude loss (%)	20	
Max pointing correction (% FOV)	30	
Max focus correction (% Lambda)	30	
Max tracking RMS (% FOV)	10	

 RF:
 Fr.(A)
 CLIC - 23-NOV-2004 11:29:33 - visitor
 WOON09W05E03

 Am:
 Rel.(A)
 27 1362 KG5A 3C345 P CORR 12CO(4-3 5D-N05 01-JUN-2001 23:15 -0.4

 Ph:
 Rel.(A) Atm.
 923 2098 KG5A 3C454.3 P CORR 12CO(4-3 5D-N05 02-JUN-2001 10:45 5.0

PdBI data calibration

Scan Avg.

Vect.Avg.

CALIBRATION TUTORIALS

Thursday morning 9h–11h and 11h–13h