

Large-field imaging

Frédéric Gueth, IRAM Grenoble

6th IRAM Millimeter Interferometry School 6–10 October 2008

Large-field imaging The problems

• The largest structures are filtered out due to the lack of the short spacings Solution: add the **short spacing** information

• The field of view is limited by the antenna primary beam width

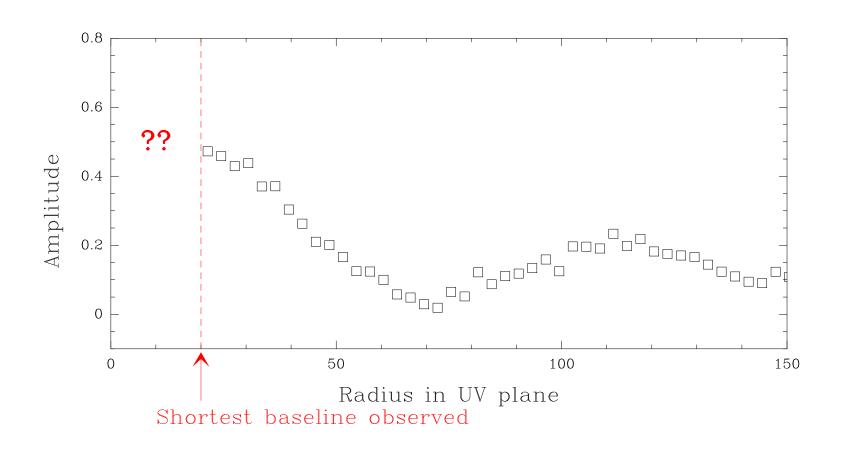
Solution: observe a **mosaic** = several adjacent overlapping fields

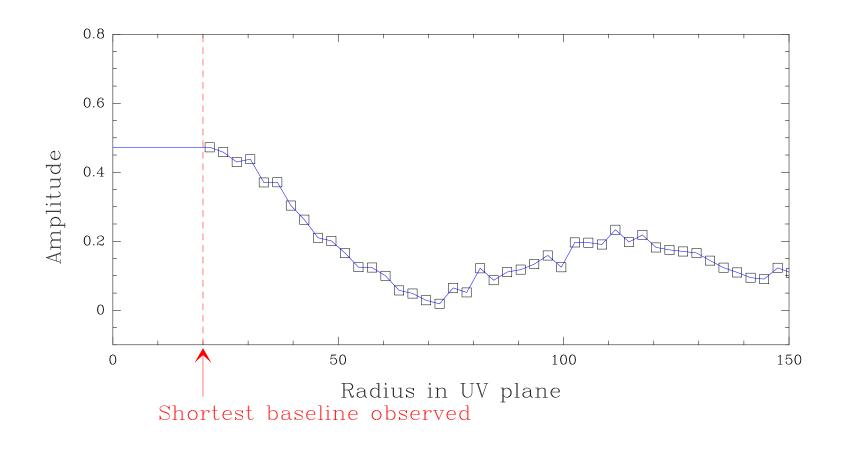
• Deconvolution algorithms are not very good at recovering small- and large-scale structures

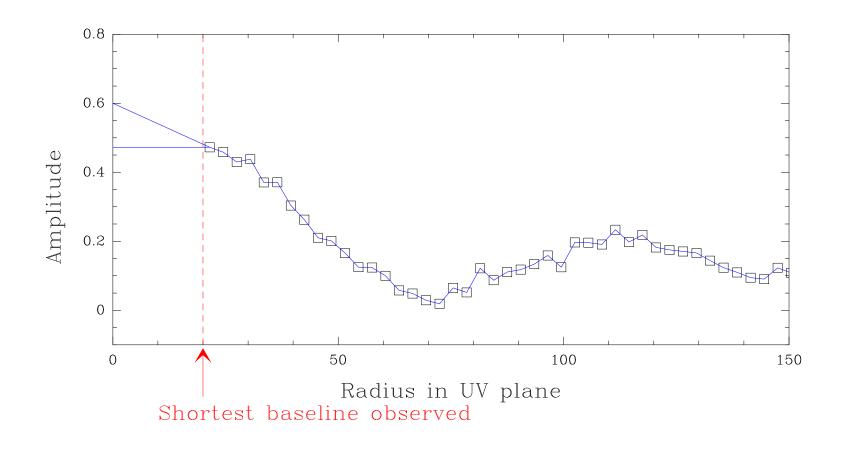
Solution: try Multi-Scale CLEAN, Multi-Resolution CLEAN, ...

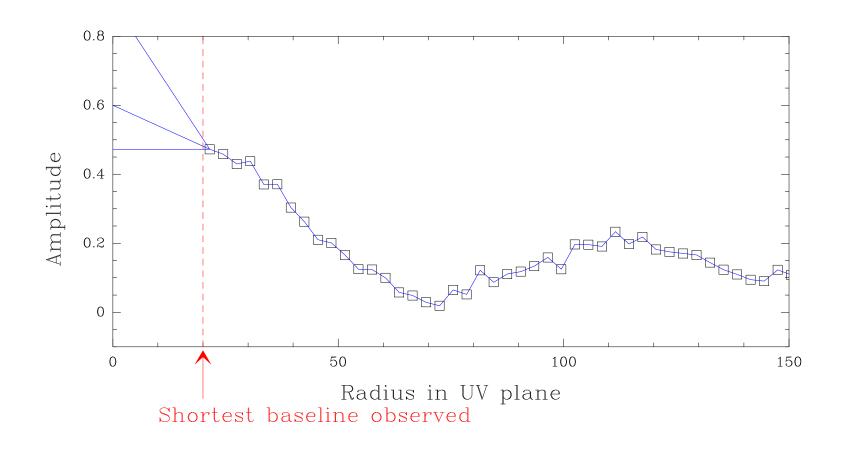
• Non-coplanar baselines

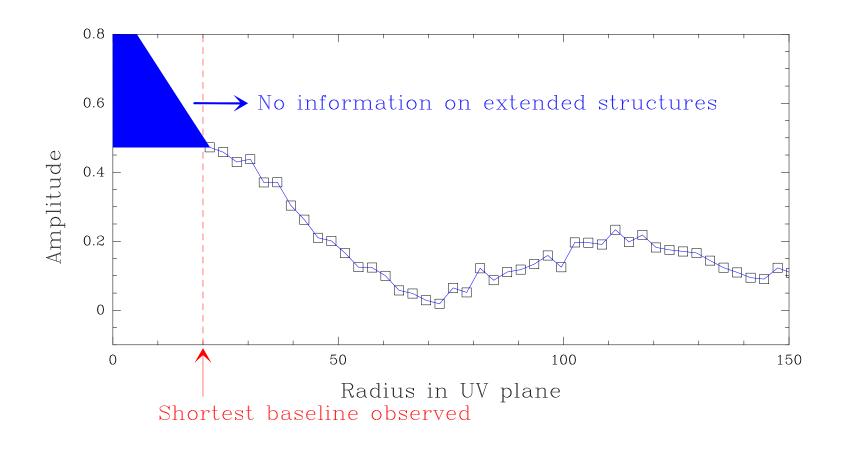
Solution: use appropriate algorithm if necessary











Short Spacings The problem

Missing short spacings:

- Shortest baseline $B_{\min} = 24 \text{ m}$ at Plateau de Bure
- \bullet Projection effects can reduce the minimal baseline but baselines smaller than antenna diameter D can never be measured
- In any case: lack of the short spacings information

Consequence:

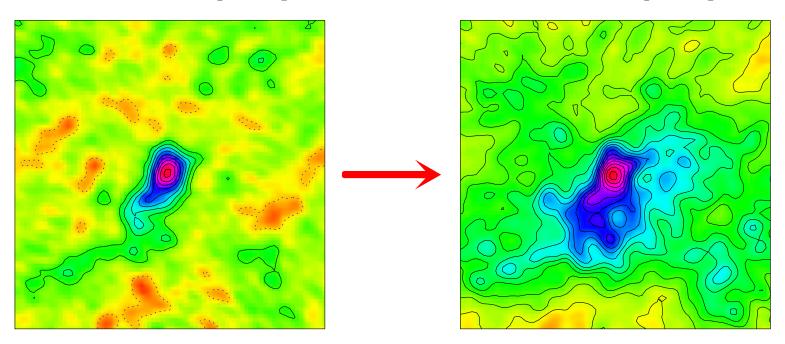
- The most extended structures are filtered out
- The largest structures that can be mapped are $\sim 2/3$ of the primary beam (field of view)
- Structures larger than $\sim 1/3$ of the primary beam may already be affected

Short Spacings

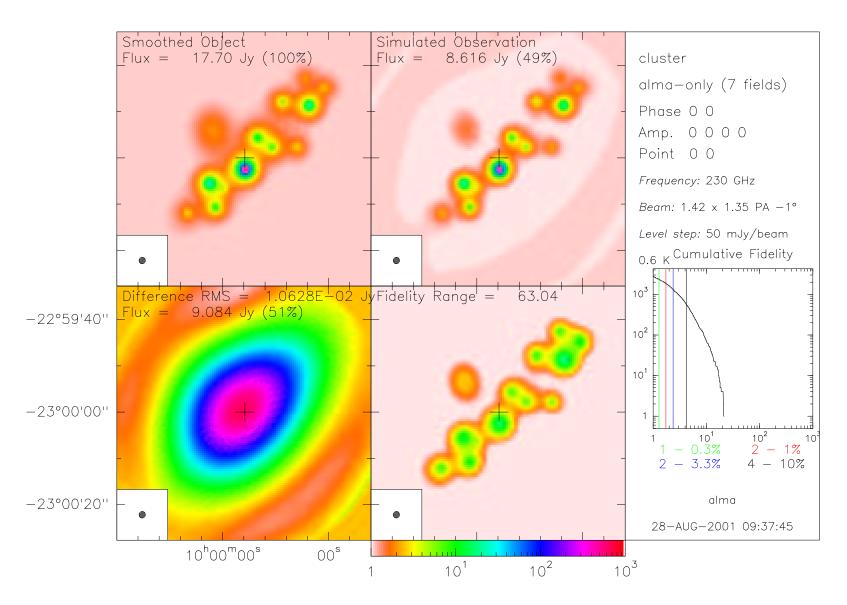
Example

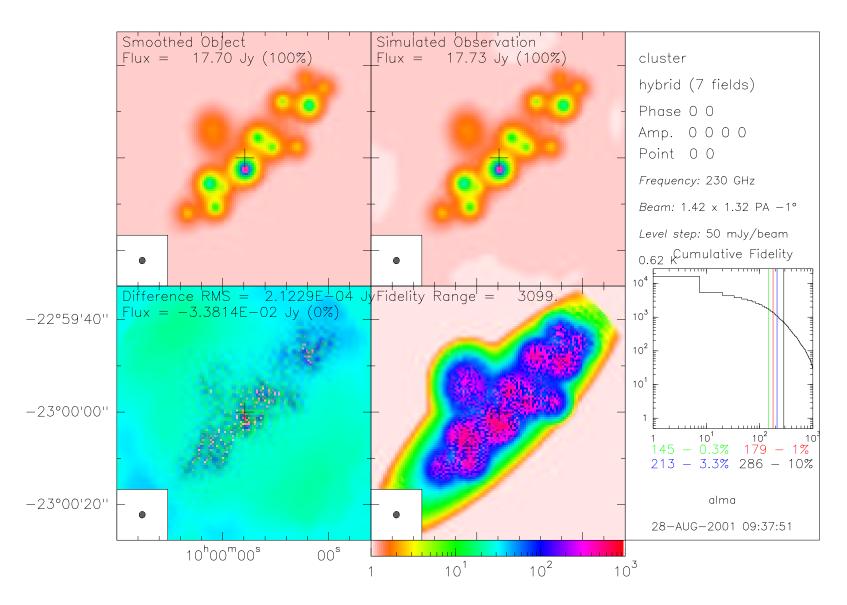


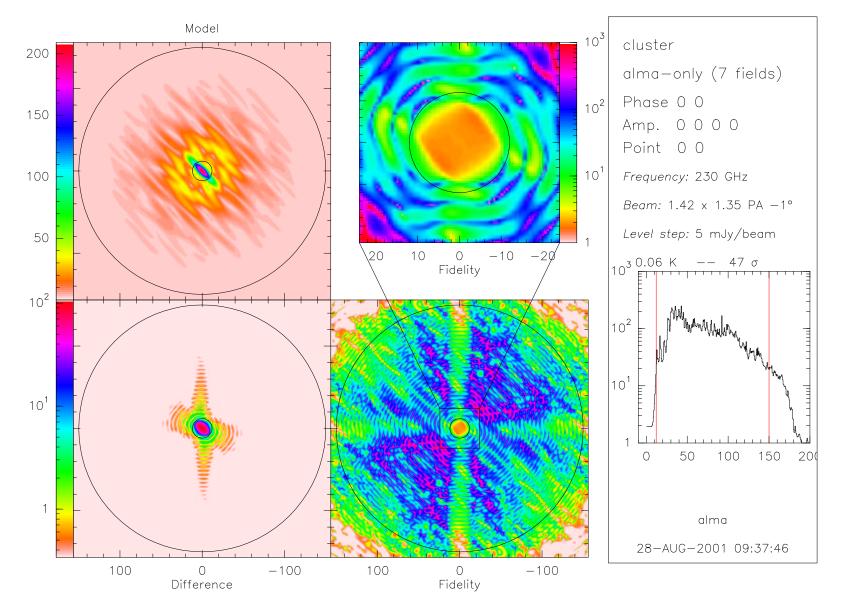
With short spacings

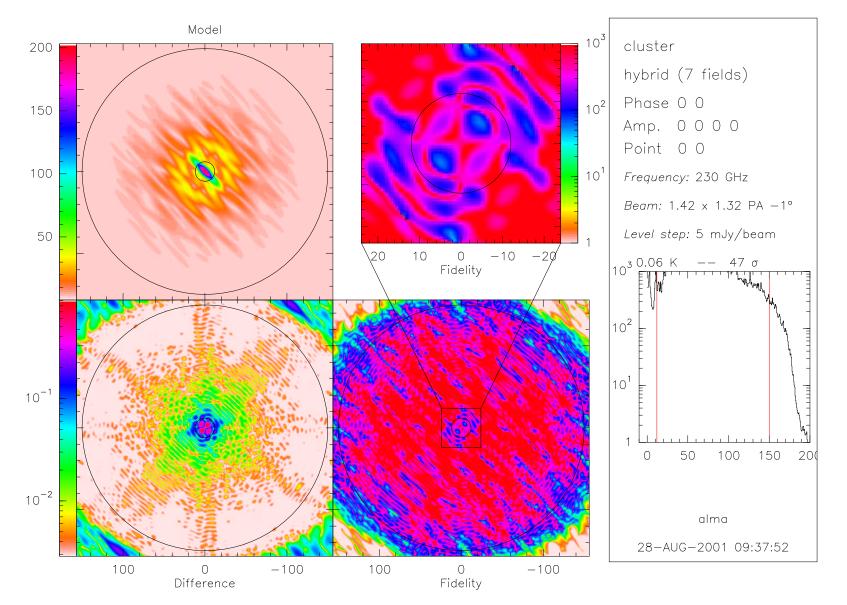


 13 CO (1–0) in the L 1157 protostar (Gueth et al. 1997)







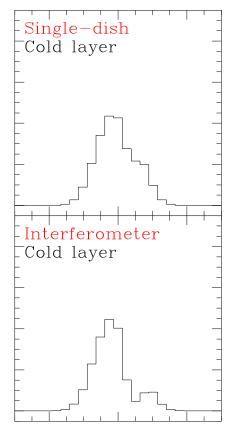


Simulations of small source + extended cold/warm layer

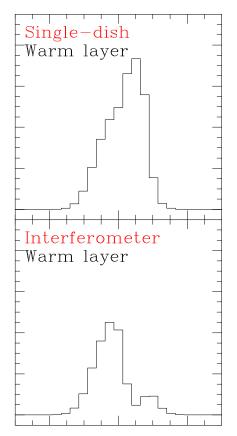
Lack of short spacings can introduce complex artifacts leading to wrong scientific interpretation

Short Spacings

Simulations



Intensity

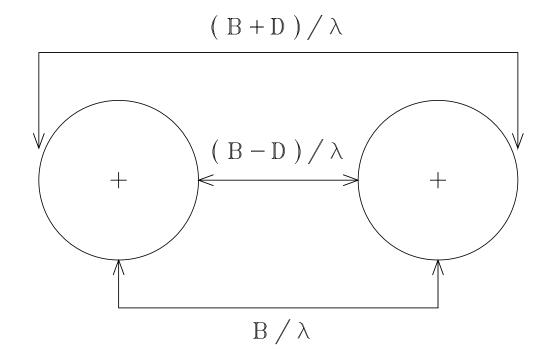


Velocity

Short Spacings

Spatial frequencies

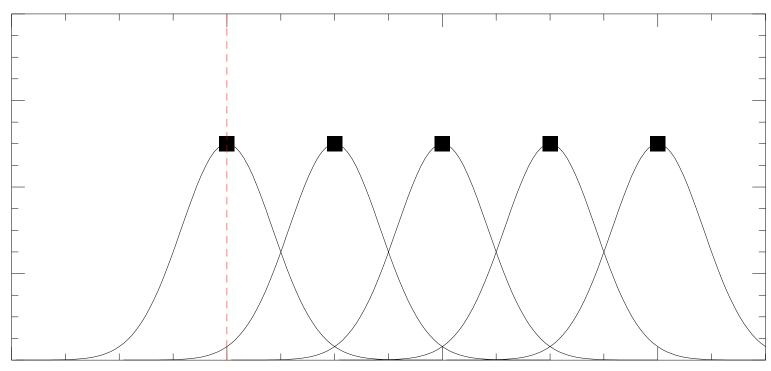
- A single-dish of diameter D is sensitive to spatial frequencies from 0 to D
- An interferometer baseline B is sensitive to spatial frequencies from $\mathbf{B} \mathbf{D}$ to $\mathbf{B} + \mathbf{D}$



Short Spacings

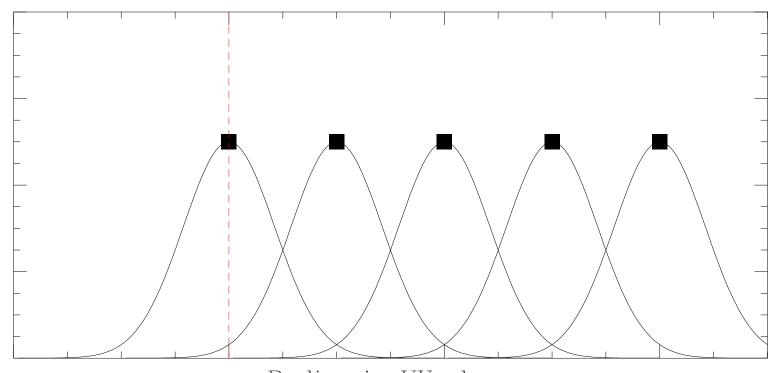
Measurements

An interferometer measures the **convolution** of the "true" visibility with the **antenna transfer function**



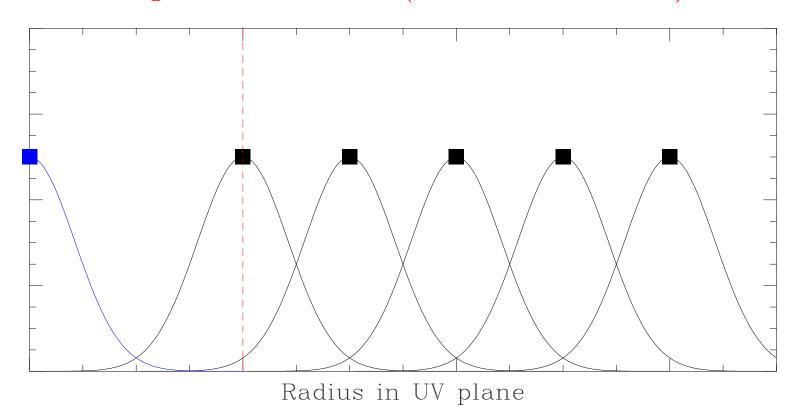
Radius in UV plane

No short-spacings

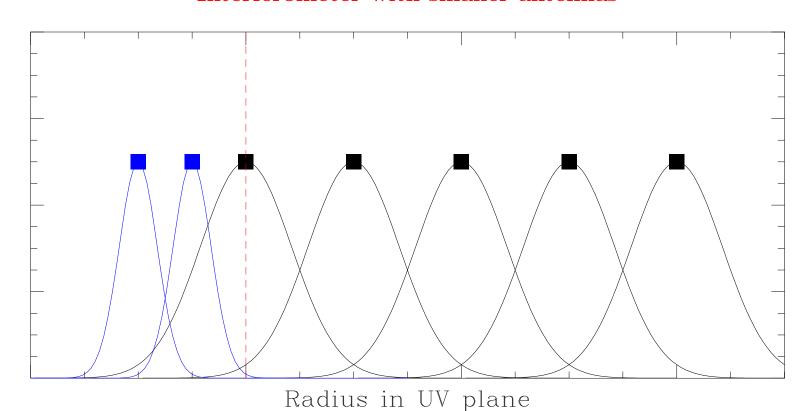


Radius in UV plane

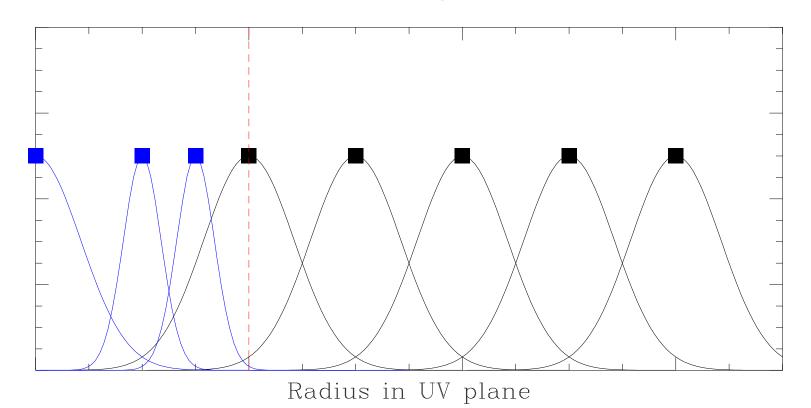
Single-dish measurement (same antenna diameter)

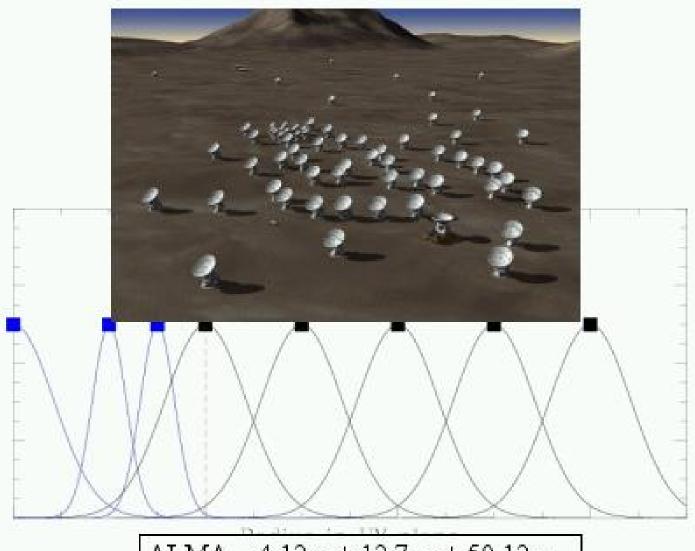


Interferometer with smaller antennas



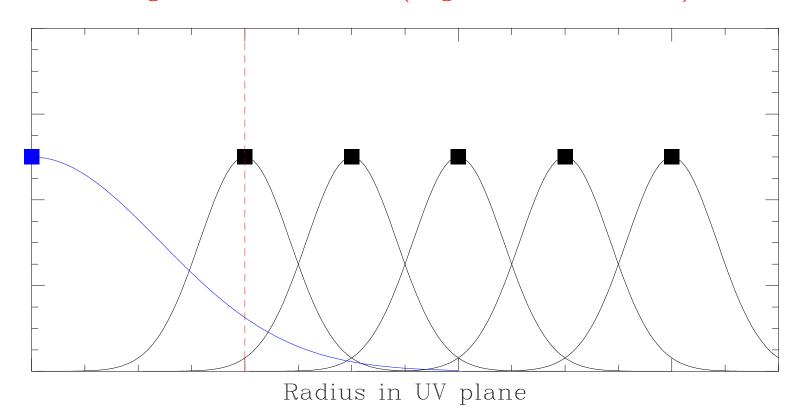
Small interferometer + Single-dish measurement

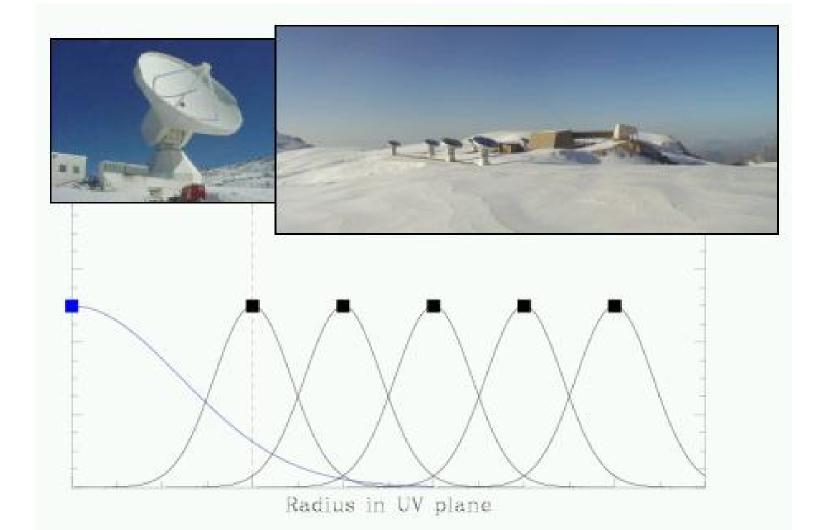




ALMA = 4 12m + 127m + 50 12m

Single-dish measurement (larger antenna diameter)





Short Spacings

Short spacings from SD data

- Combine SD and Interferometric maps in the image plane
- Joint deconvolution (MEM or CLEAN)
- Hybridization: fill inner hole in uv plane with FT of single-dish image
- Combine data in the uv plane before deconvolution
 - 1. Use the 30-m map to simulate what would have observed the PdBI, i.e. extract "pseudo-visibilities"
 - 2. Merge with the interferometer visibilities
 - 3. Process (gridding, FT, deconvolution) all data together

This drastically improves the deconvolution

Short Spacings Extracting visibilities

SD map = SD beam * Sky

Int. map = Dirty beam * (Int beam \times Sky)

- Image plane Gridding of the single-dish data
- uv plane Correction for single-dish beam
- Image plane Multiplication by interferometer primary beam
- uv plane Extract visibilities up to $\mathbf{D_{SD}} \mathbf{D_{Int}}$
- uv plane Apply a **weighting factor** before merging with the interferometer data

Short Spacings Extracting visibilities

Weighting factor to SD data:

- Produce different images and dirty beams
- Methods are not perfect, noise weight to be optimized
- Usually, it is better to **downweight the SD data** (as compared to natural weight)

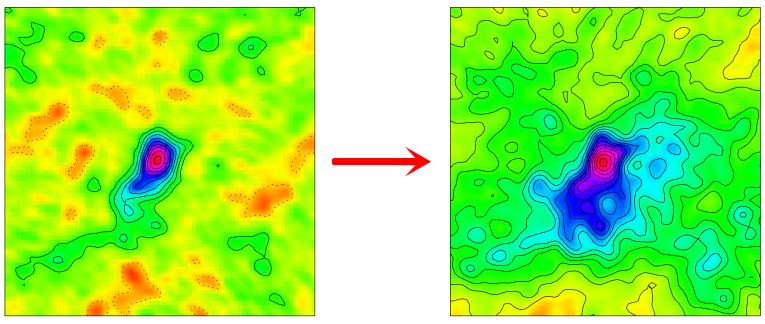
Optimization:

- Adjust the weights so that there is almost **no negative sidelobes** while keeping the highest angular resolution possible
- Adjust the weights so that the **weight densities in 0−D and D−2D** areas are equal mathematical criteria

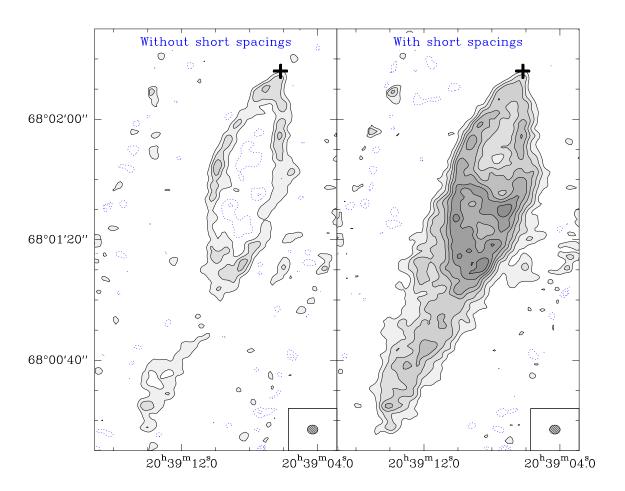
Short spacings

Example

With short spacings

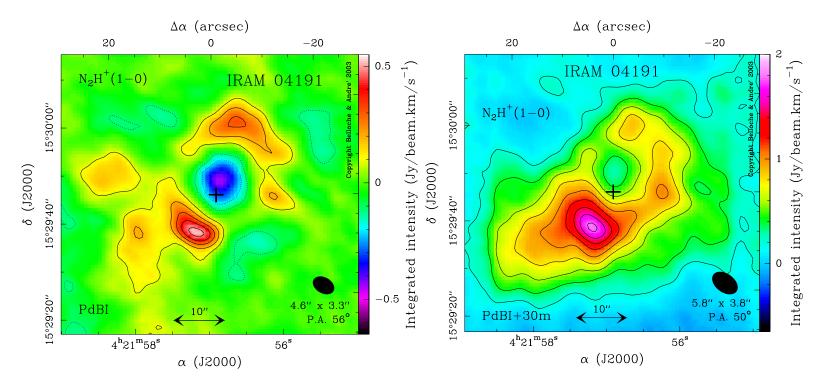


 13 CO (1–0) in the L 1157 protostar (Gueth et al. 1997)



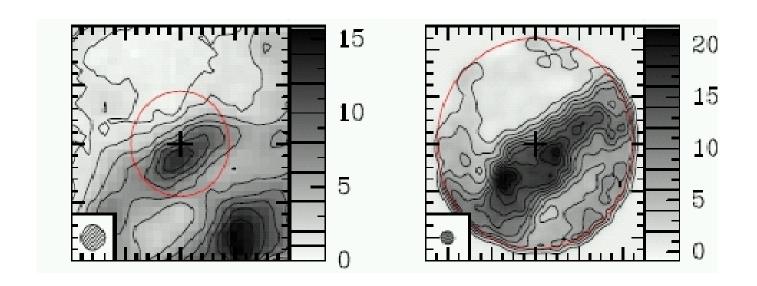
Short spacing

Example



 N_2H^+ in the IRAM 04191 protostar (Belloche et al. 2004)

Short spacing Example



CO 1–0 in the direction of NRAO 530, Pety et al. 2008

Interferometer field of view

Measurement equation of an interferometric observation:

$$\mathbf{F} = \mathbf{D} * (\mathbf{B} \times \mathbf{I}) + \mathbf{N}$$

F = dirty map = FT of observed visibilities

 $D = \text{dirty beam } (\longrightarrow \text{deconvolution})$

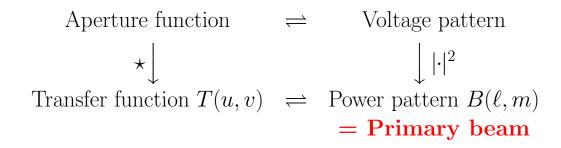
B = primary beam = FT of transfer function

I = sky brightness distribution = FT of "true" visibilities

N = noise distribution

- ullet An interferometer measures the product $\mathbf{B} \times \mathbf{I}$
- $B \sim \text{Gaussian} \longrightarrow \text{primary beam correction possible (proper estimate of the fluxes)}$ but strong increase of the noise

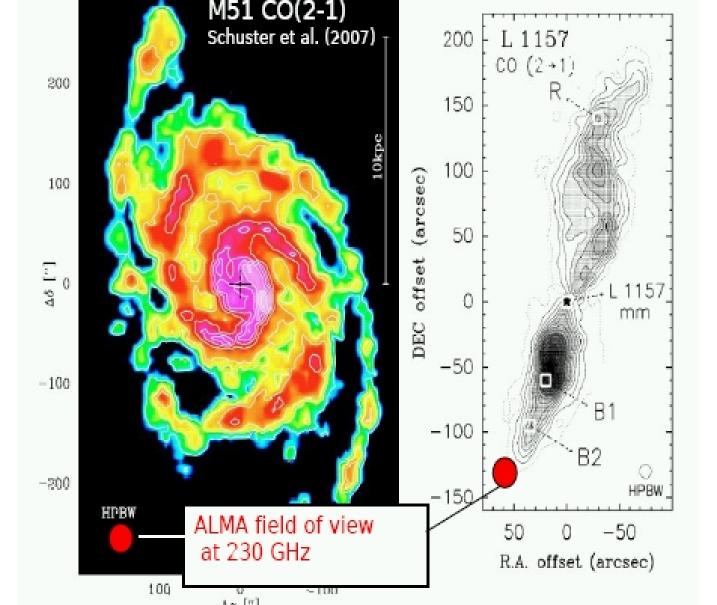
Primary beam width



Gaussian illumination $\Longrightarrow B \sim \text{Gaussian of } 1.2 \, \lambda/\text{D} \text{ FWHM}$

Plateau de Bure D = 15 m

Frequency	Wavelength	Field of View
85 GHz	3.5 mm	58"
$100~\mathrm{GHz}$	3.0 mm	50"
$115~\mathrm{GHz}$	2.6 mm	43"
215 GHz	1.4 mm	23"
230 GHz	1.3 mm	22"
$245~\mathrm{GHz}$	$1.2 \mathrm{\ mm}$	20"



Mosaicing with the PdBI

Mosaic:

- Field spacing = half the primary beam FWHM i.e. one field each 11" at 230 GHz
- Observations with two receivers: choice of the spacing for one frequency —— under- or oversampling for the other frequency —— NO LONGER VALID
- Mosaic at 3 mm \longrightarrow no mosaic at 1 mm

WITH NEW RECEIVERS

Observations:

• Fields are observed in a loop, each one during a few minutes \longrightarrow similar atmospheric conditions (noise) and similar uv coverages (dirty beam, resolution) for all fields

Mosaicing with the PdBI

Size of the mosaic:

• Observing time to be minimized, uv coverage to be maximized \longrightarrow maximal number of fields ~ 20

Calibration:

- Procedure identical with any other Plateau de Bure observations (only the calibrators are used)
- Produce one dirty map per field

Short spacings:

• Visibilities from 30-m data are computed and merged with Plateau de Bure data for each field — process as a normal mosaic

Mosaic reconstruction

• Forgetting the effects of the dirty beam:

$$F_i = B_i \times I + N_i$$

- This is similar to several measurements of I, each one with a "weight" B_i
- \bullet Best estimate of I in least-square formalism (assuming same noise):

$$J = \frac{\sum_{i} B_{i} F_{i}}{\sum_{i} B_{i}^{2}}$$

• J is homogeneous to I, i.e. the mosaic is **corrected for the primary beam** attenuation

Mosaics

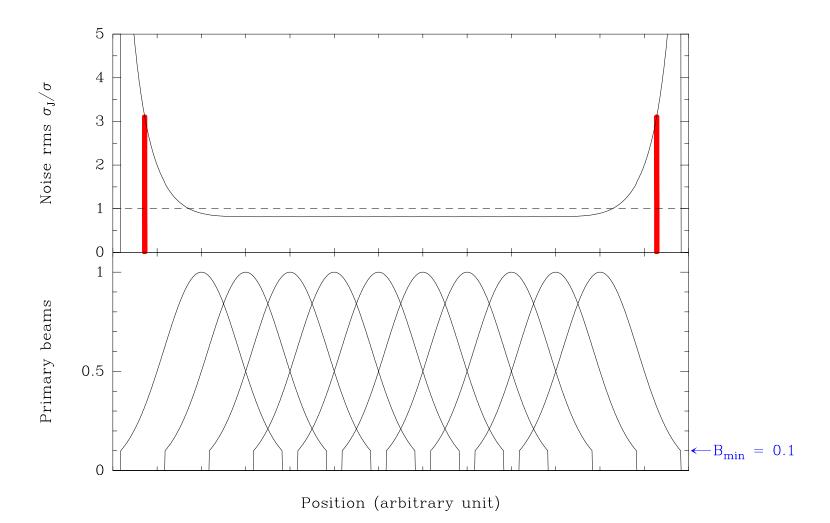
Noise distribution

$$J = \frac{\sum_{i} B_{i} F_{i}}{\sum_{i} B_{i}^{2}} \implies \sigma_{J} = \sigma \frac{1}{\sqrt{\sum_{i} B_{i}^{2}}}$$

The noise depends on the position and strongly increases at the edges of the field of view

In practice:

- Use truncated primary beams ($B_{\min} = 0.1 0.3$) to avoid noise propagation between adjacent fields
- Truncate the mosaic



Mosaics

Mosaic deconvolution

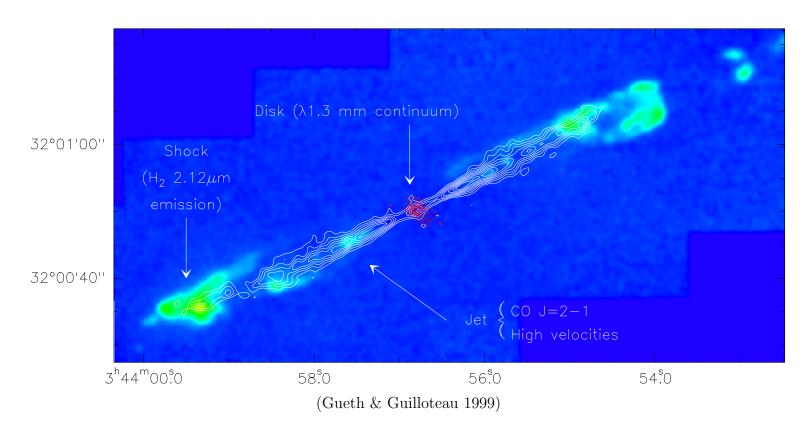
- Linear mosaicing: deconvolution of each field, then mosaic reconstruction

 Non-linear mosaicing: mosaic reconstruction, then global deconvolution
- The two methods are not equivalent, because the deconvolution algorithms are (highly) non-linear
- Non-linear mosaicing gives better results
 - sidelobes removed in the whole map
 - better sensitivity
- Plateau de Bure mosaics: non-linear joint deconvolution based on CLEAN

Mosaics Example

Example

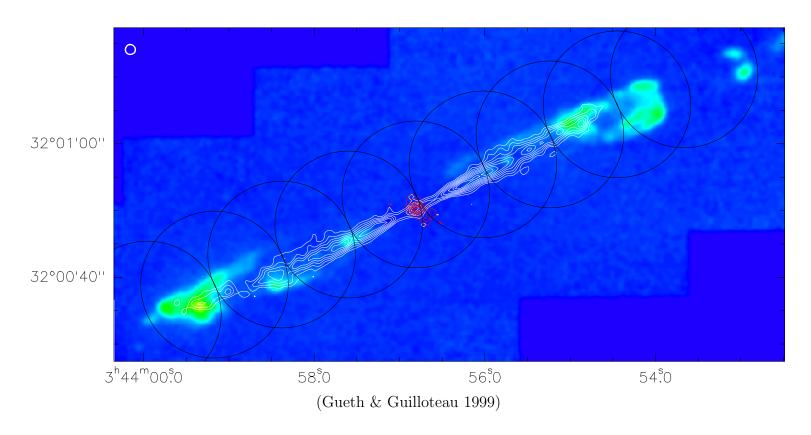
 $H_2 + CO(2-1)$ EHV + continuum 1.3 mm in HH211

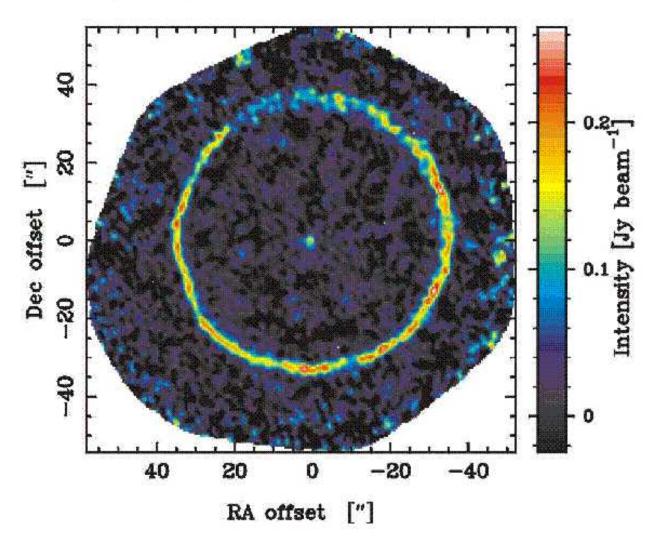


Mosaics

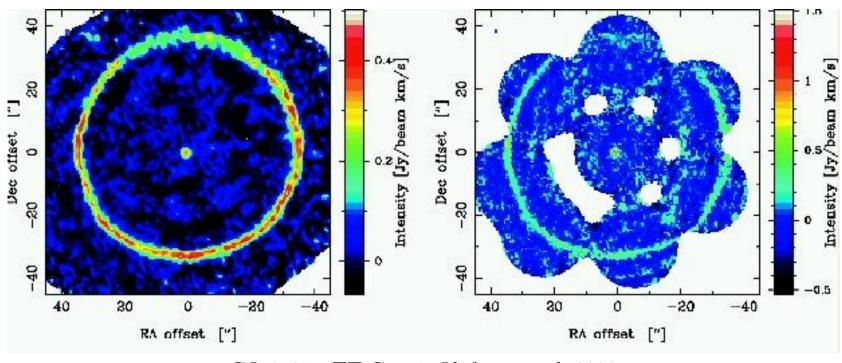
Example

 $H_2 + CO(2-1)$ EHV + continuum 1.3 mm in HH211



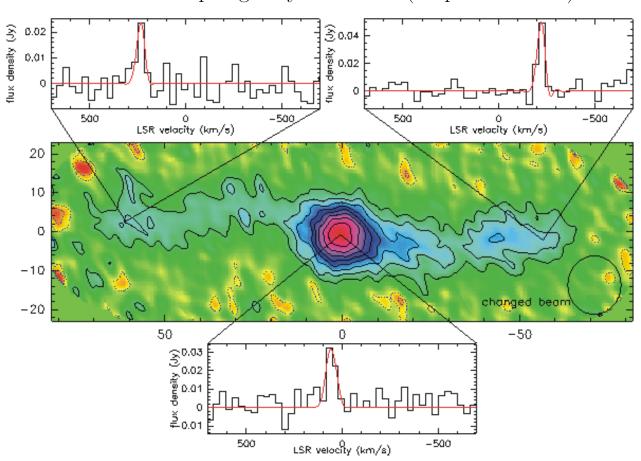


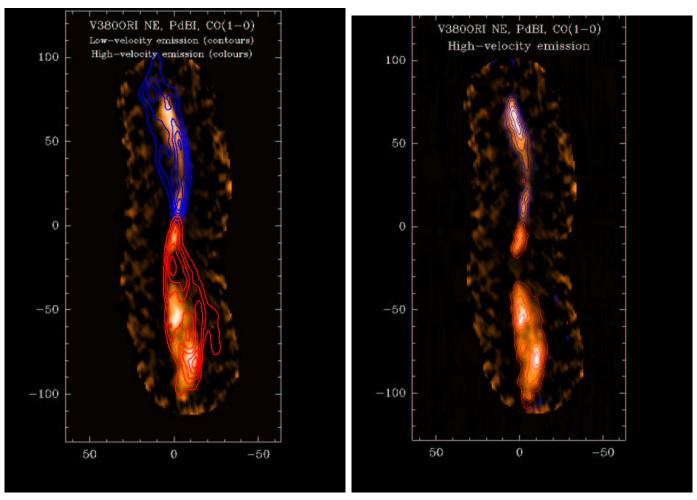
CO 1–0 in TT Cygni, Olofsson et al. 2000



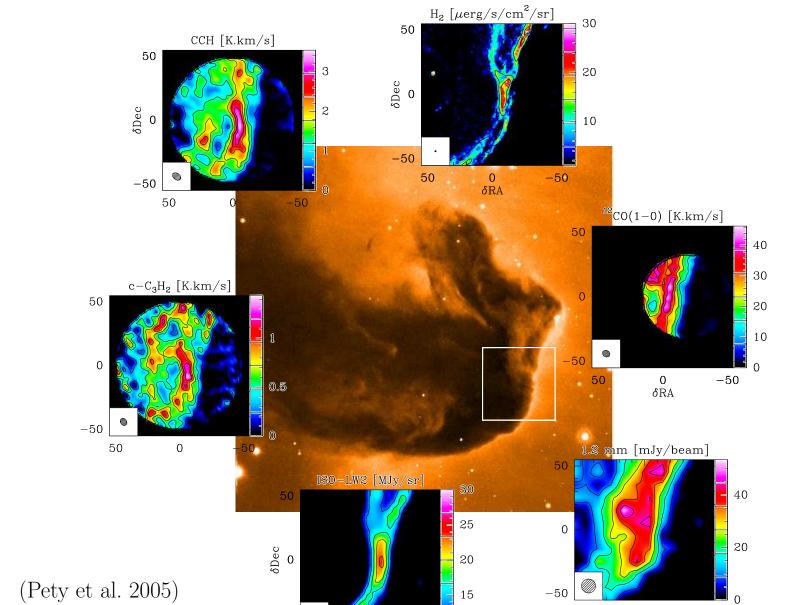
CO 1–0 in TT Cygni, Olofsson et al. 2000

CO in the warped galaxy NGC 3718 (Krips et al. 2005)





(Stanke et al. 2004)

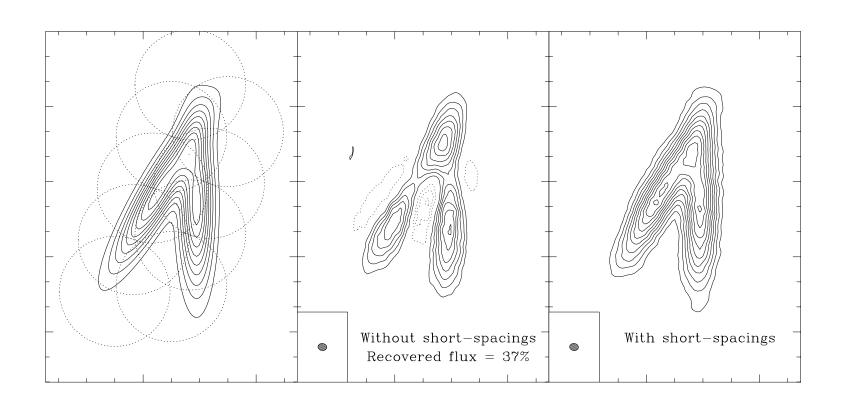


Mosaics and short spacings The problem

Effect of missing short spacings more severe on mosaics than on single-field images:

- Extended structures are filtered out in each field
- Lack of information on an **intermediate scale** as compared to the mosaic size
- Possible artefact: extended structures split in several parts
- In most cases cases, adding the short spacings is required

Mosaics and short spacings Simulations



Mosaics and short spacings The problem

Effect of missing short spacings more severe on mosaics than on single-field images:

- Extended structures are filtered out in each field
- Lack of information on an **intermediate scale** as compared to the mosaic size
- Possible artefact: extended structures split in several parts
- In most cases cases, adding the short spacings is required

However, mosaics are able to recover part of the short spacings information

Mosaics and short spacings Image formation

• An interferometer is sensitive to all spatial frequencies from $\mathbf{B}-\mathbf{D}$ to $\mathbf{B}+\mathbf{D} \Longrightarrow$ it measures a **local average** of the "true" visibilities

$$(B+D)/\lambda$$

$$+$$

$$+$$

$$+$$

$$+$$

$$+$$

$$+$$

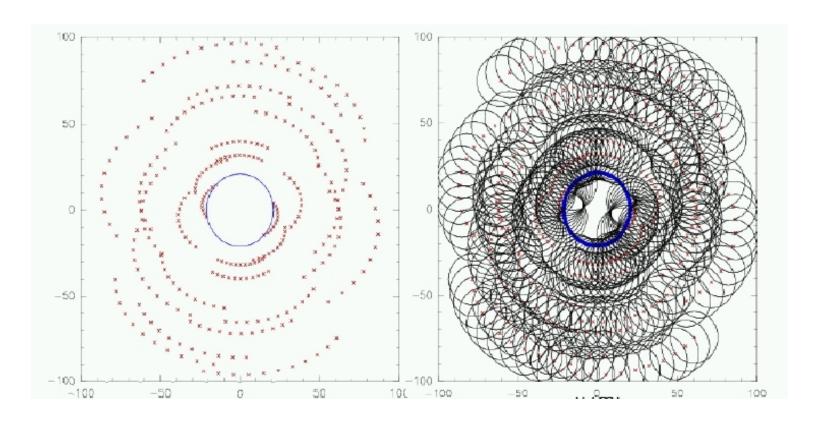
$$+$$

$$+$$

$$+$$

Mosaics and short spacings Image formation

- An interferometer is sensitive to all spatial frequencies from $\mathbf{B}-\mathbf{D}$ to $\mathbf{B}+\mathbf{D} \Longrightarrow$ it measures a **local average** of the "true" visibilities
- Measured visibilities: $V_{\text{mes}} = \text{FT}(B \times I) = \mathbf{T} * \mathbf{V}$ where T is the transfert function of the antenna
- Pointing center $(\ell_p, m_p) \neq$ Phase center: phase gradient across the antenna aperture $V_{\rm mes}(u,v) = \left[T(u,v)\,{\rm e}^{-2i\pi(u\ell_p+vm_p)}\right]*V(u,v)$
- Combination of measurements at different (ℓ_p, m_p) should allow to derive V
- The recovery algorithm is a simple Fourier Transform (Ekers & Rots)



Conclusions

- Mosaicing is a **standard observing mode** at Plateau de Bure
- Adding short spacings from the IRAM 30-m is an **standard procedure** (box in proposal form)
- ALMA designed from the beginning to include the short-spacings (ACA, SD antennas) but not for all projects
- New developments to come: on-the-fly interferometry

