Chasing the gas structure around the young B3-B2 star AFGL 490

Katharina Schreyer

Astrophysikalisches Institut und Universitäts-Sternwarte Jena

 Hendrik Linz, Dmity Semenov, Yaroslav Pavlyuchenko, & Thomas Henning (MPIA Heidelberg)
Peter Hofner (NRAO, Socorro), Esteban Araya (NMT, Socorro), Bettina Posselt & Jan Forbrich (CfA, Boston) Bringfried Stecklum (TLS Tautenburg)

Sixth IRAM Millimeter Interferometry School, Oct. 6th, 2008

Introduction - Motivation

- Formation of high-mass stars one of the unresolved issues of present research
- Due to many recent observations \Rightarrow evidence that stars with $M_{\star} \leq 20 \ M_{\odot}$ form by accretion disks

e.g.

- Disks are more massive and larger than disks around T Tauri and Herbig Ae stars
- ⇒ However only marginally spatial resolved

Introduction - Motivation

Selection of objects from survey of bright IRAS sources

- H₂O Maser, NH₃, HCO⁺ (Henning et al. 1992, Schreyer et al. 1996)
- in sub-mm/mm continuum

(Klein, Posselt, Schreyer, Forbrich, Henning, 2005, ApJS 161, 361)

- Nearby, D ≤ 1 kpc
- Isolated objects, no optical counterpart
- Embedded in dense cloud core + high-velocity outflow

Compromise:

• In D < 1 kpc: no young stellar objects with $M_{\star} \ge 15(..20) M_{\odot}$

 \Rightarrow study of details of these young isolated objects

 \Rightarrow for understanding of the more complex regions

 \Rightarrow one target of this sample: AFGL 490

Previously known properties of AFGL 490

 Optical: diffuse nebulosity, NIR: luminous source (Allen, 1972)

Previously known properties of AFGL 490

- Optical: diffuse nebulosity, NIR: luminous source (Allen, 1972)
- D ≈ 1 kpc, L = 1.4 4 × 10³ L_☉ spectral type B3-B2 M_{*} = 8-10 M_☉
- Typical properties of a Becklin Neugebauer Object:
 weak continuum flux at λ≥1cm
 broad & strong Bra and Brγ (Bunn et al. 1995)
- Ionized region R ≤ 100 AU (Simon et al. 1981, 1983)

Previously known properties of AFGL 490

 Embedded in a dense cloud core (Hodapp 1994, Kawabe et al. 1984, Snell et al. 1984)

 Poorly collimated high-velocity outflow (Lada & Harvey, 1981)
t_{dyn} ≈ 2×10⁴ yr (Churchwell, 1999)

 Previous interferometer studies: presence of a huge disk with a diameter ≈ 25 000 AU (Mundy & Adelmann, 1988, Nakamura et al. 1991)

Previously known properties

of AFGL 490

- Embedded in a dense cloud core (Hodapp 1994, Kawabe et al. 1984, Snell et al. 1984)
- Poorly collimated high-velocity outflow (Lada & Harvey, 1981)
 t_{dyn} ≈ 2×10⁴ yr (Churchwell, 1999)
- Previous interferometer studies: presence of a huge disk with a diameter ≈ 25 000 AU (Mundy & Adelmann, 1988, Nakamura et al. 1991)

Observations for AFGL 490

JCMT & IRAM 30m Observations

Mapping in :

- CS J = 2-1, 3-2, 5-4, 7-6, C¹⁸O J = 2-1: IRAM 30m, JCMT
- Continuum SCUBA 450µm, 870µm; 1.3mm MAMBO

Plateau de Bure Interferometer Observations

Mapping in: - CS $J = 2-1 + \lambda 3mm (2.7'' \times 2.2'')$ - C³⁴S J = 2-1, CH₃OH (1.8'' × 1.4'') - C¹⁷O $J = 2-1 + \lambda 1mm (0.9'' \times 0.8'')$

VLA-CD Observations

Mapping in: - CS $J = 1-0 + \lambda7$ mm

AFGL 490

 Clumpy gas ring centered at the 1mm continuum point source

C¹⁷O contour levels: 20%-90% of the peak emission 10% = 1σ

Color-coded image: 1mm continuum point source, peak intensity = 0.6 Jy beam⁻¹

Schreyer et al. (2006)

AFGL 490

- Clumpy gas ring centered at the 1mm continuum point source
- Well separated red- and blue-shifted C¹⁷O emission

Red & blue C¹⁷O contour levels: 30%-90% of the peak emissions

V_{lsr}-Red: -12.5…-9.5 km/s V_{lsr}-Blue: -15.5…-13.4 km/s

Modelling of the $C^{17}O$ emission

AFGL 490

Iterative Modelling of the C¹⁷O 2-1 line profiles

Complete cycle:

Step I 2D model for the continuum emission by C.P. Dullemond (MPIA Heidelberg)

Step II 1+1D modelling of the chemistry in the disk by D. Semenov (MPIA Heidelberg)

Step III

2D modelling of the line profile *by Y. Palyuchenkov* (MPIA Heidelberg)

Observed spectra - Simulated line profiles

Modelling of the $C^{17}O$ emission

AFGL 490

Iterative Modelling of the C¹⁷O 2-1 line profiles

Observed spectra - Simulated line profiles

Assumptions for the model:

- Flared-disk model
- Velocity profile $V(r) = V_o(r_o/r)^{-s}$
- Surface density gradient $\Sigma(r) = \Sigma_0(r_0/r)^{-p}$
- Dust grains: MRN-like size distribution (Mathis et al. 1977)

•
$$M_{\text{gas}}$$
: M_{dust} = 100

• Age: 0.1 Myr

Modelling of the $C^{17}O$ emission

Schreyer et al. (2006)

14/18

Observed spectra - Simulated line profiles

Summary - Conclusions

AFGL 490 is surrounded by a gaseous disk

Basic physical parameters are:

- Position and inclination angle is $\approx 30^{\circ}$,
- *R*_{out} ≈ 1500 AU (not 10 000 AU),
- $M_{\text{disk}} \approx 1 \text{ M}_{\odot}$,
- Disk rotation: close to Kepler's law
- Clumpy structure

Evidence for gas infall

• Inverse P Cygni profiles in $CH_3OH \& CS \implies$ on-going gas infall <u>from</u> the envelope <u>to</u> the disk

