

ALMA

Frédéric Gueth, IRAM Grenoble ALMA Science Advisory Committee IRAM node of the ALMA Regional Center

Preparing for ALMA

- The ALMA project
- ALMA construction: status as of Sept. 2010
- ALMA Operations & Early Science
- The IRAM ARC node

- Atacama Large Millimeter/Submillimeter Array
- World-wide collaboration between Europe (ESO) North America (USA, Canada, Taiwan) – Eastern Asia (Japan, Taiwan) – Chile
 - Main array: 50 X 12 m antennas
 - ALMA Compact Array (ACA): 4x12m + 12x7m
 - Frequency range: 30—900 GHz (0.3—10 mm)
 - 16 km max. baseline (<10 mas ang. resolution)
 - ALMA is a spectro-imager instrument providing data cubes

Level 0 requirements

- The ability to detect spectral line emission from CO or CI in a normal galaxy like the Milky Way at a redshift of 3, in less than 24 hours of observation.
- The ability to image the gas kinematics in protostars and protoplanetary disks around young Sun-like stars at a distance of 150 pc.
- Provide precise images at 0.1 arcsec resolution.

Freq. coverage: 30—900 GHz
Bandwidth: 8 GHz x 2 polarizations

Band 7 @ IRAM

 All bands installed in one single cryostat (Front-End integration Centers)

Correlator

- The ALMA correlator provides ~70 modes
 - Process 8 GHz bandwidth x 2 polarizations
 - One, two, or four polarization products
 - Various sampling options
- Usual tradeoff bandwidth vs. resolution
 - 4x2 GHz bandwidth @ 244 kHz resolution
 - 4x32 MHz bandwidth @ 3.8 kHz resolution (0.005 km/s @ 230 GHz)

Imaging

- 50 antennas, 1225 baselines
- ALMA imaging simulateur in GILDAS and CASA
- 28 different antenna configurations, from compact to ~16 km, continuous reconfiguration
- Angular resolution λ/B down to 40 mas (100 GHz), 5 mas (900 GHz)

Short spacings: ACA observations + 4 single-dish antennas

Caution: not all projects can have ACA data!

Radius in UV plane

UV coverage

Sensitivity

- Collecting area = 7200 m² (~5x Bure), excellent site
 - \rightarrow Ex: rms = 8 μ Jy in 6h (8 GHz continuum, 230 GHz)
 - → On-line sensitivity estimator: http://www.eso.org/projects/alma/science/bin/sensitivity.html
- Point-source sensitivity: gain of <1 order of magnitude compared to current PdBI
- Resolution: gain of >1 order of magnitude vs. PdBI
- Surface brightness sensitivity: depends on angular resolution

Preparing for ALMA

- The ALMA project
- ALMA construction: status as of Sept. 2010
- ALMA Operations & Early Science
- The IRAM ARC node

OSF Site @ 2900 m altitude

San Pedro de Atacama

OSF Site @ 2900 m altitude

San Pedro de Atacama

Antenna construction areas

Main building: offices, control room, archive, technical labs

Antenna surface rms $< 25 \mu m$

AOS – ALMA Operation Site (5000 m)

Correlator

Two antennas interferometry (Nov. 2009)

Three antennas interferometry (Dec. 2009)

Preparing for ALMA

- The ALMA project
- ALMA construction: status as of Sept. 2010
- ALMA Operations & Early Science
- The IRAM ARC node

ALMA Operations

- One call for Proposals per year (TBC)
- One single Time Allocation Committee for NA+EU+EA
- Service observing
 - PI not involved in the observations
- Dynamic scheduling
 - Best project in the queue determined every SB (hour scale)
 - Depends on weather + configuration + priority + balance between partners

ALMA Operations

- Calibration and imaging pipeline
 - Final product = data cube
- Archive
 - Raw data + pipeline products
 - Public after 12 months
- ALMA Regional Centers (ARC)
 - Scientific operations & user support outside Chile
 - Contact point between users and ALMA
 - Three ARCs

ALMA Regional Center

European ARC

Core tasks → ESO Garching

- Call for proposals, Phase I, Phase II
- Basic user support (helpdesk)
- Data product support = delivering data and software
- ALMA archive operations

http://www.eso.org/sci/facilities/alma/arc/

Same services are provided at Charlottesville (NAASC) and Tokyo

European ARC

Additional tasks \rightarrow ARC nodes

- User formation & community development
- Face-to-face support (core task)
- Special projects (extended archive & data reduction support)
- New developments

Seven ARC nodes in Europe

- INAF Bologna (I)
- Univ. Bonn (D)
- IRAM (F,D,E)
- Leiden Obs. (NL)
- Manchester Obs. (UK)
- Onsala Obs. (S,DK,SF)
- Prague (CZ)

- All nodes open to all European scientists but target own community
- IRAM → French, German, and Spanish communities

ALMA observing time

- No guaranteed time
- One single TAC for NA+EU+EA
- A world-wide collaboration
 - EU 33.75%, NA 33.75%, EA 22.5%, Chile 10%
 - In ESO: D~21%, F~16%, E~9%
 - In ALMA: D~7%, F~5.5%, E~3%
- Whatever the actual numbers: expect huge competition
- Timescale: ALMA Early Science: 2011

Full operations: 2013

ALMA Early Science

ALMA Early Science

- 16 antennas
- 4 bands : B3, B6, B7, B9
- Baseline up to 250 m

ALMA	IRAM	GHz
В3	B1	84-116
В6	В3	211-275
B7	B4	275-373
В9		602-720

Limitations

- Only ~30% observing time → limited number of projects
- No ACA, no short-spacings
- No pipeline
- Restrictions in terms of observing modes

Preparing for ALMA

- The ALMA project
- ALMA construction: status as of Sept. 2010
- ALMA Operations & Early Science
- The IRAM ARC node

Why an ARC node at IRAM?

- Strong IRAM involvement in ALMA construction
- Already existing center of expertise in mm interferometry
 - Expertise on pipeline, calibration, imaging, atmospheric phase correction, data analysis...
 - Close link with technical groups
- Plateau de Bure user support → only delta effort
- IRAM users are all potential ALMA users → IRAM community in best possible position to get time on ALMA

User formation

- · Plateau de Bure
- Visitors
- · Schools

Developments

- · New algorithms & soft.
- · ALMA software

User support

- Helpdesk
- · f2f support

User formation

- · Plateau de Bure
- Visitors
- Schools

Developments

- · New algorithms & soft.
- · ALMA software

User support

- Helpdesk
- f2f support

Key goal

User formation

- · Plateau de Bure
- Visitors
- Schools

Developments

- New algorithms & soft.
- · ALMA software

User support

- · Helpdesk
- f2f support

Forming IRAM staff

- · OT/CASA tests
- · IRAM staff @ Chile

7th IRAM mminterferometry school

- 4—8 October 2010
- Same program as in 2008, more tutorials
- Registration open
- LOC: C.Berjaud, A.Castro-Carrizo, F.Gueth (chair), K.Zacher school2010@iram.fr

ALMA workshop

Observing with ALMA: Early Science

- 3 days workshop November 29th-December 1st 2010
- Goal: give practical information people need to submit a proposal
 - ALMA construction status
 - · The ALMA Observing Tool
 - $\cdot casa$

- Details of the 1st Call for Proposals
- Correlator modes, configurations, short-spacings, observations mode, operation mode
- Contact the LOC: alma2010@iram.fr

f2f support

- Main goal of the ARC node
- Extend PdBI f2f support to ALMA
 - Local contact assigned to each project
 - Use existing infrastructures and procedures
 - Travels to Grenoble will be funded by IRAM (same rules as PdBI)
 - Must be in place for Early Science = end 2011

f2f support

- Main goal of the ARC node
- Extend PdBI f2f support to ALMA
 - Local contact assigned to each project
 - Use existing infrastructures and procedures
 - Travels to Grenoble will be funded by IRAM (same rules as PdBI)
 - Must be in place for Early Science = end 2011

http://www.iram-institute.org > ARC Node

Conclusions

Progress in ALMA construction

- First call for proposals ALMA Early Science: end of 2010?
- Full ALMA operations: 2013
- Expect huge competition
- Prepare for ALMA with IRAM
 - → Plateau de Bure interferometer
 - → ALMA user support (ARC node)