

Large-field imaging

Frédéric Gueth, IRAM Grenoble

7th IRAM Millimeter Interferometry School 4–8 October 2010

Large-field imaging The problems

- The field of view is limited by the antenna primary beam width Solution: observe a **mosaic** = several adjacent overlapping fields
- The field of view is limited because of the "2D approximation" Solution: use appropriate algorithm if necessary
- The largest structures are filtered out due to the lack of the short spacings Solution: add the **short spacing** information
- Deconvolution algorithms are not very good at recovering small- *and* large-scale structures

Solution: try Multi-Scale CLEAN, Multi-Resolution CLEAN, \ldots

Mosaics Primary beam width

Gaussian illumination $\implies B \sim \text{Gaussian Beam of } \mathbf{1.2} \lambda / \mathbf{D}$ FWHM

	Frequency	Wavelength	Field of View
Plateau de Bure $D = 15 \text{ m}$	85 GHz	$3.5 \mathrm{mm}$	58"
	$100 \mathrm{~GHz}$	3.0 mm	50"
	$115 \mathrm{~GHz}$	$2.6 \mathrm{mm}$	43″
	$215~\mathrm{GHz}$	1.4 mm	23"
	$230 \mathrm{~GHz}$	$1.3 \mathrm{mm}$	22"
	$245~\mathrm{GHz}$	1.2 mm	20"

Short Spacings The problem

Missing short spacings :

- Shortest baseline $B_{\min} = 24$ m at Plateau de Bure
- Projection effects can reduce the minimal baseline but baselines smaller than antenna diameter D can never be measured
- In any case: lack of the short spacings information

Consequence :

- The most extended structures are filtered out
- The largest structures that can be mapped are $\sim 2/3$ of the primary beam (field of view)
- Structures larger than $\sim 1/3$ of the primary beam may already be affected

Short Spacings Example

Without short spacings

With short spacings

 $^{13}\mathrm{CO}$ (1–0) in the L1157 protostar (Gueth et al. 1997)

Simulations of small source + extended cold/warm layer

Lack of short spacings can introduce complex artifacts leading to wrong scientific interpretation

Short Spacings Simulations

Short Spacings Spatial frequencies

- \bullet A single-dish of diameter D is sensitive to spatial frequencies from $\mathbf{0}$ to \mathbf{D}
- An interferometer baseline B is sensitive to spatial frequencies from $\mathbf{B} \mathbf{D}$ to $\mathbf{B} + \mathbf{D}$

$(B+D)/\lambda$

An interferometer measures the **convolution** of the "true" visibility with the **antenna transfer function**

Radius in UV plane

No short-spacings

Radius in UV plane

Single-dish measurement (same antenna diameter)

Radius in UV plane

Interferometer with smaller antennas

Radius in UV plane

Small interferometer + Single-dish measurement

Radius in UV plane

Single-dish measurement (larger antenna diameter)

Radius in UV plane

Short Spacings Short spacings from SD data

- Combine SD and Interferometric maps in the image plane
- Joint deconvolution (MEM or CLEAN)
- **Hybridization**: Combine SD and Interferometric maps in the uv plane
- Combine data in the uv plane before deconvolution
 - **1.** Use the 30–m map to simulate what would have observed the PdBI, i.e. extract "pseudo-visibilities"
 - **2.** Merge with the interferometer visibilities
 - 3. Process (gridding, FT, deconvolution) all data together

This drastically improves the deconvolution

Short Spacings Extracting visibilities

SD map = SD beam * Sky

Int. map = Dirty beam * (Int beam \times Sky)

- Image plane Gridding of the single-dish data \longrightarrow SD Beam * Sky
- uv plane Correction for single-dish beam \longrightarrow Sky
- Image plane Multiplication by interferometer primary beam \longrightarrow Int Beam \times Sky
- uv plane Extract visibilities up to $\mathbf{D_{SD}} \mathbf{D_{Int}}$
- uv plane Apply a **weighting factor** before merging with the interferometer data

Short Spacings Extracting visibilities

Weighting factor to SD data :

- Produce different images and dirty beams
- Methods are not perfect, noise \longrightarrow weight to be optimized
- Usually, it is better to **downweight the SD data** (as compared to natural weight)

Optimization :

- Adjust the weights so that there is almost **no negative sidelobes** while keeping the highest angular resolution possible
- Adjust the weights so that the weight densities in 0–D and D–2D areas are equal \longrightarrow mathematical criteria

Short spacings Example

Without short spacings

With short spacings

 $^{13}\mathrm{CO}$ (1–0) in the L1157 protostar (Gueth et al. 1997)

Short spacing Example

 N_2H^+ in the IRAM 04191 protostar (Belloche et al. 2004)

Short spacing Example

CO 1–0 in the direction of NRAO 530, Pety et al. 2008

Mosaics Interferometer field of view

Measurement equation of an interferometric observation:

 $\mathbf{F} = \mathbf{D} \ast (\mathbf{B} \times \mathbf{I}) + \mathbf{N}$

- F = dirty map = FT of observed visibilities
- $D = \text{dirty beam} (\longrightarrow \text{deconvolution})$
- B = primary beam = FT of transfer function
- I = sky brightness distribution = FT of "true" visibilities
- N = noise distribution

\bullet An interferometer measures the product $\mathbf{B}\times\mathbf{I}$

B ~ Gaussian → primary beam correction possible (proper estimate of the fluxes) but strong increase of the noise

Mosaics Primary beam width

Gaussian illumination $\implies B \sim \text{Gaussian Beam of } \mathbf{1.2} \lambda / \mathbf{D}$ FWHM

	Frequency	Wavelength	Field of View
Plateau de Bure $D = 15 \text{ m}$	85 GHz	$3.5 \mathrm{mm}$	58"
	$100 \mathrm{~GHz}$	3.0 mm	50"
	$115 \mathrm{~GHz}$	$2.6 \mathrm{mm}$	43″
	$215~\mathrm{GHz}$	1.4 mm	23"
	$230 \mathrm{~GHz}$	$1.3 \mathrm{mm}$	22"
	$245~\mathrm{GHz}$	1.2 mm	20"

Mosaics Mosaicing with the PdBI

Mosaic :

- Field spacing = half the primary beam FWHM i.e. one field each 11" at 230 GHz
- Observations with two receivers: choice of the spacing for one frequency \longrightarrow under- or oversampling for the other frequency **NO LONGER VALID**
- Mosaic at $3 \text{ mm} \longrightarrow$ no mosaic at 1 mm **WITH NEW RECEIVERS**

Observations :

Fields are observed in a loop, each one during a few minutes → similar atmospheric conditions (noise) and similar uv coverages (dirty beam, resolution) for all fields

Mosaics Mosaicing with the PdBI

Size of the mosaic :

• Observing time to be minimized, uv coverage to be maximized \longrightarrow maximal number of fields ~ 20

Calibration :

- Procedure identical with any other Plateau de Bure observations (only the calibrators are used)
- Produce one dirty map per field

Short spacings :

 Visibilities from 30−m data are computed and merged with Plateau de Bure data for each field → process as a normal mosaic

Mosaics Mosaic reconstruction

• Forgetting the effects of the dirty beam:

$$F_i = B_i \times I + N_i$$

- This is similar to several measurements of I, each one with a "weight" B_i
- Best estimate of I in least-square formalism (assuming same noise):

$$\mathbf{J} = \frac{\sum_i \mathbf{B}_i \mathbf{F}_i}{\sum_i \mathbf{B}_i^2}$$

• J is homogeneous to I, i.e. the mosaic is **corrected for the primary beam attenuation**

Mosaics Noise distribution

$$J = \frac{\sum_{i} B_{i} F_{i}}{\sum_{i} B_{i}^{2}} \implies \sigma_{J} = \sigma \frac{1}{\sqrt{\sum B_{i}^{2}}}$$

The noise depends on the position and strongly increases at the edges of the field of view

In practice :

- Use truncated primary beams $(B_{\min} = 0.1 0.3)$ to avoid noise propagation between adjacent fields
- Truncate the mosaic

Position (arbitrary unit)

Mosaics Mosaic deconvolution

- Linear mosaicing: deconvolution of each field, then mosaic reconstruction Non-linear mosaicing: mosaic reconstruction, then global deconvolution
- The two methods are not equivalent, because the deconvolution algorithms are (highly) non-linear
- Non-linear mosaicing gives better results
 - sidelobes removed in the whole map
 - better sensitivity
- Plateau de Bure mosaics: non-linear joint deconvolution based on CLEAN

Mosaics Example

$H_2 + CO(2-1) EHV + continuum 1.3 mm in HH211$

Mosaics Example

$H_2 + CO(2-1) EHV + continuum 1.3 mm in HH211$

CO 1–0 in TT Cygni, Olofsson et al. 2000

CO 1–0 in TT Cygni, Olofsson et al. 2000

CO in the warped galaxy NGC 3718 (Krips et al. 2005)

(Stanke et al. 2004)

Mosaics and short spacings The problem

Effect of missing short spacings more severe on mosaics than on single-field images:

- Extended structures are filtered out **in each field**
- Lack of information on an **intermediate scale** as compared to the mosaic size
- Possible artefact: extended structures split in several parts
- In most cases cases, adding the short spacings is required

Mosaics and short spacings Simulations

Mosaics and short spacings The problem

Effect of missing short spacings more severe on mosaics than on single-field images:

- Extended structures are filtered out **in each field**
- Lack of information on an **intermediate scale** as compared to the mosaic size
- Possible artefact: extended structures split in several parts
- In most cases cases, adding the short spacings is required

However, mosaics are able to recover part of the short spacings information

Mosaics and short spacings Image formation

• An interferometer is sensitive to all spatial frequencies from B-D to $B+D \implies$ it measures a **local average** of the "true" visibilities

(B+D)/ λ

Mosaics and short spacings Image formation

- An interferometer is sensitive to all spatial frequencies from B-D to $B+D \implies$ it measures a **local average** of the "true" visibilities
- Measured visibilities: $V_{\text{mes}} = FT(B \times I) = \mathbf{T} * \mathbf{V}$ where T is the transfert function of the antenna
- Pointing center $(\ell_p, m_p) \neq$ Phase center: phase gradient across the antenna aperture

$$V_{\rm mes}(u,v) = \left[T(u,v)\,\mathrm{e}^{-2i\pi(u\ell_p+vm_p)}\right] * V(u,v)$$

- Combination of measurements at different (ℓ_p, m_p) should allow to derive V
- The recovery algorithm is a simple Fourier Transform (Ekers & Rots)

Conclusions

- Mosaicing is a **standard observing mode** at Plateau de Bure
- Adding short spacings from the IRAM 30–m is an **standard procedure** (box in proposal form)
- ALMA designed from the beginning to include the short-spacings (ACA, SD antennas) but not for all projects
- New developments to come: on-the-fly interferometry

