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System Temperature

� The output power of the receiver is linked to the Antenna System 
Temperature by:

PN = ° k Tant ¢ º

� On source, the power is PN + Pa with 
Pa = ° k Ta ¢ º

� Ta is called the antenna temperature of the source.
� This is not a purely conventional definition.

It can be demonstrated that Pa is the power the receiver(+antenna) would deliver when 
observing a blackbody (filling its entire beam pattern) at the physical temperature Ta.

� Thus, Tant is the temperature of the “equivalent’’ blackbody seen by the 
antenna (in the Rayleigh Jeans approximation)



System Temperature

� Tant is given by (just summing powers…)
Tant = Tbg cosmic background

+ Tsky ¼ ´f (1-exp(-¿atm) Tatm   sky noise
+ Tspill ¼ (1-´f-´loss) Tground           ground noise pickup
+ Tloss ¼ ´loss Tcabin                            losses in receiver cabin
+ Trec receiver noise 

� This is a broad-band definition. It is a DSB (Double Side Band) 
noise temperature

� Many astronomical signals are narrow band. g being the image 
to signal band gain ratio, the equivalent DSB signal giving the 
same antenna temperature as a pure SSB signal is only

PDSB = (1 x PSSB + g x 0) / (1 + g)



System Temperature

� We usually refer the system temperature and antenna 
temperature to a perfect antenna (´f = 1) located 
outside the atmosphere, and single sideband signal:

Tsys = (1+g)  exp(¿atm)Tant / ´f

TA
* = (1+g)  exp(¿atm)Ta / ´f 

� This antenna temperature TA
* is weather independent, 

and linked to the source flux Sº by an antenna 
dependent quantity only

TA
* = ´a A Sº / 2k



Noise Equation

� The noise power is Tsys, the signal is TA
* , and there are 

2¢º ¢t independent samples to measure a correlation 
product in a time ¢t, so the Signal to Noise is

Rsn = (2¢º ¢t)1/2 TA
* / Tsys

� On a single baseline, the noise is thus

� this is √2 less than that of a single antenna in total power
� but √2 worse than that of an antenna with the same total collecting 

area
� this sensitivity loss is because we ignore the autocorrelations



Noise Equation

� With quantization 

� With ´q the quantization efficiency
� Noise is uncorrelated from one baseline to another
� There are n(n-1)/2 baselines for n antennas
� So the point source sensitivity is 

� Where                     is the Jy/K conversion factor of one antenna



Noise on Amplitude and Phase

� For 1 baseline, this varies with Signal to Noise ratio
� On Amplitude

� On Phase
� Source detection is much easier on the phase than on the 

amplitude, since for S/N = 1, ¾Á = 1 radian = 60°.



Noise in Images

� The Fourier Transform is a linear combination of the visibilities 
with some rotation (phase factor) applied. How do we derive the 
noise in the image from that on the visibilities ?

� Noise on visibilities
� the complex (or spectral) correlator gives the same variance on the 

real and imaginary part of the complex visibility <εr
2> = <εi

2> = <ε2> 
� Real and Imaginary are uncorrelated <εrεi> = 0 

� So rotation (phase factor) has NO effect on noise



Noise in Imaging: first order

� In the imaging process, we combine (with some weights) the individual 
visibilities Vi. At the phase center:

I = (Σ wiVi ) / Σwi 

� for a point source at phase center, Vi = V +εRi, εRi being the real part of 
the noise

I = (Σ wi(V+ εRi) ) / Σwi

� So its expectation is I = V, as < εRi > = 0

� As <εRi εRj> = 0, its variance is 
σ2 = <I2> -<I>2 = = (Σ wi

2 < εRi
2 > ) / (Σwi )2

� Now using < εRi
2 > = σi

2   and the natural weights wi = 1/ σi
2 we have

1/σ2 = Σ (1/σi
2)

� Which is true anywhere else in the image by application of a phase 
shift



Weighting and Tapering

� When using non-natural weights (wi # σi
2), either as a 

result of Uniform or Robust weighting, or due to 
Tapering, the noise (for point sources) increases by 
wrms / wmean

wrms = ( (Σ(WT)2)/n )1/2

wmean = (ΣWT)/n

� Robust weighting improves angular resolution
� Tapering can be used to smooth data



Noise in Imaging

� Gridding introduces a convolution in UV plane, hence a 
multiplication in image plane

� Aliasing folds the noise back into the image
� Gridding Correction enhances the noise at edge
� Primary beam Correction even more...



Extended Source Sensitivity



Extended Source Sensitivity

� This is right only for sources just filling one synthesized beam θs.
� For more extended sources, it is not appropriate to count the number 

of synthesized beams nb and divide by √nb.
� This only gives a lower limit...
� Why ?

� Averaging nb beams is equivalent to smoothing
� This is equivalent to tapering, i.e. to ignore the longest baselines...
� This increases the noise ...

� Moreover, for very extended structures, missing flux may become a 
problem.



Bandwidth Effects

� The correlator channels have a non-square shape, i.e. their responses to narrow 
band and broad band signals differ.

� Hence the noise equivalent bandwidth ¢ºN is not the channel separation ¢ºC, 
neither the effective resolution ¢ºR

� These effects are of order 15-30 % on the noise.
� In practice, ¢ºN > ¢ºC, i.e. adjacent channels are correlated.
� Noise in one channel is less than predicted by the Noise Equation when using the 

channel separation as the bandwidth.
� But it does not average as √nc when using nc channels...
� When averaging nc ≫ 1 i.e. many channels, the bandpass becomes more or less 

square: the effective bandwidth becomes nc ¢ºC.
� Consequence: There is no (simple) exact way to propagate the noise information 

when smoothing in frequency.
� Consequence: In GILDAS software, it is assumed ¢ºN = ¢ºC = ¢ºR, and a √nc

noise averaging when smoothing



Reweighting in Frequency ?

� The receiver bandpass is not flat: Tsys depends on º
� Hence the weights depend on the channel number i
� When synthesizing broad band data, should we take the weights into account 

?
� For pure continuum data

� Yes: it improves S/N
� But: ill-defined equivalent central frequency, and undefined equivalent 

detection bandwidth
� so, may be: it depends on your scientific case...
� Weighting could take into account a spectral index, for example…

� For line data
� No: could degrade S/N if the line shape is not consistent with the weights
� No: undefined bandwidth: does not allow to compute an integrated line flux

� In practice: not implemented in current GILDAS software. Could be useful for 
specific weak source searches.  See “Optimal Filtering” later



Decorrelation

� Each visibility is affected by a random atmospheric phase 
� Assuming a point source at the phase center, 

� the expectation of I is now only
� The noise does not change,
� but the signal to noise is decreased.
� the Signal is spread around the source (seeing).
� So the effect is different for an extended source...
� This may limit the Dynamic range, and the effective noise level may be 

much higher than the thermal noise.
� The result depends on the source structure.
� There is so far no good simulation tool to evaluate the importance of this 

effect. It is not fully random at Plateau de Bure…



Estimating the Noise

� The weights are used to give a prediction of the noise level in the images.
� Predictions displayed by UV_MAP and UV_STAT
� Carried on in the image headers (aaa1%noise variable for an image displayed 

with GO MAP, GO NICE or GO BIT)
� but does not handle properly the noise equivalent bandwidth
� neither the effects of decorrelation...
� GO RMS will compute the rms level on the displayed image. May be biased by 

the source structure
� GO NOISE will plot an histogram of image values, and fit a Gaussian to it to 

determine the noise level. Will be less biased than GO RMS.
� Both GO NOISE and GO RMS will include dynamic range effects (i.e. give you 

the “true” noise of your image, rather than the theoretical).



Noise on Mosaics…

� GO NOISE does (yet) not work on mosaics…
� Because noise is NOT uniform on mosaics…
� J = Σ Bi Fi / Σ Bi

2

� Let us define W = Σ Bi
2

� If we instead use L = J  W1/2

� The noise on L is uniform (provided all fields had similar 
noise) of value ¾L

� It corresponds to the noise at the most sensitive place in the 
mosaic

� L/¾L is a signal-to-noise image
� Valid also for 1 field mosaic… L = F



Conclusions

� mm interferometry is not so difficult to understand
� even if you don't, the noise equation is all you need
� the noise equation

� allows you to check quickly if a source of given brightness Tb can be 
imaged at a given angular resolution µS and spectral resolution  ¢ º (n is 
the number of antennas, µP their primary beam width, and ´ an efficiency 
factor of order 0.5 – 0.8, and t the integration time…)

� Tsys is easy to guess: the simplistic value of 1 K per GHz of observing 
frequency is a good enough approximation in most cases.

� and youyouyouyou know Tb because you know the physics of your source!
� that is (almost) all you need to decide on the feasibility of an

observation...



II – Low Signal to Noise

� When is a source detected ?
� What parameters can be derived ?



Low Signal to Noise

� A nice case
� Observers advantage

�You don’t have to worry about bandpass & flux 
calibration…

� Theorists advantage
�The data is always compatible with your favorite model

� A necessary challenge
� Mm interferometry is (almost) always sensitivity limited
� But with proper analysis, you may still invalidate (falsify) 

some model/theory
� So let us see…



Low S/N -- Continuum

� Rule 1: do not resolve the source
� Rule 2: get the best absolute position before
� Rule 3: Use UV_FIT to determine the S/N ratio
� Rule 4: the 3-4-5 rule about position accuracy

< 1/10th of beam

- >3 ¾ signal for detection
- Fix the position
- Use an appropriate 
source size

Unknown 

- 5 ¾ signal for detection
- make an image to locate 
- Use as starting point
- Do not fix the position
- Use an appropriate 
source size

About the beam

- >4 ¾ signal for detection
- Do not fix the position
- Use an appropriate 
source size



Continuum source parameters

� Sources of unknown positions have fluxes biased by 1 to 2 ¾
� Free position 1 ¾ bias
� Position accuracy = beam/(S/N ratio)
� With < 6 ¾ , cannot measure any source size

� divide data in two, shortest baselines on one side, longest on 
another. Each subset get a 4.2 ¾ error on mean flux.

� Error on the difference is then just 3 ¾, i.e. any difference must be 
larger than 33 % to be significant

� Mean baseline length ratio for the subsets is at best  3.
� No smooth source structure can give a visibility difference larger 

than 30 % on such a baseline range ratio.
� If size is free,  error on flux increases quite significantly



Example: HDF source

� 7 ¾ detection of the strongest source 
in the Hubble Deep Field. Note that 
contours are visually cheating (start 
at 2 ¾ but with 1 ¾ steps).

Attempt to derive a size. Size can be 
as large as the synthesized beam... 
Note that the integrated flux increases 
with the source size.



Line sources: things get worse…

� Line velocity unknown: observer will select the brightest part of the 
spectrum � bias

� Line width unknown: observer may limit the width to brightest part of the 
spectrum � another bias

� If position is unknown, it is determined from the integrated area map (or 
visibilities) made from the tailored line window specified by the 
astronomer. This gives a biased total flux !.

� All these biases are positive (noise is added to signal).
� Any speculated extension will increase the total flux, by enlarging the 

selected image region (same effect as the tailored line window).
� Net result 1 to 2 ¾ positive bias on integrated line flux.
� Things get really messy if a continuum is superposed to the weak line...



Line sources: How ?

� Point source or unresolved source (< 1/3rd of 
the beam)
�Determine position (e.g. from 1.3 mm continuum if 

available, or from integrated line map if not, or from 
other data)

�Derive line profile by fitting point or small (fixed 
size), fixed position, source into UV spectral data

�Gives you a flux as function of velocity/frequency
�Fit this spectrum by Gaussian (with or without 

constant baseline offset, depending on whether the 
continuum flux is known or not)



Line sources: How ?

� Extended sources, and/or velocity gradient
�Fit multi-parameter (6 for an elliptical gaussian) 

source model for each spectral channel into UV 
data

�Consequence : signal in each channel should be  
>6 ¾ to derive any meaningful information.

�Strict minimum is 4 ¾ (per line channel...) to get 
flux and position for a fixed size Gaussian

�Velocity gradients not believable unless even 
better signal to noise is obtained per line channel...



Line sources: Conclusions

� Do not believe velocity gradient unless proven at a 5 ¾
level. Requires a S/N larger than 6 in each channel. 
Remember that position accuracy per channel is the 
beamwidth divided by the signal-to-noise ratio...

� Do not believe source size unless S/N > 10 (or better)
� Expect line widths to be very inaccurate
� Expect integrated line intensity to be positively biased 

by 1 to 2 ¾
� even more biased if source is extended
� These biases are the analogous of the Malmquist bias



Examples

� Examples are numerous, specially for high redshift CO.
� e.g. 53 W002 :

� OVRO (Scoville et al. 1997) claims an extended 
source, with velocity gradient. Yet the total line 
flux is 1.5 § 0.2 Jy.km/s i.e. (at best) only 7 ¾ .

� PdBI (Alloin et al. 2000) finds a line flux of 1.20 §
0.15 Jy.km/s, no source extension, no velocity 
gradient, different line width and redshift.

� Note that the line fluxes agree within the errors...
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Example: (no) Velocity Gradients

� Contour map of dust emission at 1.3 mm, with 2 ¾ contours
� The inserts are redshifted CO(5-4) spectra from the indicated directions
� A weak continuum (measured independently) exist on the Northern source
� The rightmost insert is a difference spectrum (with a scale factor applied, and 

continuum offset removed): No SIGNIFICANT PROFILE DIFFERENCE!
� i.e. No Velocity Gradient measured.



How to analyze weak lines ?

� Perform a statistical analysis (e.g. Â2, or other statistical test) comparing 
model prediction to observations, i.e. VISIBILITIES

� The GILDAS software offer tools to compute visibilities from an image / 
data cube (task UV_FMODEL)

� Beware that (original) channels are correlated ( ¢ºN > ¢ºC )
� Appropriate statistical tests can actually provide a better estimate of the 

noise level than the prediction given by the weights.
� Up to you to develop the model adapted to your science case (and

select the proper statistical tool for your measurement).
� GILDAS even provides minimization tools: the ADJUST command (but 

with no guarantee of suitability to your case, though. Expertise
recommended !).



Example of Analysis

� Error bars derived from a Â2 analysis in the UV plane, using a 
line radiative transfer model for proto-planetary disks.



Example of Analysis

� A typical data cube from which the previous parameters were derived. It 
has quite decent S/N, and one can recognize the rotation pattern of a 
Keplerian disk



Example of Analysis

• A (really) low Signal to Noise image of the protoplanetary disk of DM Tau in the main
group of hyperfine components of the N2H

+ 1-0 transition.
• It really looks like absolute nothing... but a treasure is hidden inside the noise!



Example of Analysis

� Best fit integrated profile for the N2H+ 1-0 line, derived from a Â2 analysis in the 
UV plane, using a line radiative transfer model for proto-planetary disks, 
assuming power law distributions, and taking into account the hyperfine structure.

� The observed spectrum is the integrated spectrum over a 6x6” area (from the 
Clean or Dirty image, does not really matter). The noise is about 11 mJy.



Example of Analysis

� Signal-to-noise maps of the integrated N2H+ 1-0 line emission, using the 
best profile derived from the Â2 analysis in the UV plane as a (velocity) 
smoothing kernel (optimal filtering).

� 7 ¾ detection for DM Tau, 6 ¾ detection for LkCa 15
� Nothing for MWC 480



ALMA won’t (always) save you !

� ALMA is only 7 times more sensitive than PdB (at 3mm, better 
ratio at higher frequencies)

� on the N2H+ case, it will (in a mere 8 hours), obtain a peak 10 ¾
detection per channel, which is quite good, but will barely "see" 
the weakest hyperfine components. 

� but if the resolution is increased just to 2”, the S/N will drop by a 
factor 3 (in this favorable case, as the structure remain 
unresolved in one direction...)

� and a search for the 15N substitute remain beyond (reasonable) 
reach !.

� This is a simple molecule. Things a little more complex, e.g. 
HCOOH, HC3N will be tough

� you can transpose this example for extragalactic studies



Optimal Filtering

� Changing the frequency dependence of weights and 
signal to adjust for a continuum spectral index

� Convolve by expected line profile for blind line search

� If line profile unknown, convolve by several possible 
ones, and see if one convolution leads to a significant
signal



Stacking on weak sources

� Idea: you have N sources of known positions in your field
� hope to get √N improvement in S/N if all are identical
� « Shift and Add » in image plane
� But you do not deconvolve each source correctly (each has low 

S/N)
� So sidelobes may reduce the √N  improvement
� To what extent ?
� Depends on 

� Source distribution
� UV coverage

� E.g. extreme case 1 baseline, 2 sources just separated by the 
interfrange � destructive interference, no signal at all !



Stacking on weak sources

� Equivalent to « Phase Rotate and Accumulate » in UV plane
� For each source, 

� phase-shift the original UV table to the source position
� Append the resulting visibilities to a common UV table

� At the end, image that common UV table
� N times more visibilities � √N  gain ?
� NO: they are linearly correlated (just a phase factor)
� Just a linear regression problem (even for mosaics)

� Generate a model UV table 
� For each source and each field
� Apply primary beam attenuation
� Compute source visibility
� Accumulate into model UV table

� Linear fit to find the best scale factor to match the observations.  
� This process gives the correct error estimate given the source 

distribution and UV coverage


