Introduction to mm-radioastronomy IRAM mm-school, Oct 10, 2016 Roberto Neri, IRAM

Literature

Copyrighted Material Saas-Fee Advanced Course 21

Lecture Notes 1991 Swiss Society for Astrophysics and Astronomy

W.B. Burton B.G. Elmegreen R. Genzel The Galactic Interstellar Medium

Springer-Verlag

4. Astrochemistry lecture series by Ewine van Dishoeck:

http://www.strw.leidenuniv.nl/~sanjose/astrochem

- H.Hertz (1888)
 - Hertz oscillator : first radio wave transmitter
 - existence of electromagnetic waves
 - confirms Maxwell's theory
- G.Marconi (1901)
 - first transatlantic radio communication @ 820 KHz
- K.Jansky (1932)
 - azimuth rotating antenna @20.5 MHz
 - discovery of cosmic radio emission (GC)
 - $-1 Jy = 10^{-26} W.m^{-2}.Hz^{-1}$

- K.Jansky (1932)
 - azimuth rotating antenna @20.5 MHz
 - discovery of cosmic radio emission (GC)
 - $-1 Jy = 10^{-26} W.m^{-2}.Hz^{-1}$

- G.Reber (1938)
 - first parabolic radio dish @ 160 MHz (=1.8 m)
 - confirms Jansky's discovery
 - first radio survey

• G.Reber (1944, ApJ, 100, 279)

- G.Reber (1944, ApJ, 100, 279)
 - first parabolic radio dish @ 160 MHz (=1.8 m)
 - confirms Jansky's discovery
 - first radio survey no detection @ 900 and 3300 MHz
- A.Penzias and R.Wilson (1965, ApJ, 142, 419)
 - discovery of the CMB @ 41 GHz

- HI @ 21 cm : Ewen & Purcell 1951 ; Oort & Muller 1951
- OH @18 cm: Weinreb et al. 1963
- 1^{st} polyatomic molecule in 1968: NH₃ (Cheung et al.)
- H2O @ 1.4 cm (22 GHz) : Cheung et al. 1969
- start of UV astronomy: H_2 in 1970
- 1970: CO by Wilson et al.
- many more molecules, more and more complex (e.g. C_2H_5COOH), and more and more long

Historical Overview : detected molecules

Historical Overview : some (sub)mm-Telescopes

- 1964: Haystack 37-m tel. (λ>6mm)
- 1965: Green Bank 140ft telescope (1>6mm)
- 1969: Kitt Peak 36'/12m telescope (1>1mm)
- 1970: Effelsberg 100m telescope (A>3mm)
- 1982: Nobeyama 45m telescope (1>2mm)
- 1984: IRAM 30m telescope (λ>0.8mm)
- 1988: CSO 10.4m telescope (л>0.3mm)
- 1990: IRAM Plateau de Bure Interferometer (1>0.8mm)
- 2000: GBT 105m telescope (λ >3mm)
- 2004: APEX (λ>0.3mm)
- 2006: LMT (¹>0.8mm)
- 2012: ALMA (λ>0.1mm)

- visible = hot matter = stars/HII between 10³ and 10⁵ K
- millimeter = cold matter = dust/molecules between 10 and 100 K

 \implies stars are born in cold matter

hv = kT 4.3 K = 90 GHz = 3 cm⁻¹

(sub)mm-telescopes

 need for powerful instruments to observe astronomical targets up to the EoR (z=6)

sensitivity and angular resolution

> large telescopes e.g. ALMA, NOEMA/30m

 \implies continuum and heterodyne receivers $R = 10^7 - 10^8$

 water vapor reduces the ability to observe in the mm-range from the ground

 \implies high altitude sites i.e. above 2000m

Telescope	Altitude	Frequencies
EFFELSBERG 100m	320	<90 GHz
ATCA	240	<105 GHz
GBT	320	<115 GHz
NOEMA/30M	2500/2800	< 380 GHz
SMA 8	4030	<700 GHz
LMT	4600	<350 GHz
ALMA 50	5000	<1000 GHz

advantages of interferometers

- high angular resolution
 - ➢ @ 230 GHz: 0.2" with NOEMA; 0.00002" with VLBI
- large collective area
 - > NOEMA = 50-meter antenna; ALMA = 80-meter antenna
- > no need of reference sky position (gain of a factor $\sqrt{2}$ in sensitivity)
- flatter baselines, depend less on receiver/atmosphere stability
- field of view with many independent pixels good noise statistics makes possible secure detections down to 4 sigma
- > well suited for special observations e.g. polarimetry, SZ
- accurate source positions
- filter out extended (foreground/background) emission

- mm-astronomy deals with
 - continuum emission: free-free, dust, synchrotron, compton scattering, SZ, ...
 - line emission: mostly molecules but also atoms
 - inter- stellar/galactic medium in various phases
 - matter in ionized, atomic, molecular state, dust grains, etc.
 - temperature, density of the matter

- > HII regions T~ 10^4 K, n= 10^1 - 10^6 /cm³ e.g. H, He
- > molecular clouds/cores T~10-10³K, n~10²-10⁸/cm³ e.g. 12 CO

Energies involved in molecular states

- electronic transitions
- vibrational transitions
- rotational transitions

- translational transitions
 → → →
- electronic/nuclear spin transitions

Energies involved in molecular states

- electronic transitions
- vibrational transitions
- rotational transitions
- translational transitions

Low-energy rotational transitions of small molecules lie at mm wavelengths

	2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12 atoms	
C	H ₂	C ₃ *	c-C ₃ H	Co*	C₅H	C₀H	CH ₃ C ₃ N	CH ₃ C ₄ H	CH ₃ C ₅ N	HC ₉ N	CoHo*	HC ₁₁ N	
	AIF	C ₂ H	I-C ₃ H	C ₄ H	I-H ₂ C ₄	CH ₂ CHCN	HC(O)OCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO	CH ₃ C ₆ H	C ₂ H ₅ OCH ₃ ?	C ₅₀ * 2010	
	AICI	C ₂ O	C ₃ N	C ₄ Si	C ₂ H ₄ *	CH ₃ C ₂ H	CH ₃ COOH	(CH ₃) ₂ O	(CH ₂ OH) ₂	C ₂ H ₅ OCHO	n-C ₃ H ₇ CN	C70*	
	C2**	C ₂ S	C ₃ O	I-C ₃ H ₂	CH ₃ CN	HC₅N	C7H	CH ₃ CH ₂ OH	CH ₃ CH ₂ CHO			2010	
	СН	CH ₂	C ₃ S	c-C ₃ H ₂	CH ₃ NC	CH ₃ CHO	H ₂ C ₆	HC ₇ N					
	CH+	HCN	C ₂ H ₂ *	H ₂ CCN	CH ₃ OH	CH ₃ NH ₂	CH ₂ OHCHO	C₀H					
	CN	HCO	NH ₃	CH4*	CH ₃ SH	c-C ₂ H ₄ O	I-HC ₆ H*	CH ₃ C(O)NH ₂			MO	lecule	s in the ISM
	со	HCO+	HCCN	HC ₃ N	HC ₃ NH ⁺	H ₂ CCHOH	CH ₂ CHCHO (?)	C ₀ H ⁻				(08/2	2011)
	00	HCS ⁺	HCNH*	HC ₂ NC	HC ₂ CHO	C₀H ⁻	CH ₂ CCHCN	C ₃ H ₆					
	CP	HOC+	HNCO	HCOOH	NH ₂ CHO		H ₂ NCH ₂ CN		Colorn			. Malaaul	
	SiC	H ₂ O	HNCS	H ₂ CNH	C ₅ N				Cologne	e Data I	Base ro		ar Spectroscopy (CDMS)
	HCI	H ₂ S	HOCO*	H ₂ C ₂ O	I-HC4H*								
	KCI	HNC	H ₂ CO	H ₂ NCN	I-HC4N				• H_2 IS	by far t	the mos	st abunda	int but invisible @ mm-waves
	NH	MaCN	H ₂ CN	SiH.*	C-H2U3U				CO is	visible	in almo	ost all mr	n-windows
	NS	MaNC	H ₂ O ⁺	H-COH*	C-N ⁻				more	than 1	50 mol	ecules	
	NaCl	N ₂ H ⁺	c-SiCa	C.H-	0.01				obsei	rvations	s, labora	atory, the	ory
	он	N ₂ O	CH ₃ *	HC(O)CN					orgar	hic cher	nistry b	out also s	pecies with S,P,F,Cl,Fe,Si,
	PN	NaCN	C ₂ N ⁻						many	<pre>/ cation</pre>	s (HCO	⁺ , H ₂ O ⁺ ,) and few anions (CN^{-})
	SO	OCS	PH ₃ ?						many	/ radica	ls: CH,	\dot{C}_2H , \dot{OH} ,	HCO, CN,
	SO*	SO ₂	HCNO									2	
	SiN	c-SiC ₂	HOCN 2010										
	SiO	CO ₂ *	HSCN										
	SiS	NH ₂	H ₂ O ₂ 2011	Eth	vl-for	mate	C.H.C	CHO					
	CS	H3**				inace	25	•••••					
	HF 2010	H_2D^{\ast},HD_2^{\ast}											
	HD	SiCN											
	FeO ?	AINC											
	O ₂ 2011	SiNC											
	CF ⁺	HCP											
	SiH ?	CCP											
	PO	AIOH 2010											
	AIO	H ₂ O ⁺ 2010		(B	elloch	e et al	. 2009	with t	he 30r	n)			
	OH* 2010	H ₂ CI ⁺ 2010											
	CN- 2010	KCN 2010											
	SH* 2011	FeCN 2011											

Extragalactic Molecules (as of 06/2011)

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	>8 atoms
ОН	H ₂ O	H ₂ CO	c-C ₃ H ₂	CH ₃ OH	CH ₃ CCH		
со	HCN	NH ₃	HC ₃ N 2010	CH ₃ CN			C ₆₀ * 2010
H ₂ *	HCO ⁺	HNCO	CH ₂ NH				
CH **	C ₂ H	H ₂ CS?	NH ₂ CN				
CS	HNC	HOCO ⁺					
CH ⁺ **	N_2H^+	c-C₃H					
CN	OCS	H ₃ O ⁺					
SO	HCO						
SiO	H ₂ S						
CO ⁺	SO ₂						
NO	HOC ⁺						
NS	C ₂ S						
NH	H ₂ O ⁺ 2010						
OH ⁺ 2010							
HF 2010							

What can be observed in the mm-range?

Science	IRAM Time	Keyword
Galaxies @ high-z : LBG, SMM, ERO, RG	30%	"CSF history"
Nearby Galaxies : Spirals, (U)LIRGs	30%	"dynamics + structure"
YSO : Prestellar Clouds \rightarrow T-Tauri Stars	30%	"SF + evolution"
Evolved Stars	5%	"mass loss"
Chemistry, Solar System,	5%	

VLBI	10 days	

mm-astronomy ...

- ... not anymore in a proof-of-concept stage
- ... belongs to mainstream science

Protostellar disk of HL Tau

100 AU = 0.7" @ 140 pc

➢ inner 30 AU are

optically thick @ mm

 rich of prebiotic chemistry

ALMA 250GHz Brogan ea.

Ethyl alcohol and sugar in comet Lovejoy (C/2014 Q2)

- EMIR campaign
- > survey @ 210-272 GHz
- \succ C₂H₅OH, CH₂OHCHO + 19 other molecules
- COMs abundance > solar-type protostars \Rightarrow origin of COMs

Recycling of gas and dust

Mass-loss of massive stars during the last stages of stellar evolution. Example: IRC+10216

200

100

0

-100

200 200

Expelled circular dust shell during the last 8000 years. Optical image. Expansion velocity ~15 km/s, One expulsion every ~800 years

Expulsion of CO shells Cernicharo et al. 2014

0

-100

100

-200

 10^{2}

 10^{1}

(Castro-Carrizo et al. 2012)

High dynamic range imaging (NOEMA)

 self-calibrated continuum map @ 1mm
 dynamic range 1000:1, one order of magnitude better than achieved ever before

Search for NH₂CHO

Galactic star formation: Key questions

- Origin of the stellar initial mass function (IMF)?
- How is it related to the mass function of the cloud cores (CMF)?
- Generation of the prestellar cores & initiation of protostellar collapse
- Factors controlling the star formation efficiency (SFE) in GMCs ? Variation of SFE and the SFR as a function of the galactocentric distance, ISRF, metallicity etc.
- Is there a threshold for star formation?
- Clustered vs. isolated mode of star formation
- Triggered vs spontaneous star formation
- A galaxy scale predictive model of star formation is still lacking

Waves on the Orion Molecular Cloud: Feedback of massive stars

a) red: Spitzer MIR

b) CO 2-1 HERA/30m (far and near side) 8um MSX

c) Blue: CO 2-1 30m green: IRAC/Spitzer 3.6um

Trapezium OB cluster HII region expanding Low mass protostars Hot plasma by winds

+Periodicity

+Geometry

+Velocity structure

Flow of plasma and radiation of massive stars shapes the cloud by forming a train of molecular globules ?

Bright CO resulting from the interaction of a runaway O star with the diffuse ISM: 1. 30m only

PI: P.Gratier, J.Pety, P.Boisse, S.Cabrit, P.Lesaffre, A.Witt, G.Pineau des Forets, M.Gerin

Bright CO resulting from the interaction of a runaway O star with the diffuse ISM: 2. 30m + PdBI

PI: P.Gratier, J.Pety, P.Boisse, S.Cabrit, P.Lesaffre, A.Witt, G.Pineau des Forets, M.Gerin

protostellar outflow Cepheus E

- Herschel, SOFIA, NOEMA, 30m = CO J=1-0 ... J=16-15
- 100 > origin of the mass-loss?
 - jet, cavity, bow-shock
 - magnetized shock drives the formation of the outflow cavity
 - 20-30 km/s, ~500 yr old

➢ Lefloch et al. 2015

Extreme star formation region in the 'Eye of Medusa'

- high density tracers = HCN, HCO⁺
- Eye is not detected in ¹²CO!
 - Iow CO/HCN (1–0) luminosity ratio
 - SFE is similar to other regions
 - SF or feedback of SF regions?

Koenig ea 2015

Plateau de Bure Arcsecond Whirlpool Survey (PAWS)

¹²CO(1-0) @115 GHz
 resolution ~1" ~40pc

Schinnerer et al. 2013 Pety et al. 2013 Meidt et al. 2013 Hughes et al. 2013

Combining UV, optical, and HI data with 30m CO 1-0 spectra (Saintonge et al. 2011a, b)

Spectral energy distributions (SEDs)

Continuum: Best fit of a single component optically thin grey body gives T_{dust} =38 K and b=1.7.

Blue stars: M82 (shifted & scaled) Blue line: ISO/LWS scan

Observations of the fine structure lines of C⁺ and N⁺ with the IRAM observatories

Galactic hailstorm in the early Universe (J1148+5251 @ z=6.4)

CO-kinematic mass estimate for the over-massive black hole in NGC 1277

possibly ~100 times the typical $M_{BH}/M_{bulge}!$

(Scharwächter, Combes, Salomé, Sun & Krips, 2015, arXiv:1507.02292)

