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Instrumental calibrations
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Why instrumental calibration

● A number of effects will reduce amplitude:

● This leads to unrecoverable signal-to-noise loss.

● Needs to be calibrated out in any case.

● Phase information as a dramatic effect on images.

● Need as good as possible control of the phases.

● Need to setup the system for optimal performances:

● Receiver alignments.

● Panel adjustment.

● This can only be obtained by either:

● Dedicated observing session

● Long term monitoring

● Most effects need to be correct at the time of observing and cannot be corrected 
later on.
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Outline

● Amplitude:

● Atmospheric 

– Astronomical observations calibration.

– WVR calibration.
● Pointing.

● Focusing.

● Phase:

● Delay calibration.

● Baselines measurements.

● Cable phase correction.

● Holography.
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Atmospheric calibration
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System temperature

● At mm wavelength, we are dominated by the atmosphere.

● 35K < Trec < 100 K

● Taking into account receiver rejection and referring to a perfect antenna 
outside atmosphere, one gets:

● Opacity correction allows to have sources on a scale proportional to their 
intensities (no more elevation dependent)
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System temperature

● Determination of Tsys and Ta* requires knowledge of:

● Atmosphere and ground temperature: meteo station
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System temperature

● Determination of Tsys and Ta* requires knowledge of:

● Atmosphere and ground temperature: meteo station

● Receiver temperature: chopper wheel method

– Assume linearity of the receiving chain:

– NOEMA: we use an ambient temperature load and mirror looking 
back at the 15K stage of the cryostat.

– ALMA: ambient and hot load (350K).
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System temperature
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System temperature

● Determination of Tsys and Ta* requires knowledge of:

● Atmosphere and ground temperature: meteo station

● Receiver temperature: chopper wheel method

● Forward efficiency: skydips

– Measurement on the sky and a load:

– Optically thin atmosphere (for simplicity, not required):
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System temperature

● Determination of Tsys and Ta* requires knowledge of:

● Atmosphere and ground temperature: meteo station

● Receiver temperature: chopper wheel method

● Forward efficiency: skydips

– Measurement on the sky and a load:

– Optically thin atmosphere (for simplicity, not required):

– So we have:
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Skydips

● Determination of Tsys and Ta* requires knowledge of:

● Atmosphere and ground temperature: meteo station

● Forward efficiency: skydips
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System temperature

● Determination of Tsys and Ta* requires knowledge of:

● Atmosphere and ground temperature: meteo station

● Forward efficiency: skydips

● Receiver temperature: chopper wheel method

● Receiver gain (sideband attenuation): measurement on a quasar
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System temperature

● Determination of Tsys and Ta* requires knowledge of:

● Atmosphere and ground temperature: meteo station

● Forward efficiency: skydips

● Receiver temperature: chopper wheel method

● Receiver gain (sideband attenuation): measurement on a quasar

– Add an offset to LO1 phase:
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System temperature

● Determination of Tsys and Ta* requires knowledge of:

● Atmosphere and ground temperature: meteo station

● Forward efficiency: skydips

● Receiver temperature: chopper wheel method

● Receiver gain (sideband attenuation): measurement on a quasar

– Add an offset to LO1 phase:

– And compute the visibilities in each sideband:
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System temperature

● Determination of Tsys and Ta* requires knowledge of:

● Atmosphere and ground temperature: meteo station

● Forward efficiency: skydips

● Receiver temperature: chopper wheel method

● Receiver gain (sideband attenuation): measurement on a quasar

– Add a frequency offset to LO1 and LO2:
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System temperature

● Determination of Tsys and Ta* requires knowledge of:

● Atmosphere and ground temperature: meteo station

● Forward efficiency: skydips

● Receiver temperature: chopper wheel method

● Receiver gain (sideband attenuation): measurement on a quasar

– Add a frequency offset to LO1 and LO2:

– Fringes will be stopped in the signal SB but rotate in image SB 
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System temperature

● Determination of Tsys and Ta* requires knowledge of:

● Atmosphere and ground temperature: meteo station

● Forward efficiency: skydips

● Receiver temperature: chopper wheel method

● Receiver gain (sideband attenuation): measurement on a quasar

● Atmosphere opacity: use of an atmospheric model
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Using an atmospheric model

● Use of an atmospheric model. NOEMA and ALMA uses different flavour of 
the ATM model (J. Cernicharo, J. Pardo). E.g.

● SMA uses am (S. Paine).

● Allow to derive water vapor
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Atmospheric calibration

● At NOEMA, atmospheric calibration is done with one value per baseband.

● Actually two operations are performed:

● 1. Data are scaled by Tsys so that they are on a Ta* temperature scale.

● 2. In addition crosscorrelation spectra are divided by the square-root of 
the product of the autocorrelation spectra to correct bandpass 
(amplitude only).

● Data are then stored in a file.

● This can be redone (except 2.) using CLIC\ATMOSPHERE.

● At ALMA, only 2. is done online, and “raw” data are stored in the asdm file. 
Multiplication by Tsys is done later on.
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Radiometers
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Radiometers calibration

● We just have one usable load.

● Using skydips to compute radiometer receiver temperatures.

● Compute a calibration factor using receiver temperature and observation of 
the hot load (commuted during the regular astronomical atmospheric 
calibration).

● Compute the derivative of the optical path with respect to the radiometer 
brightness temperature.

● Update scaling factors used to compute a phase.

● The correlator software uses these scaling factors and the raw counts to 
compute a correction (including time averaging if needed).

● The average spectrum is computed with and without correction, and both 
are kept in the files so that a non-working correction does not harm 
otherwise good data. Pipeline later chooses which data to use.

● This calibration can be redone using CLIC\WVR.
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Pointing



11 October 2016 IRAM millimeter interferometry summerschool 25

Pointing

● With an aperture taper, primary 
beam is roughly gaussian.

● 10% loss at 0.2 FWHM.

● Knowledge of the beam (including 
offsets) crucial for large-scale 
imaging (mosaics, on-the-fly 
imaging).

● We need to have a sufficiently 
good pointing. For NOEMA:

● 0.5” tracking accuracy

● 2” pointing accuracy

● Unlike in the optical, strong 
sources are scare, so we cannot 
use guide stars.
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Pointing

● We slew the antenna over a point 
source (in azimuth and in 
elevation), fit a gaussian, and 
derive corrections which are 
entered in the system regularly.

● A (really) bad pointing leads to 
unrecoverable loss of signal-to-
noise and tricky to impossible 
corrections to the amplitude.

● Possible to fit total power (not 
requiring to have fringes) or 
amplitude.

● Other pattern are possible (e.g. 
ALMA using 5 points pointing). 
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NOEMA pointing model
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Derive pointing model parameters

● Corrections:

● Parameters playing the 
larger role:

● IAZ, IEL+COV, COH, 
MVE, MVN, HEL

● Depending on antenna 
or antenna+station

● We use inclinometers to 
monitor the antenna tilt.

● Corrected for the local 
gravity vector (attraction 
of the Alps).
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Do pointing all-over the sky 
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Derive pointing model parameters
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Focus
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Focus

● An error in the positioning of the 
subreflector causes an unrecoverable loss 
of signal-to-noise and/or pointing errors 
and/or primary beam deformations (e.g. 
Coma with asymetric sidelobes).

● Homological design need to have a focus 
model as well: variation of focus position as 
a function of elevation (X, Z directions).

● Thermal variation of focus (sunset, sunrise)

● NOEMA make focus measurement (Z only) 
every hour or so.

● ALMA makes XYZ focus and tabulates 
focus value as a function of elevation and 
temperature and applies it.
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NOEMA focus measurement
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Focus model

● Dependance on elevation only: 
observe a “strip” at a given azimuth.

● We do not (yet) directly measure X 
and Y focus.

● But a lateral defocus give a pointing 
error:

● Knowing the beam deviation factor 
(BDF) Kp, we can derive the lateral 
shift we are interested in.
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Delay
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Delay calibration

● An uncorrected (constant) 
delay introduce a phase slope 
as a function of frequency:

● Geometrical delay can be 
computed with accurate 
baselines, positions and 
timing.

● However, despite good 
engineering, small 
instrumental delays, 
depending on the 
instrumental setup remain.

● Part is done online, using a 
noise source, allowing to 
coherently add all the spectral 
windows connected to it.
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Delay measurement

● Measured delay are added to the known instrumental delay (length of fiber 
optics) and to the geometrical delay and corrected for in the 
correlator/correlator software.

● Correlator has a given time resolution (inverse of the sampling frequency), 
allowing only to correct delays down to that resolution. Fine delays are 
corrected in software.

● Having corrected delays allows averaging of spectra needed to get the 
continuum sensitivity required for calibration.

● Can however be corrected offfline using

CLIC\MODIFY DELAY

● At ALMA, this is done automatically on phase calibrator 
(INTENT=CALIBRATE_DELAY). Use of a much more complex delay server 
(have to take into account propagation time to the antenna, dry component 
due to possible altitude difference between stations, etc.)
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Baseline
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Measuring phases

● Measured phase are:

● Observing sources distributed in hour-angle and declination, with a stable 
atmospheric phase allow to derive positions (wrt an reference position).

● We need of course to know accurately the position of the observed sources.

● At ALMA, possibility to fit differential delays between sources.
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Measuring baselines
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Raw phases
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After baseline fit
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Baseline measurements

● Usually done after configuration change.

● Needs

● accurate source positions.

● Excellent weather conditions.

● Can be redone offline using:

CLIC\MODIFY ANTENNA

or

CLIC\MODIFY BASELINE

● Position can also be updated offline with:

CLIC\MODIFY POSITION

(e.g. To correct for the position of a phase calibrator).
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Cable phase
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Need to control cable phase

● At NOEMA, reference signal are transported through an HiQ cable. LO1 
reference frequency is transported in the 1.6-2.1 GHz range. This frequency 
is hence multiplied by a factor 50-150, depending on the frequency band.

● For 1km cable, with a linear expansion coefficient of 1e-5, a 1K gradient 
lengthen the cable by 10mm, or 10 turns at 1mm !

● We monitor the length of the cable by sending forth the reference frequency 
plus 500 kHz, and back the reference frequency, the difference of these 
being compared to a reference 500 kHz oscillator.

● Data are corrected in real-time in the correlator software for this “cable 
phase”. 

● At ALMA, reference is from photonics LO, and cable phase is corrected 
physically in the LLC (line-length corrector) by mechanically stretching a 
fiber optic.
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LO1 control
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Holography
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● Far-field approximation (Fraunhofer region):

● Near-field approximation (Fresnel region):

● A Fourier transform relationship between the far-field pattern and the 
complex aperture field distribution (and almost in the near-field case).

● Far field: 

Holography

Baars et al. 2007
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Holography

● We scan a source with one antenna while keeping 
a reference antenna pointing at the source.

● We grid the data, we (Fast)-Fourier transform 
back them.
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Effect of defocusing

● An axial defocus induces the following path-length error:

● An transverse offset will produce:

Baars et al. 2007
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Holography

● After Fourier transform:

● Transform the amplitude in dB

● Fit a parabola to the amplitude:

– Measure feed taper

– Receiver alignement
● Fit the phases for:

– Constant phase

– Phase slope (constant pointing error)

– x,y,z focus

– Astigmatism

– Panels
● This allow to compute aperture efficiency and illumination efficiency.
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Other pattern: ALMA

● On can do a radial scanning.

● Does not need inter-scan 
boresight measurements

● Give more weight to the central 
part (large scales in the 
aperture)

– Ideal for beam shape 
measurement, focus 
measurement etc.

● Was tested and is used at ALMA.

Robert Lucas presentation
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Summary

Calibration Can be corrected When is it done

Pointing No Every 1/2h

Focusing No Every 1h

Delay Yes Once per track

Baseline Yes Once per config

Cable phase No Always

WVR phase corr. No Always

Holography No When needed

Atm. calibration Yes Every source change
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