IRAM-COMP-057

Revision: 0
2009-03-26

Contact Author

Owner Sebastien Blanchet

Keywords: CAN

Approved by: Date: Signature:
A.Perrigouard March 2009

IRAM CanlP

Change Record
REVISION | DATE | AUTHOR [SECTION/PAGE REMARKS
AFFECTED

3.1 SOftWare reqUIrEMENTS. .iiiiueee it i et e ettt ee it eeeeeee e e e e ieeieieeeeeeeieeeees 3
3.2 HarAWar e [QU N B NS, e ittt ittt sttt et e ettt eeeetee e teee e tee et ete e eee et tesenstetesaseteneeeensteeensenss 3
T3 = = L4 o) P 4
L BTG 0 e ettt ettt ettt ettt ettt eeeteeeees s eessseesesasesassssssssssssssssssnsssnssssssnseenseenseenstesensetemtesenrensense 4
A X ad W (ool 0| =101 7= L1 10) o P TN 4
5 CAN INfraStrUCtUIe. ... ieeeuieneuriennuiiennsiinnsireenssrennsirenssirennssrensssrenssirenssieenssirnnsssranssensrasseaseassenssansenns 5
oI O Y=Y Y [AT T 5
5.2 CAN/IP DIOIOCON. ettt ittt ettt ee ettt ee e, 5
5.2.] PaCKEt Qe iNitiON. e iiee ittt ittt ettt et tet et eee e tetee e eete e eeeetterentereeteeetteeaeeetaensss 5
5.2.2 ProtOCOl dESCIIPIION. titeeuiiietiiieeiieeiiee ettt ee e eeeeeiennn 6
LI = | Y V= =P 6
A 08 N L1 - =P 7
A RO 11 1 o T T 7
T 0111 D1\ (o] T TT 7
8.1 CANMANAQE ittt ettt ettt e et e ettt ieeiens 7
o I)Y 11 7=) T T T T T T 8
8.2 CaANL OQQ O . ittt ettt ettt et ettt ee it ee ettt e ieieaieas 8
8.2,] SYNMEAK ettt ittt et ittt e it eieieaes 8
A e 1111 o) [T T T T 9
o RSV 11 (O | o T T T T 9
SR T Y 11 7=) S 9
B.3.2 USAQ . ittt ettt ettt et e it e et i eeeies 10
Creation date: March 2009 Author: S. Blanchet

CanlP Page 2 of 9

IRAM CanlP

1 Summary

CanlP is a C++/Qt library to manage the CAN bus. Historically, this library has been written in 2008 for the
IRAM needs but the library has been carefully designed to be reusable by any CAN applications.

2 Features

IP-encapsulated CAN packets.

SQL database backend to retrieve configuration information.
CAN message monitoring tools

Powerful graphical CAN message reader/writer.

CanOpen protocol support

Many code examples to show how to use it.

3 Requirements

3.1 Software requirements

The software is written in C++ with the Qt 4 Framework, therefore the software requirements are:
® Linux Operating system
® C++ compiler
® (Qt4.4.3 or more recent
® Utils library (a IRAM C++ library)

The software has been tested successfully on the following platforms:
® Fedora Core 4 and 6 1386
® Debian 4.0 (Etch) and 5.0 (Lenny) i386

3.2 Hardware requirements

The software runs on any PC, but a CAN controller is obviously needed to control a real device. For the
moment, the only supported CAN controller is TPMC816 from Tews Technologies. This card uses the PMC
format, so if you do not have PMC slot in your computer, you need to use a PCI carrier to plug in the
TPMCB816 card.

Figure 1: TPMC816 from TEWS Technologies

The procedure to support CAN controllers from other manufacturers is available later in this document.

Creation date: March 2009 Author: S. Blanchet
CanlP Page 3 0of 9

IRAM CanlP

4 Installation

41 Building

Get the sources:

mkdir develSVN

cd develSVN

svn co svn://svn.iram.fr/general/drivers/can/tpmc816/trunk tpmc816
svn co svn://svn.iram.fr/general/cplusplus/Utils/trunk Utils

svn co svn://svn.iram.fr/general/cplusplus/CanIp/trunk CanIp

LR R A o

Edit the file Utils/conf/conf.pri so set the paths for Utils dependencies.

Build the TPMC816 driver (not required if you use only the simulation)

$ cd ~/develSVN/tpmc816
$ su -c "make install"

To create devices (and to load the driver)
$ su -c "./create_devices.sh"

Note for the Debian users:
The create_devices.sh script creates nodes in /etc/udev/devices, but by default there will not be
recreated at startup.

Therefore, create a startup script to recreate devices on boot:

echo "rsync -a --devices /etc/udev/devices/ /dev/" \
> /create_devices.sh

chmod +x /create_devices.sh

Modify /etc/rc.local to load driver and to call /create_devices.sh
echo "/sbin/modprobe tpmc816drv" >> /etc/rc.local
echo "/create_devices.sh" >> /etc/rc.local

Now build the Canlp library:
$ cd canIp
$ qmake -r
$ make all

The output is stored in the bin subdirectory. There are both debug and release version.

4.2 API documentation

The API documentation can be automatically extracted with doxygen.

$ make doc

The output is stored in the doxydoc subdirectory.

Creation date: March 2009 Author: S. Blanchet
CanlP Page 4 of 9

IRAM

5 CAN Infrastructure

5.1 Overview

CanlP

The Linux device node that represents the CAN controller cannot be opened simultaneously by several
processes. Therefore a little server program called CanManager, has been written to share the CAN with all
the applications that want read/write CAN messages. Each CAN message is encapsulated into an UDP packet
to be exchanged between server and clients

The main advantages of this architecture are:
® Transparency: the clients nodes read/write CAN messages as if they have direct access to the CAN

controller..

® Flexibility: virtual devices, like simulators, can be easily plugged to the CAN/IP bus

o Simplicity

B
 CanlpDriver T_
v

CAN/IP

I CANbus

5.2 CAN/IP protocol

i

Y

CAN hardware

Figure 2: Canlp Infrastucture

This section explains the CAN/IP protocol.

5.2.1 Packet definition

A CAN/IP packet is basically a fixed-length UDP packet that contains a C data structure,

typedef struct {
uint16_t msgType;
uint8_t extended;
uint8_t msgLen;
uint32_t identifier;

} CanIpMsg_NetStruct_t;

/* define a can message */

/*
/*
/*
/*

#define CAN_MAX_DATA_LENGTH 8

message type */

=1 for 29 bits identifiers, else =0 */
data length (CAN) */

CAN Identifier */

uint8_t data[CAN_MAX_DATA_LENGTH]; /* CAN data */

Creation date: March 2009
CanlP

Page 5 of 9

Author: S. Blanchet

IRAM CanlP

typedef enum {
INVALID,
RECORD,
RECORD_ACK,
DELETE,
DELETE_ACK,
CAN_MSG,
CAN_MSG_ACK

} MsgType;

5.2.2 Protocol description

Initialisation

When CanlpDriver starts, it tries to initialize a connection with the CanManager, it sends a
CanlpMsg_NetStruct_t with msgType = RECORD. Then it waits for a RECORD_ACK message.

Note: This record sequence is not mandatory since a normal CAN_MSG is enough to be registered in the
CanManager. Though it is very useful for a CAN node to know if the server is alive or dead.

Keep connection alive

To avoid accumulation of dead connections, CanManager drops all connections that have not send a message
for 6 seconds. Therefore CanlpDriver send automatically a RECORD message every 2 seconds, only to keep
alive the connection.

Can traffic

All messages with msgType = CAN_MSG are sent to the other CAN/IP nodes and to the CANbus.
All messages from the CANbus are converted to CAN/IP and sent to the CAN/IP bus.

The CAN_MSG_ACK messages are defined but are not used yet.

Closing

To close the connection, CanlpDrv has to send a DELETE CanlpMsg. The CanManager replies with a
DELETE_ACK message.

6 Database

A SQL database is used to store requires information such as:

® CAN Identifier from the symbolic name

® CAN bus to use (an application may use simultaneously several CAN bus)
For convenience, CanIP use SQLite as SQL database.
SQLite is a software library that implements a self-contained, serverless, zero-configuration, transactional
SQL database engine. SQLite is the most widely deployed SQL database engine in the world. The source
code for SQLite is in the public domain. For more information see http://www.sqlite.org
Therefore, the environment variable CAN_DB_FILE must be set to the SQLite database file.

The minimal SQL table definition is stored in sql/canip.sql file.

7 CAN libraries

71 Canlp

This library provides the base classes to build a CAN application
The source code is in directory Canlp/libs/CanIp

Creation date: March 2009 Author: S. Blanchet
CanlP Page 6 of 9

http://www.sqlite.org/

IRAM CanlP

Main classes:
- CanDevice: Mother class for all Can devices.
- CanlpDriver: To dialog with CanManager with the UDP protocol. Useful to write CAN monitor
tools, but for normal applications it is better to inherit from the CanDevice class.
- CanMsg: class that represents a CAN message

7.2 CanDevice
The source code is in directory Canlp/libs/CanDevice

This library provides a set of CAN devices:
- CanAdc
- CanDac
- Canlo
- CanMotor
- CanOpen (Mother class for CanOpen devices) For more detail on the CanOpen protocol see

http://en.wikipedia.org/wiki/CANopen

8 CANApplications

8.1 CanManager
CanManager is the gateway between the CANbus and the CAN/IP bus.

It is basically a 3-thread application:

- processIPtoCan: listen for CAN/IP packet and according to the message type, register/unregister a
node, transmit a copy of the packet to the other CAN nodes and write the corresponding CAN
message to the CANbus

- processCanTolP: listen for CAN message on the CANbus, then build the corresponding CAN/IP
packet and send a copy to all registered CAN/IP nodes.

- cleanInactiveClients: remove the inactive connections (i.e. the connection with no traffic for 6
seconds), and monitor the CAN bus status. If there is a problem the CAN bus is reset and the status
register is printed.

- Unlike the real CAN protocol, the sender does not receive a copy of its transmission.

- CanManager handles only CAN device controller, each CAN controller requires its CanManager.
For example the TPMCB816 has two CAN port, so we need two CanManager.

- CanManager can also be run without any CAN device controller, for example to use with a CAN
device simulator.

8.11 Syntax

$ CanManager -h
CanManager is a bridge between the CAN bus and the CAN/IP protocol
Usage: CanManager [options]
Options:
-d=name CAN controller device name to use. If missing,
the application runs in simulation mode
-p=N Listen to UDP port N
-1=N Limit write speed base CAN messages.
'N' is in message/sec. Default value = 0 (no limit)

-V Display version information
-h, -2 Display help

Creation date: March 2009 Author: S. Blanchet
CanlP Page 7 of 9

http://en.wikipedia.org/wiki/CANopen

IRAM CanlP

Example:
CanManager -d=/dev/tpmc816_0 -p=2500 -1=20

8.2 CanLogger

It is a CAN monitor tool, that can optionally decode the CanID into symbolic names.

8.21 Syntax

$ CanLogger -h
CanLogger - CAN logger
Usage: CanLogger [options]

Options:
-p=N UDP port to contact (mandatory)
-v Display version information
-h, -2 Display help

Example:

CanLogger -p=2500

Note: If the environment variable CAN_DB_FILE is set,
the program loads the database to decode CanID into symbolic names.

822 Example

$ export CAN_DB_FILE=/home/introot/emir/data/emir.db
$ CanLogger -p=2501

Settings:

Port= 2501

DatabaseFile= /home/introot/emir/data/emir.db

Load data from /home/introot/emir/data/emir.db

CAN_MANAGER_SERVER='1localhost'

Connect to CanManager localhost:2501

2009-03-09T16:27:11.471: msg 1 : io_B1l LoSwitches_getStatus : X 0x01000100 []
2009-03-09T16:27:11.471: msg 2 : adc_B1l V1 _iflLevel : X 0x13040100 []
2009-03-09T16:27:11.471: msg 3 : adc_B1l V2_iflLevel : X 0x13040101 []
2009-03-09T16:27:11.472: msg 4 : adc_B1l H1 ifLevel : X 0x13040102 []
2009-03-09T16:27:11.472: msg 5 : adc_B1l H2 ifLevel : X 0x13040103 []

83 UtlCan

83.1 Syntax

$ utilcan -h
UtilCan - CAN Utility to read/write CAN messages
Usage: UtilCan [options]

Options:
-p=N UDP port to contact (mandatory)
-f=filename File to load (optional)
Creation date: March 2009 Author: S. Blanchet

CanlP Page 8 of 9

IRAM CanlP
-v Display version information
-h, -2 Display help
Example:
utilCan -p=2500 -f=myfile.txt
8.3.2 Usage

w

¥! UtilCan@localhost:2500 - Untitled {(modified)

2 =

To add a new message:
- Enter the message in the top line edit, and press enter.

To move up or down messages:
- Select messages in the list.
- Click MoveUp or MoveDown button.

To modify an existing message:

- Double-click on the message in the list and enter the new value.

Creation date: March 2009
CanlP Page 9 of 9

Author: S. Blanchet

	1 Summary
	2 Features
	3 Requirements
	3.1 Software requirements
	3.2 Hardware requirements

	4 Installation
	4.1 Building
	4.2 API documentation

	5 CAN Infrastructure
	5.1 Overview
	5.2 CAN/IP protocol
	5.2.1 Packet definition
	5.2.2 Protocol description

	6 Database
	7 CAN libraries
	7.1 CanIp
	7.2 CanDevice

	8 CAN Applications
	8.1 CanManager
	8.1.1 Syntax

	8.2 CanLogger
	8.2.1 Syntax
	8.2.2 Example

	8.3 UtilCan
	8.3.1 Syntax
	8.3.2 Usage

