

Institut de RadioAstronomie Millimétrique

PdB Receiver Software

Owner Sebastien Blanchet

Keywords: receiver, software

Approved by: A.Perrigouard Date: Si September 2010

Signature:

Г

REVISION	DATE	AUTHOR	AFFECTED	REMARKS
			SECTION/PAGE	
IRAM-COMP- 33	Oct 2006			Previous version (python software)

Change Record

	Content		
1	Introduction5		
2	History5		
2.1 2.2 2.3 2.4	1985-1995		
3	Requirements6		
3.1 3.2 3.3	Network requirements		
4	Installation7		
4.1 4.2 4.3 4.4	Build receiver software		
5	Internal programs9		
5.1 5.2	CanManager 9 recng-server 9 5.2.1 Syntax 10 5.2.2 API Description 10		
5.3	XML RPC client examples135.3.1Minimal python example135.3.2Python examples135.3.3C++ client example13		
5.4	recng-id		
5.5	recng-jvl-list		
5.6	recng-jvl-init		
5.7	recng-jvl-check		
5.8	recng-jvl-manual		
5.9	recng-jvl-stop		

5.10	Simulato	r17
	5.10.1	Syntax17
	5.10.2	General notes17
	5.10.3	Main window17
	5.10.4	LO Simulation Window17
	5.10.5	Lo YIG simulation window19
	5.10.6	Mixer Simulation Window21
	5.10.7	Cryo simulation window21
5.11	UtilCan	
	5.11.1	Syntax23
	5.11.2	Screenshot
5.12	CanLogg	er23
	5.12.1	Syntax23
	5.12.2	Example24
6	Automat	ic benchmarks24
6.1	Protocols	and buses
	6.1.1	Bench overview
6.2	LO band	4 signal/noise
	6.2.1	Syntax
	6.2.2	Output example
6.3	LO band	4 output power
	6.3.1	Syntax
	6.3.2	Output example
7	User pro	grams 28
	000. p.0	g
7.1	recng-co	
	7.1.1	Syntax
	7.1.2	Example
7.0	7.1.3	Graph examples
7.2	recng-au	mp
	7.2.1	Syntax
7 0	1.2.2	Example
7.3		Set-10 Rel
	7.3.1	Synidx
	7.3.2	Wrapper resolt of Pof
74	rocna-lo	
7.4	7 / 1	Suntax 32
75	recoglo-	aunn 32
1.0	7 5 1	Svntax 32
	7.5.2	Example 32
76	recna-lo-	via 33
	7.6.1	Svntax
	7.6.2	Example
7.7	recng-pa	rk-lo
	7.7.1	Syntax
	7.7.2	Example
7.8	recng-mi	xer
	7.8.1	Syntax
	7.8.2	Example
	7.8.3	Graph
	7.8.4	Utilities
7.9	PlotJunct	tion
	7.9.1	Syntax
	7.9.2	Example
7.10	recng-gu	i38
	7.10.1	Syntax
	7.10.2	Main window
	7.10.3	Lo window (Gunn)

	7.10.4 Lo window (Yig)41
	7.10.5 Mixer window
7 1 1	7.10.6 Cryo window
7.11	кор45 7 11 1 Svotax 45
7.12	recng-check-software
	7.12.1 Syntax45
	7.12.2 Example45
7.13	Rmc
	7.13.1 Syntax
	7.13.2 Examples
8	Daily Operation47
8.1	Modify database configuration47
8.2	LO and Mixer data files47
9	Tips47
9.1	How to change the fonts size?47
10	Bure148
10.1	Build software on bure148
11	Bure1 programs
11.1	recng-StatusReceivers49
	11.1.1 Syntax
	11.1.2 Example
11.2	recng-print-status
	11.2.1 Syntax
	11.2.2 Example

1 Introduction

This document is the user manual for the IRAM receivers of the Plateau de Bure Interferometer. It concerns only the software that runs on the cabin computer, except for the last few pages that provides documentation about the software that run on the interferometer main computer.

2 History

This section explains the historical evolution of the receiver controlling software

2.1 1985-1995

It was the first version of the controlling software. There was no local computer in the antenna cabin, but only CAMAC crates. The receiver controlling software run on the interferometer main computer in the control room and drove directly the CAMAC crates through high-speed serial links. The receiver controlling software was written in Fortran.

2.2 1995-2005

The VME bus replaced the CAMAC bus, and there was a local computer in the antenna cabin to control the receiver. The computer was an Eltec Eurocom16 VME board (Motorola 68030 @ 25 MHz with 8 MB of memory) that run the OS-9 operating system.

Compared to the previous version, this solution offered a lot of new commodities:

- Unix-like operating system
- C compiler
- Ethernet and TCP/IP

The receiver controlling software was written in C.

2.3 2005-2010

For this new design, IRAM decided to use a multiplexed buses between the controlling computer and the receiver to reduce the number of wires. The main bus is the CAN bus (Controller Area Network). Nevertheless the VME bus and the I2C were still used for legacy reasons..

The controlling computer was a true VME PC (a VMIVME 7700 with an Intel Celeron @ 650 MHz and 512 MB of memory). It ran a standard Linux operating system. The receiver controlling software was written in python/tk.

2.4 2010-today

5 years later, the receiver is upgraded with a new local oscillator based on YIG tuned oscillators. So it is an opportunity to modernize the controlling software.

Improvement list:

- Programs are rewritten in C++/Qt, so they run 5-time faster than the equivalent program in Python/Tk.

- A SQL database replaces the text configuration files.
- The standard XML-RPC protocol replaces the IRAM binary network protocol for communication between the receiver and the interferometer controlling room.

3 Requirements

3.1 Network requirements

Since the cabin computers are diskless, a server is required:

- to boot with the DHCP / PXE protocols
- to export the filesystem with the NFS protocol.

Figure 1: Network topology

For a full description of the installation see the document IRAM-COMP-035 NFS for diskless x86 computers on the PdbI

3.2 Hardware requirement

In the production environment, the control software runs on a VMIVME- 7700 with a Tews TPMC816 PMC card.

Figure 2: VMIVME-7700 from GEFanuc Automation

But for the test environment, any PC can be used, because a CAN bus simulator is provided

3.3 Software requirements

The software targets Linux Fedora Core 4 i386 as main platform, but it should run on any computer with Linux 2.6.x

For example, the software has been tested successfully tested on different systems:

- Debian 4.0 and 5.0 for i386 / x86_64
- Fedora Core 4 and 6 for i386 / x86_64

The following software are required to build and run the receiver programs:

Name	Description	Version	Download
g++	GNU C++ compiler	>= 4.0.2	http://gcc.gnu.org
Qt	C++ framework	>= 4.4.3	http:/qt.nokia.com
Sqlite	Embedded SQL database	>= 3.3.6	http://sqlite.org
Xmlrpc-c	XML-RPC for C and C++.	>= 1.06	http://xmlrpc-c.sourceforge.net
Gnuplot	Graphing utility	>= 4.2.5	http://www.gnuplot.info/
subversion	Version control system	>= 1.5	http://subversion.tigris.org
doxygen	Automatic documentation system	>= 1.6.1	http://doxygen.org
Cxxtest	A unit test framework for C++	>= 3.10.1	http://cxxtest.tigris.org

All these software are very common, and have ready-to-install packages for your favorite Linux distribution.

4 Installation

4.1 Build receiver software

Extract code from the repository

```
$ git clone git@git.iram.fr:comp/noema noema-dev
$ cd noema-dev/recng
$ qmake-qt4
$ make get_deps
$ ./build.sh
```

Optional, you can build the API documentation. The documentation will be created in the *doxydoc* subdirectory.

\$ make doc

Build also the CAN driver (not required if you use only the simulation)

```
$ cd ~/develSVN/tdrv011
```

\$ su -c "make install"

To create devices (and to load the driver)

\$ su -c "./create_devices.sh"

The create_devices.sh script creates nodes in /etc/udev/devices.

Install the CAN tools

\$ su
cd ./CanIp/
./install.sh
exit

To install the software and the default data in /home/introot/recng

Note: the shared libraries are installed in /home/introot/lib

```
$ su -c "./install.sh all"
```

Warning:

```
If you wish to update only the software without reinstalling the default data, use ./install.sh(without the all). It is equivalent to run ./install.sh programs
```

If you are not sure, it is safer to backup /home/introot/recng first

\$ tar cvfz ~/recng-backup-`date --iso`.tar.gz /home/introot/{recng,lib}

4.2 Configure environment

You should add /home/introot/recng/bin to your PATH

If you wish to use CanLogger, you should also define CAN_DB_FILE as follow

```
export DEVICE_NAME=recng
export CAN_DB_FILE=/home/introot/recng/data/${DEVICE_NAME}.db
```

4.3 Initial test

For this initial test, we run

- 1. The CanManagers to enable the Can Over IP protocol
- 2. The simulator
- 3. The autotuning lo program

First we remove the /dev/tpmc816* devices, so the CanManager will run in simulation mode

(click on LO button to activate the LO simulation)

Now run the LO autotuning program:

\$ recng-lo -b=1 -f=90.0

4.4 Start application automatically

Run /home/introot/recng/bin/recng-init-receiver.sh at the startup.

5 Internal programs

This section describes internal programs that drive the receiver. These programs are executed automatically, therefore normal users are note expected to run them.

5.1 CanManager

For a complete description see the document *can-ip.pdf*

```
CanManager - Bridge between the CAN bus and the CAN/IP protocol
Usage: CanManager [options]
Options:
  -d=/dev/devname
                      CAN controller device name to use. If missing,
                        the application runs in simulation mode
                      Listen to UDP port udpPort
 -p=udpPort
 -t1=delay1_us
                      Delay in microseconds between two CAN 1.0 messages.
                          Default=0
                      Delay in microseconds between two CAN 2.0 messages.
 -t2=delay2_us
                          Default=0
                 Display version information
  -v
  -h, -?
                 Display help
Example: CanManager -d=/dev/tpmc816_0 -p=2500 -d1=100000
```

For the recng software, CanManager must listen on the following ports:

UDP port	Device	Description
2500	/dev/tpmc816_0	CAN bus for the calibration system (JVL motors)
2501	/dev/tpmc816_1	CAN bus for the receiver
2502	None	Virtual CAN bus for the subreflector

Commands

```
$ CanManager -d=/dev/tpmc816_1 -p=2500 -d1=50000
$ CanManager -d=/dev/tpmc816_1 -p=2501 -d1=50000
$ CanManager -p=2502
```

5.2 recng-server

recng-server is an XML-RPC server to remotely control the receiver.

What is XML RPC ?

XML-RPC is a remote procedure call protocol that uses XML to encode its calls and HTTP as a transport mechanism. For a detailed introduction to XML RPC see <u>http://en.wikipedia.org/wiki/XML-RPC</u> This protocol is very simple to use, and can be used from any programming language (many opensource libraries are available)

recng-server listens for XML-RPC calls on http://localhost:1080/RPC2

Note: The path /RPC2 is the default path for a XML-RPC server. Therefore, it can be sometimes omitted (it depends on the implementation library)

This server supports:

- introspection <u>http://xmlrpc-c.sourceforge.net/introspection.html</u>
- multicalls

IRAM

5.2.1 Syntax

```
$ recng-server -h
Recng Server - XML-RPC Server
Listen on port 1080
Usage: recng-server [options]
Options:
   -v Display version information
   -h, -? Display help
```

5.2.2 API Description

Since the XML-RPC server support introspection, we can retrieve the API with a simple program

```
$ recng-ListMethods.py
# Connect to http://localhost:1080
antenna.resetDeicing
antenna.setCentralHub
antenna.setDeicing
deviceList
deviceProperties
getProperty
receiver.getStatus
receiver.parkLo
receiver.resetLo1Ref
receiver.setAttenuator
receiver.setCalibration
receiver.setFrequency
receiver.setLoSwitch
receiver.setObserving
setProperty
system.listMethods
system.methodHelp
system.methodSignature
system.multicall
system.shutdown
```

```
$ recng-Introspection.py
# Connect to http://localhost:1080
-----
                            Name
       : antenna.resetDeicing( )
Return Type: int
Description: Reset Deicing.
Return code: always 0
Syntax: resetDeicing( string positionName )
: antenna.setCentralHub( string )
Name
Return Type: int
Description: open/close central hub
Return code: always zero.
Syntax: setCentralHub( string command )
- 'command' must be in {close, open}
                              : antenna.setDeicing( string )
Name
Return Type: int
Description: Set deicing.
```

```
Return code: always 0
Syntax: setDeicing( string a_deicingMode )
Valid deicing modes are (insensitive case):
  OFF, 3SECTORS, 6SECTORS
_____
Name : deviceList( )
Return Type: array
Description: Device list
Return list of devices (array of strings)
Syntax: deviceList()
Name
       : deviceProperties( string )
Return Type: array
Description: Get properties list of a device
Return array of string
Syntax: deviceProperties(string deviceName)
 Name
     : getProperty( string, string )
Return Type: string
Description: Set any property
Return value: string: OK
 an empty string means error
Syntax: getProperty(string deviceName, string propertyName)
_____
Name : receiver.getStatus( )
Return Type: struct
Description: Returns the receiver status
_____
Name
       : receiver.parkLo( int )
Return Type: int
Description: Send LO to a parking position that does not interfere with the
others LOs.
Return code is always zero.
Syntax: receiver.parkLo(int bandNum)
- bandNum must be in range [1, 4]
                                 _____
    : receiver.resetLolRef( string )
Name
Return Type: int
Description: Reset LolRef
Syntax: resetLolRef( string channelList)
- 'channelList' must be a comma-separated list of channels. valid channel are
in {'A', 'B'}
Example for channeList:
     channelList = "A"
      channelList = "A,B"
Return code is
     - 0: resetting is OK
     - 1: a problem occurs
_____
    : receiver.setAttenuator( int, string, double )
Name
Return Type: int
Description: Set attenuator. Return code is always zero.
```

```
Syntax: setAttenuator(int bandNum, string attenuatorName, int
attenuationDecibel)

    'bandNum' must be in range [1, 4]

- 'attenuatorName' must be in {V,H}
- 'attenuationDecibel' must be in range [0,31]
_____
Name
       : receiver.setCalibration( string )
Return Type: int
Description: Set Calibration.
Return code:
   - 0 : OK
   - 1 : Error
Syntax: setCalibration( string positionName )
Valid position names are:
01_amb, 01_cold, 01_qwplate, 01_sky, 02_amb, 02_cold, 02_qwplate, 02_sky,
03_amb, 03_cold, 03_qwplate, 03_sky, 04_amb, 04_cold, 04_qwplate, 04_sky
_____
                                             -----
Name : receiver.setFrequency( double, int, int, int )
Return Type: int
Description: Set LO frequency.
Return code is always zero.
Syntax: SetFrequency( double flo, int bandNum, int sideband, int deltaF)
- flo is the LO frequency in GHz
- bandNum must be in range [1, 3]
- sideband: 0 -> LSB, 1 -> USB
- deltaF: 0 -> -, 1 -> +
: receiver.setLoSwitch( int, string, int )
Name
Return Type: int
Description: Set a LO switch.
Return code is always zero.
Syntax: setLoSwitch(int bandNum, string switchName, int switchValue)
- bandNum must be in range [1, 3]
- switchName must be in: { gunn, deltaf, loop, sweep }
- switchValue must be 0 or 1
_____
Name
       : receiver.setObserving( double )
Return Type: int
Description: Set Observing ON/OFF.
When Observing is ON, some graphical user interfaces are disabled
to avoid mistakes.
Return code is always zero.
Syntax: SetObserving( int mode )
- mode: 0 -> Off, 1 -> ON
: setProperty( string, string, string )
Name
Return Type: int
Description: Set any property
Return code: 1: OK
     0: Error
Syntax: setProperty(string deviceName, string propertyName, string value)
_____
    : system.listMethods( )
Name
Return Type: array
Description: Return an array of all available XML-RPC methods on this server.
```

```
_ _ _ _ _ _ _ _ _ _ _
        : system.methodHelp( string )
Name
Return Type: string
Description: Given the name of a method, return a help string.
        : system.methodSignature( string )
Name
Return Type: array
Description: Given the name of a method, return an array of legal signatures.
Each signature is an array of strings. The first item of each signature is the
return type, and any others items are parameter types.
_____
Name
        : system.multicall( array )
Return Type: array
Description: Process an array of calls, and return an array of results. Calls
should be structs of the form {'methodName': string, 'params': array}. Each
result will either be a single-item array containg the result value, or a
struct of the form {'faultCode': int, 'faultString': string}. This is useful
when you need to make lots of small calls without lots of round trips.
        _____
Name
        : system.shutdown( string )
Return Type: int
Description: Shut down the server. Return code is always zero.
```

5.3 XML RPC client examples

5.3.1 Minimal python example

XML RPC is very easy and pleasant to use in python.

For example to call method *receiver.setCalibration* on the server, you need only the following lines.

```
import xmlrpclib
server = xmlrpclib.ServerProxy("http://localhost:1080" )
print server.receiver.setCalibration("01_amb" )
```

5.3.2 Python examples

See directory ReceiverNG/scripts/xmlrpc for other XML-RPC python examples.

5.3.3 C++ client example

I have written a small C++ client example, the source code is available in: <code>ReceiverNG/apps/GetStatus</code>

5.4 recng-id

Print the receiver ID. Antennas have receiver ID between 1 and 6. Receivers in the laboratory have receiver ID greater than 100.

5.4.1 Example

\$ recng-id	
receiverId=5	

5.5 recng-jvl-list

Print the list of the JVL motors names.

There are two motors manufactured by JVL (<u>http://www.jvl.dk</u>) for the calibration. They are used to switch between amb, cold, sky and vlbi position

Calibration position per motor:

Motor name	Bands	Defined positions
calA	1	01_amb, 01_cold, 01_sky, 01_vlbi
	2	02_amb, 02_cold, 02_sky, 02_vlbi
calB	3	03_amb, 03_cold, 03_sky, 03_vlbi
	4	04_amb, 04_cold, 04_sky, 04_vlbi

5.5.1 Syntax

```
$ recng-jvl-list -h
Jvl List - Print the list of Jvl motor names
Usage: recng-jvl-list [options]
Options:
    -v Display version information
    -h, -? Display help
```

5.5.2 Example

\$ recng-jvl-list	
calA	
calB	

5.6 recng-jvl-init

This programs:

- Write the settings into the motor controller.
- Read back the settings to be sure they are correctly written.
- Start the 0-reference searching procedure (So the motor slowly rotates backward until it find the mechanical stop that marks the 0 position)

5.6.1 Syntax

```
$ recng-jvl-init -h
Jvl Init - Initialize Jvl motor reference
Usage: recng-jvl-init [options]
Options:
  -m=MotorName Specify motor to initialize
  -v Display version information
  -h, -? Display help
```

5.6.2 Example

```
$ recng-jvl-init -m=calA
Setting for this tuning
MotorName = calA
Initializing motor calA
Check motor settings
OK
calA: reference is now initialized
```

5.7 recng-jvl-check

This program

- Reads back the JVL motor controller settings
- Compares the read settings with the expected settings that are stored in the SQL database.
- Prints an error message if the settings do not match.

5.7.1 Syntax

```
$ recng-jvl-check -h
Jvl Init - Check Jvl motor settings
Usage: recng-jvl-check [options]
Options:
   -m=MotorName Specify motor to check
   -v Display version information
   -h, -? Display help
```

5.7.2 Example

Example when a setting is incorrect

```
$ recng-jvl-check -m=calA
Setting for this tuning
MotorName = calA
Checking motor calA
Parameter KVOUT(13) has not been set correctly. Expected: 0x00001b00 Found:
0x00000a00
Settings are wrong
Aborted
```

Example when all settings are correct

IRAM

5.8 recng-jvl-manual

🗌 Jvl Man	ual [canHostname=lo	ocalhost, motor=calA] 💷 🗙
<u>F</u> ile <u>H</u> elp		
calA	act = 0	req = 200

This program allows moving a JVL motor to any position. The positions are specified in motor unit. Obviously, there are software limits to avoid out-of-range positions.

This program is typically used to find the best motor positions for each calibration step (amb, cold). Then the user have to update /home/introot/recng/data/conf-calibration.sql with the found motor positions, and then he runs recng-update-db.sh to update the database.

5.8.1 Syntax

```
$ recng-jvl-manual -h
Jvl Manual - Control manually Jvl motor
Usage: recng-jvl-manual [options]
Options:
  -m=name Motor name to drive (Mandatory)
  -v Display version information
  -h, -? Display help
```

5.8.2 Example

\$ recng-jvl-manual -m=calA

5.9 recng-jvl-stop

This program is used to stop all the JVL motors displayed on the list. The window is always visible and cannot be hidden by other windows.

5.9.1 Syntax

```
$ recng-jvl-stop -h
Jvl Stop - Emergency Stop button for Jvl motors
Usage: recng-jvl-stop [options]
Options:
    -v Display version information
    -h, -? Display help
```

5.10 Simulator

The goal of this program is to simulate the receiver, so that the other software can be written before the receiver hardware is ready.

5.10.1 Syntax

\$ recng-simul

5.10.2 General notes

5.10.3 Main window

🔓 Recng S	imul	_ 🗆 🗙
<u>F</u> ile M <u>a</u> int	tenance <u>H</u> el	р
<u>L</u> 0	Mixer	<u>C</u> ryo
	Exit	

Almost items have an *Error Code* spinbox, that is used to set the device error code.

Almost items have enable/disable menu to simulate the device unplugging.

Right-click on the widget to display the enable/disable menu

The main window has three buttons, click on them to display/hide simulation window for LO, Mixer or Cryo.

The simulation occurs only when the associated subwindow is opened.

For example, if you want to simulate only the LO, open only the LO window.

5.10.4 LO Simulation Window

The LO window display the simulator for the LO.

The window can display only one band, but the 4 LO bands are simulated together. You can display the other bands with the *Select* menu.

h Simul: Lo (recng)	_ 🗆 🗙
<u>F</u> ile <u>S</u> elect <u>M</u> aintenance	
[gre106] LO Band #1	DACs
LoFreq 4.526 V R= 4.526	V GunnBias 1.553 V
Error Code 0 🗘 Status off	
PwrGunn 3.223 V R= 3.223	V Error Code 0
Error Code 0 🗘 Status off	
HMxPower 1.755 V R= 1.755	V LoopGain 2.546 V
Error Code 🖉 🗘 Status off	Error Code 0
LoPower1 2.188 V R= 2.188	V
Error Code 0 🗘 Status off	HMx Bias 2.298 V
LoPower2 2.126 V R= 2.126	
Error Code 0 🗣 Status off	Error Code 0
- Switches	ADCs
	Offset Voltage
gunn 🔿 ON 💿 OFF	Error Code 0
loop 🔿 Close 🖲 Open	PLL IF Level 2.750 V
sweep OON OFF	Error Code0
deltaF () + 💽 -	HarmMxCurrent 8.732 mA
Error Code 0	Error Code 0

Motor simulator:

It simulates a CAN motor. It moves when position requests arrive.

You can simulate the following failure:

The motor returns an error code: enter the error code in the Error Code spinbox.

The motor is missing: right-click, and unselect "*Enable*" The motor answers, but does not move: right-click and unselect "*Auto*"

When "Auto" is unselected, a !! symbol appears.

LoFreq 0.020 V !!	R= 0.000 V
Error Code 0	

Adc simulator

It simulates a CAN ADC. You can simulate a device missing error: right-click and unselect "*Enable*"

Dac simulator

It simulates a CAN DAC.

Create Date: Nov 2010 recng-soft.doc

IRAM

You can simulate a device missing error: right-click and unselect "Enable"

Lo Switches

It simulates the Lo switches.

You can simulate the following errors: A device is missing error: right-click and unselect "*Enable*" The device answers, but values do not switch: right-click and unselect "*Auto*"

When "*Auto*" is unselected, a warning appears in the widget: "*Automatic Mode Disabled*" Automatic Mode Disabled

gunn	O ON	OFF
loop	O ON	OFF
sweep	O ON	OFF
deltaF	• +	0 -

5.10.5 Lo YIG simulation window

For band #4, the simulation window is different because the band #4 use a YIG tune oscillator instead of a gunn oscillator.

Frequency tab	
🎍 Simul: Lo (recng) ×
<u>F</u> ile <u>S</u> elect <u>M</u> aint	enance
[gre106] LO Ba	and #4
Frequency Ampli	Misc
	_ PLL
	PLL CorV 0.468 V
Freq 0x0d55	Error Code 0
	PLL IF 0.310 V
	Error Code 0
Error Code 0	PIL Bef 0.310 V
	PLL Status - Simul
DigitalOut0x0a	X PLL LOCK
	PLL LULOCK
Error Code 0	
	Error Code

Ampli tab

🤰 Simul: Lo (recng)			_ = ×
<u>F</u> ile <u>S</u> elect <u>M</u> aintenar	nce		
[gre106] LO Band	#4		
<u>Frequency</u> Ampli Mi	SC		
	_ Ampli 1	Ampli 2	_ Millimeter Ampli
Davior Ampliavaaaaa	Ampli Idl ^{0.305} mA	Ampli Id2 0.305 mA	Amc ID(E) 0.305 mA
Power Amptiox00000200	Error Code 0	Error Code 0	Error Code
	Ampli Vdl 0.003 V	Ampli Vd2 0.003 V	Amc VD(E) 0.003 V
	Error Code	Error Code 0	Error Code 0
Error Code 0	Ampli Vg10.003 V	Ampli Vg2 0.003 V	Amc VG(E) 0.003 V
	Error Code 0	Error Code 0	Error Code 0
	- Doubler	Tripler	- 40GHz Ampli
AMC 0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×	Amc ID(A) 0.305 mA		Amc ID(B) 0.305 mA
ANC 0X08000100	Error Code 0	Amc M(D) 0.015 mA	Error Code 0
	Amc VD(A) 0.003 V		Amc VD(B) 0.003 V
	Error Code		Error Code 0
Error Code 0	Amc VG(A) 0.003 V	Error Code 0	Amc VG(B) 0.003 V
	Error Code 0		Error Code

Misc tab

h Simul: Lo (recng)		_ 🗆 X
<u>F</u> ile <u>S</u> elect <u>M</u> aintenance		
[gre106] LO Band #4		
<u>Frequency</u> <u>Ampli</u> Misc		
Clup 0x0000	Ampli	_ Amc
Error Code 0	Ampli -3V 0.003 V	Amc -3V 0.003 V
VBias -0.232 V Error Code 0	Error Code	Error Code
Save Default	Ampli +5V 0.003 V	Amc +5V 0.003 V
Last value = 0	Error Code	Error Code
- Reset 10 Analog TO board -	Power Supply	Temperatures
Counter = 0	Power +5V 0.003 V	
Last value = 0	Error Code	PLL Temp 21.271 degC
	Power +15V 0.006 V	
Reset LO Digital IO board	Error Code 0	
Counter = 0 Last value = 0	Power -15V 0.012 V	Error Code
	Error Code	

5.10.6 Mixer Simulation Window

🖢 Simul: Mixer (recng)	_ 2 ×
<u>F</u> ile <u>S</u> elect <u>M</u> aintenance	
[gre106] Mixer Band #3	- Hent
MxBshort V 0.027 V R= 0.000 V JRef Reg B1B3 Error Code ⇒status off ⇒ MxBshort H 0.027 V R= 0.000 V	B3_V1 B3_H1 B3_V1_s0 B3_V1_s1 Vdm 3.062 V vdm 4.082 mA idm 4.082 mA vqm 1.733 V vqm 1.428 V
Error Code 🛛 🗘 Status off	Error Code 0 Code 0 Error Code 0
Junctions	Coil
B3_V1 B3_H1	B3_V1 B3_H1
- Junc B3_V1 Voltage act= 3.264 mV ref = 0.0000 mV	Coil B3_V1 Ref = 0.00 mA_ current Current actC= 11.646 mA Ref = 0.00 mA_ current Voltage actV= 0.1541 V output=0 thermal
Current act= -32.766 uA Error Code	Coil Thermo 0.000 degC Error Code 0

This window simulates:

- 1. Mixer backshort motors
- 2. Attenuators
- 3. ADC IF levels
- 4. Junctions
- 5. Hemt
- 6. Coils

5.10.7 Cryo simulation window

There are 8 tab widget in this window.

Calibration motor (calA,calB)

🛛 Simul: Cryo (recng)			_ 0
File Maintenand	e			
Calibration C CalA	ryoStat Dei	icing and	C.Hub I	E Leve
PROG_VERSION	1 0x000000	00 0	•	-
MODE_REG	2 0x000000	00 0		
P_SOLL	3 0x000000	00 0	* *	
V SOLL	5 0x000000	00 0		
CalB				
PROG_VERSION	1 0×000000	00 0	•	-
MODE_REG	2 0x000000	00 0	4	
P_SOLL	3 0x000000	00 0	*	
V SOLL	5 0x000000	00 0	1	-

Cryostat temperature 🧯 Simul: Cryo (recng) _ 🗆 🗙 File Maintenance Calibration CryoStat Deicing and C.Hub | IF Leve Cryostat Err.Code 0 • 12.240 K 12.242 K Amp15K Band1 12.497 K 12.093 K Band3 Band4 48.536 K 36.297 K T_15K T_77K 37.376 K 12.272 K ColdLd T_4K

Deicing and central hub

If levels

🖢 Simul: Cryo (recng) 📃 🛛 🗴	🐚 Simul: Cryo (recng) 📃 🗆 🗙
File Maintenance	File Maintenance
Calibration CryoStat Deicing and C.Hub IF Leve	bration CryoStat Deicing and C.Hub IF Levels
- Deicing and Central Hub	
Command = 0x0000	IF V 2.036
🗌 OpenCHub	[
CloseCHub	
Spare4	
🗆 Spare3	
ResetDeicing	
Power12Sectors	TF H 1.263
Power4Sectors	
Status = 0x0000	Err.Code 0
Errors	

Lo1Ref

remperatu	100			
🛅 Simul: Cr	yo (recn	g)		_ E X
File Mainte	nance			
C.Hub IF L	evels	Lo1Ref	Temperatures	Vacuum 🜗
- Temperature	s			
HotLoad 26.7 ————————————————————————————————————	742 degC			
CryoAmb 17.8	28 degC			
Err.Code 0	•			

Vacuum

🗽 Simul: Cryo (r	ecng)		_ = ×
File Maintenanc	e		
C.Hub IF Level	s Lo1Ref	Temperatures	Vacuum 🚺
Vacuum	1.000e	-10 Torr	
ControlRegister =	 = 0x00		
Err.Code	0	•	

Warm IF

Temperatures

5.11 UtilCan

UtilCan is an utility program to send arbitrary CAN messages. For a complete description, see document *can-ip.pdf* IRAM

5.11.1 Syntax

```
$ UtilCan -h
UtilCan - CAN utility to read/write CAN messages
Usage: UtilCan [options]
Options:
   -p=N UDP port to contact (mandatory)
   -f=filename File to load (optional)
   -v Display version information
   -h, -? Display help
Example: UtilCan -p=2500 -f=myfile.txt
```

5.11.2 Screenshot

UtilCan@localhost:2500 - Untitled (modified)	_ =
Eile Edit Help	
Can Message	
type here your new message	
# comment starts with '#'	Insert
X 0x00000001 [0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08]	Delete
$\begin{array}{c} \text{# a standard message starts with 5} \\ \text{$ $ 0x00000002 [0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08]} \end{array}$	Replace
	Move Up
	Move Down
	Exit

5.12 CanLogger

It is a CAN monitor tool, that can optionally decode the CanID into symbolic names. For a complete description, see document can-ip.pdf

5.12.1 Syntax

```
$ CanLogger -h
CanLogger - CAN logger
Usage: CanLogger [options]
Options:
  -p=N UDP port to contact (mandatory)
  -v Display version information
  -h, -? Display help
Example: CanLogger -p=2500
```

Note: If the environment variable CAN_DB_FILE is set, the program loads the database to decode CanID into symbolic names.

5.12.2 Example

```
CanLogger -p=2501
Settings:
Port= 2501
DatabaseFile= /home/introot/recng/data/recng.db
Load data from /home/introot/recng/data/recng.db
2010-09-07T16:45:50.852: msg 1 : yig_B4_freq_get : X 0x05000110 []
2010-09-07T16:45:50.852: msg 2 : yig_B4_powerAmpli_get : X 0x05000130 []
2010-09-07T16:45:50.852: msg 3 : yig_B4_amc_get : X 0x05000150 []
2010-09-07T16:45:50.852: msg 4 : adc_B4_yigPllCorV : X 0x05040108 []
```

6 Automatic benchmarks

To automate measures, several automatic benchmarks have been developed.

6.1 Protocols and buses

The measurement instruments are controlled through the GPIP bus, therefore the gpib8065 server is required. See document IRAM-COMP-076 for more details about this GPIB bridge. The other devices are controlled with the CAN bus.

Figure 3 Automatic benchmarks: Software architecture and buses

6.1.1 Bench overview

Hardware

- Synthesizer: MARCONI INSTRUMENTS,2024
- Analyser: Agilent, E4407B
- Powermeter: Erickson Instruments PM4
- Multimeter: Agilent,34401A

Software

The following software must running

- gpib8065-server. It must listen on localhost:8065 (default port)
- recng-server

6.2 LO band 4 signal/noise

The goal of this benchmark is to measure the signal-to-noise ratio of the band #4 local oscillator for each frequency.

6.2.1 Syntax

```
$ recng-yig-b4-signal-noise.py -h
usage: recng-yig-b4-signal-noise.py [options]
Benchmark LO YIG band 4 signal/noise
options:
 -h, --help
                        show this help message and exit
 -b FREQ_BEGIN, --begin=FREQ_BEGIN
                       Beginning frequency lo mixer in GHz. Default=283.0 GHz
 -e FREQ_END, --end=FREQ_END
                        Ending frequency lo mixer in GHz. Default=365.0 GHz
 -s FREQ_STEP, --step=FREQ_STEP
                        Step frequency lo mixer in GHz. Default=1.0 GHz
 -o OUTPUT, --output=OUTPUT
                       Output filename. Default=<automatically_generated>
  -v VD, --vd=VD
                       power ampli vd1, vd2 values, in volt
```

6.2.2 Output example

```
# recng-yig-b4-signal-noise.py
# 2010-10-07T15:53:07.942734
# freq_begin = 283.0 , freq_end = 365.0, freq_step = 1.0
# s/n measure 20E+3 /carrier IF 100E+6
# Hardware:
#
    - synthesizer: MARCONI INSTRUMENTS, 2024, 112261/009, 44533/446/04.07
    - analyzer: Hewlett-Packard, E4407B, MY45109239, A.14.01
#
#
    - multimeter: HEWLETT-PACKARD, 34401A, 0, 4-1-1
# vd1, vd2= 3.400000
# Analyser settings
     frequency:center = 100E+6
#
     frequency:span = 100E+3
#
     bandwidth:resolution = 1E+3
#
#
     bandwidth:video = 100
#
     :display:window:trace:y:rlevel = 10
#
#
#
    F3;
               F1;
                     s/n; Power; flo1Ref;
                                                fRef; Harm; lock; vbias
#
   GHz;
              GHz;
                     dBc;
                              mW; GHz;
                                                 GHz; ;
                                                                 ;
                                                                      Volt
 283.0;
          94.2333; -79.5; 36.82; 15.7056;
                                               1.9632;
                                                                  1; -0.60
                                                           6;
 284.0;
         94.5667; -76.9; 35.61; 15.7611;
                                               1.9701;
                                                                  1; -0.60
                                                           6;
[...]
                                               1.8891;
                                                                  1; -0.40
 363.0; 120.9000; -77.0; 8.13; 15.1125;
                                                           8;
                                                                  1; -0.40
 364.0; 121.2333; -76.7;
                           7.93; 15.1542;
                                               1.8943;
                                                           8;
 365.0; 121.5667; -78.3;
                            6.77;
                                  15.1958;
                                               1.8995;
                                                           8;
                                                                  1; -0.40
# End of measure
# 2010-10-07T16:03:01.793055
# Total duration = 593 seconds
# End of file
```

6.3 LO band 4 output power

The goal of this benchmark is to measure output power of the band #4 local oscillator at a specified frequency for all values of vd1/vd2.

6.3.1 Syntax

6.3.2 Output example

```
# recng-yig-b4-power-vd.py
# 2010-10-08T11:50:21.683310
# vd_begin = 0.3 , vd_end = 3.0, vd_step = 0.1
# flo mixer frequency = 283.0 GHz
# Hardware:
#
     - synthesizer: MARCONI INSTRUMENTS, 2024, 112261/009, 44533/446/04.07
     - multimeter: HEWLETT-PACKARD,34401A,0,4-1-1
#
#
\# lock = 1
# vbias = -0.599976
#
             Vd2;
#
     Vd1;
                     power;
                               delta
#
      V;
              V;
                      mW;
                                  mW
     0.3;
             0.3;
                      0.08;
                                 0.08
     0.4;
             0.4;
                      0.36;
                                 0.27
 [...]
                     28.30;
     2.9;
             2.9;
                                1.56
     3.0;
             3.0;
                     30.18;
                                1.88
             Vd2;
#
     Vd1;
                               delta
                     power;
      v;
                      mW;
                                 mW
#
             V;
     0.3;
             0.0;
                      0.01;
                                 0.01
             0.0;
                      0.08;
                                0.07
     0.4;
[...]
             0.0;
     3.0;
                      7.75;
                                 0.44
# End of measure
# 2010-10-08T11:52:20.975415
# Total duration = 119 seconds
# End of file
```

7 User programs

This section describes the user programs. These programs are installed in /home/introot/recng/bin.

For convenience, all program names starts with the prefix recng-

For the software developers, there are debug versions of these programs: just add the suffix .Debug to the program name.

The data files are installed in /home/introot/recng/data

7.1 recng-coil

This program tunes coils to remove the Josephson effect in junctions. It also draws graphs to check that the automatic setting is correct. recng-coil can be applied only on band 3 and 4.

By default it tunes all the channels of a band, but it is possible to tune separately channels. The tuning may be better if channels are sequentially tuned, instead of simultaneously.

The graphic files are generated in the subdirectory B1, B2, B3, B4 according to the band number.

7.1.1 Syntax

```
Recng Coil - Tune coils to remove the Josephson effect in junctions
Usage: recng-coil [options]
Options:
                -b=bandNum Specify band to tune [3,4]
               -c=a,b,c Specify channel names to tune. If empty, tune all coils
                -v Display version information
                -h, -? Display help
Channel names:
            Band 3: B3_V1, B3_H1
            Band 4: B4_V1, B4_V2, B4_H1, B4_H2
Example: recng-coil -b=4 -c=B4_V1, B4_H1
```

7.1.2 Example

```
$ recng-coil -b=3 -c=B3_V1
Setting for this tuning
       BandNum = 3
       ChannelList = B3_V1
Step 0: Decrease loPower2
Starts individuals threads
[coil_B3_V1] Load parameters from database:
[coil_B3_V1]
                    iJuncMargin
                                         = 0.10
[coil_B3_V1]
                    juncAcqRef
                                         = 0.20
[coil_B3_V1]
                    juncStdRef
                                         = 2.30
[coil_B3_V1]
                    juncZeroRef
                                         = 0.01
[coil_B3_V1]
                    minCoilRef
                                         = 4.00
                    minFlatWidth
[coil_B3_V1]
                                         = 2.00
[coil_B3_V1]
                    maxCoilRef
                                         = 40.00
[coil_B3_V1]
                    maxDerived
                                            0.15
                                         =
[coil_B3_V1]
                    maxJosephsonCurrent = 1.50
                    iCoilNegExploration = -1.00
[coil_B3_V1]
                    iCoilPosExploration = 2.00
[coil_B3_V1]
[coil_B3_V1] Thread starts
```

```
[coil_B3_V1] Step 1: Polarize junction with ref= 0.2 mV
[coil_B3_V1] Step 2: Start Coils and acquire iJunc(iCoil)
                Clear memory effect
[coil_B3_V1]
[coil_B3_V1]
                 Acquiring iJunc(iCoil) on [4 mA, 40 mA]
[coil B3 V1] Step 3: Apply magnetic field
                Searching for a flat level range inside [ 4.0 , 21.9 ]
[coil_B3_V1]
[coil_B3_V1]
                     Searching parameters:
[coil_B3_V1]
                               minCoilRef = 4.00
[coil_B3_V1]
                               maxCoilRef = 21.90
[coil_B3_V1]
                               maxDerived = 0.15
                              iJuncMargin = 0.10
[coil_B3_V1]
                             minFlatWidth = 2.00
[coil_B3_V1]
                                  minMin = -inf
[coil_B3_V1]
                    Found minimum ( iCoil = 16.4 , iJunc = -20.2214 )
[coil_B3_V1]
                    Flat level range candidate: [ 14.7 , 18.4 ]
[coil_B3_V1]
                    OK: the flat level range is accepted (width = 3.7)
[coil_B3_V1]
[coil_B3_V1]
                 Searching for a flat level range inside [ 22.1 , 40.0 ]
                     Searching parameters:
[coil_B3_V1]
[coil_B3_V1]
                               minCoilRef = 22.10
[coil_B3_V1]
                               maxCoilRef = 40.00
                               maxDerived = 0.15
[coil_B3_V1]
                              iJuncMargin = 0.10
[coil_B3_V1]
                             minFlatWidth = 2.00
[coil_B3_V1]
                                   minMin = -inf
[coil_B3_V1]
[coil_B3_V1]
                    Found minimum ( iCoil = 30.2 , iJunc = -20.2336 )
                    Flat level range candidate: [ 27.2 , 30.2 ]
[coil_B3_V1]
[coil_B3_V1]
                     OK: the flat level range is accepted (width = 3)
[coil B3 V1]
                Build list of candidates
[coil B3 V1]
                Applying optimal iCoil
[coil B3 V1]
                 Optimizing Josephson current
                 Optimal iCoil = 28.1
[coil_B3_V1]
[coil_B3_V1]
                Plot iJunc(iCoil)
[coil_B3_V1]
                 Output = /home/oper/B3/r1_B3_V1.coil.png
[coil_B3_V1] Step 4: Plot iJunc(vJunc)
[coil_B3_V1]
                Acquire I(V) on [0 mV, 4 mV]
[coil_B3_V1]
                Plot iJunc(vJunc)
[coil_B3_V1]
                Output = /home/oper/B3/r1_B3_V1.junc.png
[coil_B3_V1] Thread exits
==end of tune
```

7.1.3 Graph examples

7.2 recng-dump

This program dumps the receiver internal values on the standard output.

7.2.1 Syntax

```
Recng Print Detailed status

Print detailed status of the receiver on the standard output

Usage: recng-dump [options]

Options:

-v Display version information

-h, -? Display help
```

7.2.2 Example

\$ recng-dump			
<pre># hostname = ant22b</pre>			
# Tue Feb 5 16:35:41	2013		
H_ifLevel	adc_H_ifLevel.actualValue	1.07	
V_ifLevel	adc_V_ifLevel.actualValue	1.87	
band1.GunnBias	dac_B1_GunnBias.requestedValue	7.80	
band1.HarmMixerBias	dac_B1_HarmMixerBias.requestedValue	2.10	
[]			

7.3 recng-reset-lo1Ref

This program reset the Lo1Ref

7.3.1 Syntax

7.3.2 Example

```
$ recng-reset-lolRef -c=A,B
ant12b:resetLolRef: Arguments:
ant12b:resetLolRef: channels= A,B
ant12b:resetLolRef: reset LolRef A
ant12b:resetLolRef: reset LolRef B
ant12b:resetLolRef: OK tuning done
```

7.3.3 Wrapper resetLo1Ref

For convenience, there is a wrapper called resetLolRef to avoid typing the -c argument

```
Trivial wrapper for recng-reset-lolRef
    'resetLolRef ch1' <=> 'recng-reset-lolRef -c=ch1'
```

'resetLolRef ch1 ch2' <=> 'recng-reset-lolRef -c=ch1,ch2'

```
example: resetLolRef 1 2
```

7.4 recng-lo

This program is a wrapper that runs recng-lo-gunn or recng-lo-yig according to the band number.

7.4.1 Syntax

Without arguments, recng-lo prints the help for recng-lo-gunn and recng-lo-yig. recng-lo passes all its arguments to the real tuning subprogram.

7.5 recng-lo-gunn

This program tunes the gunn local oscillator.

7.5.1 Syntax

```
$ recng-lo-gunn -h
Recng LoGunn - Tune Local Oscillator (gunn)
Usage: recng-lo-gunn [options]
Options:
  -b=bandNum
                 Specify band to tune (1,2,3)
  -f=frequency
                 Specify the LO frequency in GHz (with multiplier)
  -d=[-|+]
                  Specify the deltaF, '+' or '-'. Default is '-'.
                 Display version information
  -v
  -h, -?
                 Display help
            recng-lo-gunn -b=1 -f=90.0
Example:
```

7.5.2 Example

\$ recng-lo -b=1 -f	=90	
ant12b:loGunn:	Receive	rID = 100
ant12b:loGunn:	Setting	for this tuning:
ant12b:loGunn:		bandNum = 1
ant12b:loGunn:		flo = 90.000 GHz
ant12b:loGunn:		deltaF = MINUS
ant12b:loGunn:	FGUNN=	90 GHz
Load settings from	n h183	
ant12b:loGunn:	Step 1:	Configure the LO in safe mode
ant12b:loGunn:		
ant12b:loGunn:	Step 2:	Set Motors and DACs
ant12b:loGunn:	LO sett:	ings:
ant12b:loGunn:		FGunn = 90
ant12b:loGunn:		GunnBias = 7.8
ant12b:loGunn:		HarmMixerBias = 2.7
ant12b:loGunn:		HarmMixerPower = 3.3
ant12b:loGunn:		LoFreq = 4.854
ant12b:loGunn:		LoPower1 = 3.5
ant12b:loGunn:		LoPower2 = 2
ant12b:loGunn:		LoopGain = 5.01
ant12b:loGunn:		PowerGunn = 6.7

ant12b:loGunn:	
ant12b:loGunn:	Step 3: Close Loop and optimize LoFreq
ant12b:loGunn:	Optimal loFreq = 4.833
ant12b:loGunn:	
ant12b:loGunn:	Step 4: Set Offset Voltage and Gunn Bias
ant12b:loGunn:	Increase loFreq until OffsetVoltage < 5.00
ant12b:loGunn:	loFreq = 4.8370 ; offsetVoltage = 4.7887
ant12b:loGunn:	Increase gunnBias until OffsetVoltage > 5.00
ant12b:loGunn:	Optimal gunnBias = 7.83968
ant12b:loGunn:	
ant12b:loGunn:	<pre>Step 5: Find max PllIfLevel(harmMixerBias)</pre>
ant12b:loGunn:	Max found: harmMixerBias = 0, pllIfLevel = 5.74997
ant12b:loGunn:	Tuning OK
ant12b:loGunn:	
ant12b:loGunn:	End of tuning

7.6 recng-lo-yig

This program tunes the YIG local oscillator.

7.6.1 Syntax

```
$ Recng LoYig - Tune Local Oscillator (YIG)
Usage: recng-lo-yig [options]
Options:
    -b=bandNum Specify band to tune (4)
    -f=frequency Specify the LO frequency in GHz (with tripler)
    -q Optimize only the PLL. The PLL must be already locked
    -v Display version information
    -h, -? Display help
```

7.6.2 Example

```
$ recng-lo-yig -b=4 -f=300
ant12b:loYig:
                 Setting for this tuning:
ant12b:loYig:
                         bandNum = 4
                                = 100.000 GHz
ant12b:loYig:
                         flo
ant12b:loYig:
                 ReceiverID = 100
ant12b:loYig:
Load settings from 'vbias_b4YigLo0'
ant12b:loYig: Step 0: Load nominal values
ant12b:loYig:
                         vdb = 3
ant12b:loYig:
                         md = 0
ant12b:loYig:
                         vde = 3
ant12b:loYig:
                         vge = -0.3
ant12b:loYig:
                         vd1 = 0
ant12b:loYig:
                         vg1 = -0.3
ant12b:loYig:
                         vd2 = 0
                         vg2 = -0.3
ant12b:loYig:
                 Step 1: Open PLL
ant12b:loYig:
                 Step 2: Apply Vbias = -0.4
ant12b:loYig:
ant12b:loYig:
                 Step 3: Tune Yig (try to lock PLL)
ant12b:loYig:
                    OK: PLL is locked for yig frequency = 16.7241 GHz
ant12b:loYig:
                 Step 4: Optimize Yig
ant12b:loYig:
                    OK: Yig PLL is optimized ( 16.7241 GHz )
ant12b:loYig:
                 End of tuning
```

7.7 recng-park-lo

This programs parks the local oscillator in a safe position (parking) that does not interfere with others LOs.

LO Type	Parking position
Gunn	loop=0, sweep=0,
	loPower2=0
Yig	pll_open=1, yig_freq=15GHz,
	vd1=0, vd2=0

7.7.1 Syntax

```
Recng ParkLo - Send LO to a parking position that does not interfere with
others LOs.
Usage: recng-park-lo [options]
Options:
   -b=bandNum Specify band to park [1,4]
   -v Display version information
   -h, -? Display help
Example: recng-park-lo -b=1
```

7.7.2 Example

```
$ recng-park-lo -b=4
ant22b:parkLo: Park LO bandNum = 4
ant22b:parkLo: End of parking LO
```

7.8 recng-mixer

This program tunes the harmonic mixer in the cryostat. The graphic files are generated in the subdirectory B1, B2, B3, B4 according to the band number.

7.8.1 Syntax

```
$ recng-mixer -h
Recng mixer - Tune Mixer
Usage: recng-mixer [options]
Options:
  -b=bandNum
                 Specify band to tune [1,4]
  -f=frequency
                 Specify the frequency LO1 in GHz
  -s=[L|U]
                 Specify the sideband (L)ower or (U)pper
                 Skip tuning, redraw only Trec graphs
  -r
                 Display version information
  -v
  -h,
      -?
                 Display help
```

```
7.8.2 Example
```

```
$ recng-mixer -b=3 -f=237 -s=L
ant12b:mixer: ReceiverID = 100
ant12b:mixer: Setting for this tuning
ant12b:mixer: BandNum = 3
```

```
ant12b:mixer:
                    Frequency Lo = 237.000 GHz
ant12b:mixer:
ant12b:mixer:
                ReceiverID = 100
ant12b:mixer:
                Backshort Mixer
ant12b:mixer:
                Load LO lab settings
Load settings from h244
ant12b:mixer:
                LO Settings:
ant12b:mixer:
                         FGunn = 79
ant12b:mixer:
                         GunnBias = 7.8
ant12b:mixer:
                         HarmMixerBias = 0
ant12b:mixer:
                         HarmMixerPower = 0.4
ant12b:mixer:
                         LoFreq = 2.581
ant12b:mixer:
                         LoPower1 = 6.5
ant12b:mixer:
                         LoPower2 = 6.5
ant12b:mixer:
                         LoopGain = 4.835
ant12b:mixer:
                         PowerGunn = 5.73
ant12b:mixer:
ant12b:mixer:
                Load settings from m560-554.b3.lsb
ant12b:mixer:
                Mixer settings:
ant12b:mixer:
                         Attenuation_B3_H1 = 7
ant12b:mixer:
                         Attenuation_B3_V1 = 7
ant12b:mixer:
                         Backshort_H = 8.27
ant12b:mixer:
                         Backshort_V = 8.43
ant12b:mixer:
                         Flo1 = 237
ant12b:mixer:
                         Ij_{H} = 25.8
                         Ij_V = 23.2
ant12b:mixer:
ant12b:mixer:
                         TCold_H = 19
ant12b:mixer:
                         TCold_V = 23
ant12b:mixer:
                         Vj_H = 2.31
ant12b:mixer:
                         vj_v = 2.31
ant12b:mixer:
ant12b:mixer:
                Step 1: Starting
ant12b:mixer:
                Polarize junctions
ant12b:mixer:
                Wait for calibration moving to 03 Amb ... OK
ant12b:mixer:
ant12b:mixer:
                Step 2: Set Motors and Attenuators
ant12b:mixer:
                Step 3: Optimize mixer current
ant12b:mixer:
                Target current = 23.2 uA on junction B3_V1
ant12b:mixer:
                Step 4: Compute Trec and draw graphs
ant12b:mixer:
                Wait for calibration moving to 03_Amb ... OK
[mixer_B3_V1] Start acquiring IF level with Amb load
[mixer_B3_V1] Acquisition range: [1.6, 3]
[mixer_B3_H1] Start acquiring IF level with Amb load
[mixer_B3_H1] Acquisition range: [1.6, 3]
                Wait for calibration moving to 03_Cold ... OK
ant12b:mixer:
[mixer_B3_V1] Start acquiring IF level with Cold load
[mixer_B3_V1] Acquisition range: [1.6, 3]
[mixer_B3_H1] Start acquiring IF level with Cold load
[mixer_B3_H1] Acquisition range: [1.6, 3]
[mixer_B3_H1] Output = /home/oper/B3/r1_B3_H1.mixer.png
[mixer_B3_V1] Output = /home/oper/B3/r1_B3_V1.mixer.png
Step 5: Restore observing mode
Polarize junctions
Wait for calibration moving to 03_Sky ... OK
End of tuning
```

7.8.3 Graph

7.8.4 Utilities

Front-end excel files must be converted to mixer data files with the following scripts:

- recng-MixerBshort_import-excel.py
- recng-Mixer2sb_import-excel.py

```
The converted data are in my_mixer_filename.bl
```

3- "File | Save As", Save as type: Text (Tab delimited)
(give the name you want, for example "toto.txt"
Now execute the following command line:
MixerBshort_import-excel.py toto.txt > my_mixer_filename.b2.lsb

The converted data are in my_mixer_filename.b2.lsb

7.9 PlotJunction

This program is used to plot the junction graph I(V)

7.9.1 Syntax

```
$ recng-plot-junction -h
Recng Plot Junction - Plot junction graph I(V)
Usage: recng-plot-junction [options]
Options:
        -b=bandNum
                      Specify band to plot
        -c=a,b,c
                      Specify channel names to plot. If empty, plot all junctions
        -v
                      Display version information
        -h, -?
                     Display help
Channel names:
       Band 1: B1_V1, B1_H1
       Band 2: B2_V1, B2_H1
       Band 3: B3_V1, B3_H1
       Band 4: B4_V1, B4_V2, B4_H1, B4_H2
```

7.9.2 Example

```
$ recng-plot-junction -b=3 -c=B3_H1
Setting for this tuning
    BandNum = 3
    ChannelList = B3_H1
Step 0: Decrease loPower2
Starts individuals threads
[junc_B3_H1] Thread starts
[junc_B3_H1] Unprotect junction
[junc_B3_H1] Plot iJunc(vJunc)
[junc_B3_H1] Acquiring I(V) on [0 mV, 4 mV]
[junc_B3_H1] Output = /home/oper/B3/r1_B3_H1.junc.png
[junc_B3_H1] Thread exits
==end of plot
```


7.10 recng-gui

This program is specially designed for the front-end laboratory. It provides a graphical user interface (gui) for each receiver component.

7.10.1 Syntax

\$ recng-gui	

7.10.2 Main window

Recng G <u>F</u> ile Maint	iui <mark>(localho</mark> : :enance <u>H</u> el	st] _ I ×
LO	Mixer	Cryo
	Exit	

7.10.3 Lo window (Gunn)

File	e <u>S</u> elect <u>M</u>	aintenan	ce	
[gr	e106] LC	Band	#1	DACs
	3 665	R= 3 665	Stop	
LoF	req	n= 3.003	Reset	GunpRias 3.43 R= 3.43
D	4.473	R= 4.473	Stop	
Pwre	sunn		Reset	1
цмуг	4.741	R= 4.741	Stop	LeanCain 2.19 R= 2.19
nrixP	ower	0	Reset	LoopGain
LoDo	war1 2.942	R= 2.942	Stop] —V———
LUFU			Reset	2 29 B= 2 20
LoPo	Wer2 3.369	R= 3.369	Stop	HMx Bias
LUPU			Reset	
- Swi	tches			ADCs
S	gunn	o on	O OFF	Offset Volt. = 2.40 V
S	loop	• Close	O Open	
S	sweep	ON ON	O OFF	PLL IF Level = 2.90 V
ç	deltaF	0.4	0 -	HrmMxCurrent = 4.80 m/

To avoid mistakes, each band has its own color:

Motor widgets (LoFreq, PwGunn, HmxPwr, LoPower1, LoPower2)

This widget is used to drive the motor, and to display the current position.

Description

– Motors –					
LoFreq	1.345 V	R= 8	8.022	V	Stop
l			=0=		Reset

The requested value is displayed with a R prefix (here: R= 8.022).

The current position with no prefix (here: 1.345). There is also a stop button and a reset button.

To modify the motor position, you can:

• Click on the button name to open a dialog box to enter the new motor value

• Move the slider

Motor dialog box

You can change the slider step by right-clicking on it

LoFreq 2	.068 V R= 2.068 V
Pw Gunn	Current step = 10
UMV Dure 0	.020 V K= 0.020 V

🐣 LoFreq: set slider page step	? 🗆 🗙
Enter new slider step for LoFreq: (curren	t step is 10)
<u>O</u> K	Cancel

The unit for the slider is in motor raw unit (totally different from the motor unit which is displayed in Volt)

If the motor is disconnected from the CAN bus, the labels become red to indicate a problem.

DAC widget (GunnBias, LoopGain, HarmMxBias)

This widget is used to drive the DAC, and to display the current position.

Description

From the user point of view, a DAC is similar to a motor with an infinite speed.

So, the motor widget description applies also to the DAC widget

ADC widget (OffsetVoltage, PLL IF Level, HarmMxCurrent)

This widget is used to display the current ADC value.

OffsetVoltage (V) = 0.000 PLL IF Level (V) = 0.000 Harm Mx Current (mA) = 0.000

Lo Switches widgets

This widget is used to command the LO switches and to display the status.

Description

- ADCs -

Each radio-button pair represents a LO switch. It is a realistic representation of the LO physical front panel: color and switch order are taken from the LO hardware.

The radio button displays the current command applied on this switch.

For each switch, if the command matches the status, the status label (the S letter on the left side) is displayed with a normal background; otherwise this label is displayed with a red background. Here the status for Sweep is red. It means that the status does not match the command.

-Switches			
S	gunn	o on	OFF
s	loop	🔾 Close	● Open
S	sweep	● ON	OFF
s	deltaF	• +	0 -
<u> </u>			

If the LoSwitches device does not answer at all, the switch names (gunn, loop, sweep, deltaF) become red to indicate a problem.

7.10.4 Lo window (Yig)

For band #4, the window is different because the local oscillator is a Yig. There are 3 tabs: frequency, ampli and misc.

7.10.4.1 Frequency tab

<u>File Select Maintenance</u> [gre106] LO Band #4	
[gre106] LO Band #4	
<u>Frequency</u> Ampli Misc	
Yig Frequency 15.000 GHz	PLL CorV = -10.000 V PLL IF = -10.000 V PLL Ref = -10.000 V
PLL Command PLL Sta	tus
PLL POL	оск
PLL BWSEL	JLOCK
	EF/IF

This window shows:

- The YIG frequency

- The PLL command and status

- The analog values of the PLL

7.10.4.2 Ampli tab

🙈 Gui: Lo	(recng)		_ 🗆 X
<u>F</u> ile <u>S</u> ele	ect <u>M</u> aintena	nce	
[gre106] LO Band	#4	
Frequency	Ampli Mi	sc	
- Active Mu	Iltiplier Cha	in - Doubler	Tripler
vdb	0.00 V	Amc ID(A) = 0.305 mA Amc VD(A) = 0.003 V Amc VG(A) = 0.003 V	Amc M(D) = 0.015 mA
vde	0.00 V	🗘 40GHz Ampli	- Millimeter Ampli
vge	-0.29 V	Amc ID(B) = 0.305 mA ★ Amc VD(B) = 0.003 V Amc VG(B) = 0.003 V	Amc ID(E) = 0.305 mA Amc VD(E) = 0.003 V Amc VG(E) = 0.003 V
- Power Amp	li	Ampli 1	Ampli 2
vdl	0.00 V	Ampli Id1 = 0.305 mA	Ampli Id2 = 0.305 mA
vd2	0.00 V	Ampli Vd1 = 0.003 V	Ampli Vd2 = 0.003 V
vg2	-0.29 V	Ampli Vg1 = 0.003 V	Ampli Vg2 = 0.003 V

There are software limit on the spinboxes to avoid damaging the millimeter amplifier.

7.10.4.3 Misc tab

🙈 Gui: Lo (recng)	- • ×
<u>F</u> ile <u>S</u> elect <u>M</u> aintenance	
[gre106] LO Band #4	
Frequency Ampli Misc	
Clup duration 15.0 usec	Ampli Amc
VBias 0.000 V R= 0.000 V	vAmpli -3V = 0.003 V
Q	Amc +5V = 0.003 V
	Ampli +5V = 0.003 V
	Power Supply Temperatures
	Power +5V = 0.00 V
Save Default	Dever 115V - 0.01 VDLL Town - 0.205 doaC
Reset LO Analog IO board	-rower +150 - 0.01 VPLL Temp - 0.305 degc
Reset LO Digital IO board	Power -15V = 0.01 V

On this window, you can

- Read the power supplies
- Save default values in EEPROM. The EEPROM content is applied when the LO rack is powered. The saved value are:

_

- 1. YIG frequency
- 2. Ampli(vd1,vg1,vd2,vg2)
- 3. Amc (vdb,md, vde, vge), PLL commands)
- Reset the analog input/output board with button Reset Lo Analog IO board
- Reset the digital input/output board with button Reset Lo Digital IO board

7.10.5 Mixer window

🐣 Gui: Mixer (recng)				
<u>F</u> ile <u>S</u> elect <u>M</u> aintenance				
[gre106] Mixer Band #3				
- Mixer Backshort Motors	T JReg B1B3	Hemt —		
MxBshort V 3.198 R= 3.198 Stop Reset	sts= 0x00 cmd= 0x00	B3_V1_s0 vdm = 0.00 V	B3_V1_s1 vdm = 0.00 V	B3_V1_s2 vdm = 0.00 V
MxBshort H 2.427 R- 2.427 Reset	Protected	idm = 0.00 mA vgm = 0.00 V	idm = 0.00 mA vgm = 0.00 V	idm = 0.00 mA vgm = 0.00 V
Junc B3 V1 ref= 0.0000 mV Voltage ↓	act= 0.000 mV act= 0.000 uA	B3_H1_s0 vdm = 0.00 V	B3_H1_s1 vdm = 0.00 V	B3_H1_s2 vdm = 0.00 V
Junc B3 H1 ref= 0.0000 mV Voltage ▼)	act= 0.000 mV act= 0.000 uA	idm = 0.00 mA vgm = 0.00 V	idm = 0.00 mA vgm = 0.00 V	idm = 0.00 mA vgm = 0.00 V
- Coils		1		
Coil B3 V1 0.00 mA R= 0.00 mA	C= 0.00 mA C V= 0.00 V T			
Coil B3 H1 0.00 mA R= 0.00 mA □ Enabled □ □	C= 0.00 mA C V= 0.00 V T			
Coil Thermo = 0.00 degC				

Mixer Backshort Motors

See description of LO motor.

Junction Reference Register

- Junctio	n Reference	Register ———
RefReg =	sts= Oxle cmd= Oxle	🕱 Protected

Junction

_ Junctions —						
🗌 Tracking						
Junc B1_V1	ref=	6.0547	mν	act=	0.000	mV
Voltage 🔫				act=	0.000	uA
Junc B1_V2	ref=	121.094	uA	act=	0.000	m٧
Current 👻			_	act=	0.000	uA

This widget is used to display the junction reference register, and to protect/unprotect the junctions

Note: the is also a physical switch on the junction box

This widget is used to control the junctions. You can set the junction reference by clicking on the junction button name, or by moving the slider.

Use the combo box to switch from current/voltage reference.

On the screenshot, Junction B1_V1 has a voltage reference, and Junction B1_V2 has a current reference.

Tracking

- Junctions				
🕱 Tracking				
Junc B1_V1 ref=	4.0497 mV			
Voltage 🚽				
Voltage 🚽				
Voltage 🚽 Junc B1_V2 ref=				

For double side band mixers, the same-polarity junctions must have the same reference values, otherwise the tuning is wrong. Therefore, there is a special tracking mode to change simultaneously the two junction references.

If needed, you can disable the tracking mode by clearing the *Tracking* checkbox.

Coil

This widget is used to control the coils, to apply a magnetic field to cancel the Josephson current in junction.

– Coils ——		~					
Coil B3_V1	12.34 mA	R=	12.34	mA actC=	15.295	mΑ	current
🕱 Enabled	(]		— actV=	-0.1691	V	thermal
Coil B3_H1	9.88 mA	R=	9.88	mA actC=	10.315	mΑ	current
🔲 Enabled]		🗎 actV=	0.3824	V	thermal
Coil Temper	ature = 25.00 deg Celci	us					

There are coils only in band 3 and 4.

Click on the *Enabled* check box to activate the coil, and then change the coil current with the slider or by clicking on the coil button. On the right side, you have *current* and *thermal* indicators. They become red, if a problem occurs.

7.10.6 Cryo window

🐣 Gui: Cryo (recng)				_ 🗆 X
File Maintenance				
- Temperatures	-Vacuum —	-Deicing and Cen	tral Hub — — —	7
HotLoad = 26.74 degC	PowerOff	Central Hub	Open 👻	Att. V 31 dB 븆
- CryoStat	Start Read	Deicing	Off 🔻	
Amp15K: 12.24 K Band1: 12.24 K	Press. = le-10 Torr Gauge stat: 0		Reset Deicing	Band V band 1 ▼
Band3: 12.50 K Band4: 12.09 K T_77K: 48.54 K	Degas stat: 0 Gauge power: 0 Gauge: 0	Deicing Running Deicing Key	0 local	Att. H 31 dB 🔹
T_15K: 36.30 K T_4K: 12.27 K ColdLd: 37.38 K	Press 'start' to refresh	Deicing Power Fork cabinet Circuit breaker	Failed Ok	Band H band 1 -
- Calibration ————	LolRef A <mark>alarm ON</mark> Disable x	CHub opened CHub closed	0	- IF Levels
CalA 01_amb ¥ P_IST = 0	L_limit=0	CHub Key Cabin 230V	local Failed	IF V = 2.036
CalB 03_amb •	LolRef B alarm ON Disable • H_limit=0	UPS Cabin Command	0k 0x0000	IF H = 1.263
		Status	0x0000	

Vacuum

The vacuum widget has a auto power off timeout (120 secs), to avoid damaging the vacuum sensor.

7.11 Rop

Rop (Receiver OPerator) is a special version of recng-gui.

All components are grouped on only one window; rarely used devices (such Vacuum, Hemt) are not displayed. The target audience for this program is the IRAM telescope operators.

🗳 Recng ROP [localhost]	_ _ ×
<u>F</u> ile <u>S</u> elect <u>M</u> aintenance <u>H</u> elp	
[gre106] LO Band #1 Motors DACs	[gre106] Mixer Band #1
LoFreq 3.665 R= 3.665 PwrGunn 4.473 R= 4.473 GunnBias 3.43 R= 3.43	- Mixer Backshort Motors JReg B1B3
HMxPower 4.741 R= 4.741 LoopGain 2.19 R= 2.19	MxBshort V 0.027 R= 0.027 MxBshort H 0.027 R= 0.027 X Protected
LoPower1 2.942 R= 2.942 LoPower2 3.369 R= 3.369 HMx Bias 2.29 R= 2.29	_ Junctions Junc B1 V1 ref= 0.0000 mV act= 0.000 mV Voltage ↓ 0 act= 0.000 uA
Switches ADCs S gunn ON OFF Offset Volt. = 2.40 V	Junc Bl Hl ref= 0.0000 mV act= 0.000 mV Voltage •
S loop Olose Open S sweep ON OFF S deltaFO+ O- HrmMxCurrent = 4.80 mA	-Coils No coils for band #1
Calibration LolRef A alarm OFF CalA 01_amb V Disable VH_limit=0	IF Levels CryoStat 31 dB ↓ IF V = 0.000 Amp15K: 12.24 K Band1: 12.24 K
P_IST = 0 CalB 03_amb v Disable v H limit=0 CalB 03_amb v	IF H = 0.000 Band3: 12.50 K Band4: 12.09 K Temperatures T_77K: 48.54 K HotLoad = 0.00 degC T_15K: 36.30 K
P_IST = 0 L_limit=0 Band H	band 1 - CryoAmb = 0.00 degC ColdLd: 37.38 K

7.11.1 Syntax

```
$ recng-rop
```

7.12 recng-check-software

recng-check-software.py checks that all the needed processes to use the receiver are running.

7.12.1 Syntax

recng-check-software.py

7.12.2 Example

```
CanManager: Ok
Check database:
Database: Ok
Check recng-server
recng-server: Ok
Check 22GHz receiver
22GHz: Ok
Check Subreflector
subreflector: Ok
RECNG Receiver: Ok
```

7.13 Rmc

rmc is an alias for program receiverMultiCommand.py. It is useful to run the same command on all the antenna.

7.13.1 Syntax

```
Run a command on several antennas
Version $Revision: 1.1.2.10 $ $Date: 2010/11/15 11:12:51 $
Usage:
        receiverMultiCommand.py [-nofilter] [-antenna=XYZ..] [-timeout=X] -
command="cmd args"
Arguments:
        -nofilter : do not filter output for antenna
                Default: filtered output on the antenna name
        -antenna=XYZ : list of antenna
                Default: use the $TELESCOPE environment variable
                Example: -antenna=1,2,3,4,5,6
        -timeout=T : timeout in seconds
                Default: no timeout
                Example: -timeout=2
        -command="cmd args" : command to run.
                Example: -command="lo.py -b=1"
Arguments can be abbreviated.
Example:
        receiverMultiCommand.py -n -a=1,2,3 -t=2 -c="lo.py -b=1"
```

7.13.2 Examples

To reboot all the antenna rmc -a=1,2,3,4,5,6 -c="reboot"

To tune all the lo on band #1

rmc -a=1,2,3,4,5,6 -c="recng-lo -b=1"

8 Daily Operation

8.1 Modify database configuration

The configuration settings are stored in several SQL files in directory /home/introot/recng/data/ Normals users are interesting only by the filenames starting with prefix "conf-". The others filenames are for developers only.

To modify a setting, edit the appropriate file and then run recng-update-db.sh to update the database.

```
$ recng-update-db.sh
    cd /home/introot/recng/data
    rm -f recng.db
# Update recng.db ...
    sqlite3 recng.db < ./00-canid.sql
    sqlite3 recng.db < ./conf-calibration.sql
[...]
    sqlite3 recng.db < ./devices/YigGenerator.sql
    sqlite3 recng.db < ./receiverId.sql
# OK
```

Then you have to restart the applications.

Note: You should notify me by email each time you modify SQL file, so that I can archive it in the SVN repository. Otherwise your modifications may be lost after a reinstallation.

8.2 LO and Mixer data files

The data files for LO and Mixer are in /home/introot/recng/data/tuning If you add a new file in this directory, you have to specify its names in the appropriate SQL configuration file (/home/introot/recng/data/conf-*.sql).

9 Tips

9.1 How to change the fonts size?

The graphical program use the default setting from your window manager, but you can change the default font with the program qtconfig

🔩 Qt Configuration <@mrt-emirl> 📃 🗆 🗙				
<u>F</u> ile <u>H</u> elp				
Fonts 🔺	Appearance Fonts Interface Printer Phonon			
	Default Font			
Use this tab to select	Family: Bitstream Vera Sans Mono			
the default font for	Style:	۲.		
your Qt applications. The selected font is	Point Size:	╤║		
shown (initially as	Samole Text			
'Sample Text') in the				
Family, Style and	Font Substitution ————————————————————————————————————	—		
Point Size drop down	Select or Enter a Family: Bitstream Charter	┳		
lists.	Current Substitutions:			
Qt has a powerful font				
that allows you to				
specify a list of				
substitute fonts. Substitute fonts are				
used when a font				
cannot be loaded, or				
if the specified font doesn't have a				
particular character.				
For example, if you	Up Down Remove			
select the font				
have Korean	Add			

To have a nicer display, you should select a fixed-width font. I recommends to use *Bitstream Vera Sans Mono*, with size=10 or size=12.

10 Bure1

All the previous chapters concern the software that run on the antenna computer. As opposite, this section explain the software that run on bure1 (the main computer of the interferometer)

10.1 Build software on bure1

```
$ mkdir ~/develSVN
$ cd ~/develSVN
$ svn co svn://svn.iram.fr/PdB/ReceiverNG/trunk ReceiverNG
```

Then use the Makefile, to extract automatically the dependencies

```
$ cd ReceiverNG
$ qmake
$ make get_deps
```

Then build all the code

\$./build.sh

To install the software, library and includes files in /control/recng

\$ su -c "./install.sh bure1"

What is installed?

Description	Filename	
Root directory	/control/recng	
Function prototypes	include/Fortran_Rpc_Client.hpp	

Libraries (binaries)	libs/	

The libraries are available in two versions:

- Release version: to be used in the final product
- Debug version: they print debug messages when running

11 Burel programs

11.1 recng-StatusReceivers

This program gets status from all receivers in each antenna and stores the results in the shared memory. The program uses one thread per connection, so you can add/remove antennas without restarting the program.

11.1.1 Syntax

The –s option is useful for test.

11.1.2 Example

\$ recng-StatusReceivers

The program connects to the default server names (ant12b, ant22b, ... ant62b) and stores the results into the shared memory "RECE"

11.2 recng-print-status

This program prints the content of the shared memory

11.2.1 Syntax

```
$ recng-print-status -h
recng Print Status - Print Status Information
Print Status information from the RECE shared memory
Usage: recng-print-status [options]
Options:
    -r=N Print only receiver N (N in [1,6])
    -v Display version information
    -h, -? Display help
```

11.2.2 Example

\$ recng-print-status -r=1	
rec1.band1.calibrationMode	0 (invalid)
rec1.band1.flo	109.35365300
rec1.band1.isLoLocked	1
rec1.band1.pllIfLevel	0
rec1.band2.calibrationMode	0 (invalid)
rec1.band2.flo	163.69999700
rec1.band2.isLoLocked	0
rec1.band2.pllIfLevel	0
rec1.band3.calibrationMode	3 (cold)
rec1.band3.flo	100.0000000
rec1.band3.isLoLocked	0
rec1.band3.pllIfLevel	0
rec1.band4.calibrationMode	0 (invalid)
rec1.band4.flo	321.12345700
rec1.band4.isLoLocked	0
rec1.band4.pllIfLevel	-9.99969
rec1.centralHub.isRemote	0
rec1.centralHub.position	0 (interm)
rec1.deicing.isActive	0
rec1.deicing.isPowerOk	0
rec1.deicing.isRemote	0
rec1.deicing.mode	0 (Off)
[]	
rec1.lastRefreshing 1288357198 (2010-10-29T14:59:58)	