

The ALMA Observing Tool: Proposal Preparation & Submission

Alan Bridger (UK ATC & ALMA Computing IPT)

Overview

- Summary of ALMA Concepts
- Summary of ALMA OT Concepts
- Downloading & Installation Options
- The OT GUI overview
- Phase I Preparing your proposal
- Science Goal details
- Validation and other tools
- Proposal Summary
- Proposal Submission
- Phase II SB Generation
- SB overview
- How the SB interfaces to observing

The Team

Collaboration between UK ATC, ESO and NAOJ

Developers:

UKATC: Alan Bridger, Stewart Williams, Stewart McLay, David Clarke, Nuria Lorente, Martin Folger

ESO: Marcus Schilling, Joseph Schwarz, Maurizio Chavan, Heiko Sommer

NAOJ: Hiroshi Yatagai

(Approx 2.9 FTE)

Science:

- Andy Biggs, Liz Humphries, Leonardo Testi +
- Toshihiro Handa, Harvey Liszt, Suzanna Randall, and many others

Documentation:

Rein Warmels +

ALMA Observing Concepts

ALMA Will be *dynamically scheduled* in a service mode operation. Observing is specified by *sensitivity* goals.

- Observing will be divided into Scheduling Blocks (SchedBlocks or SBs)
- Each SB will be ~ 30 minutes in length (weather considerations)
- "Best" SB at any moment will be observed (weather, science priority, project completion, ...)
- SBs considered "complete" when have met individual goals
- SBs grouped into "sets" (Observing Unit Sets, ObsUnitSets) which:
 - provide the data processing trigger
 - allow for dependencies between SBs
 - provide the ability to create hierarchies
- In Early Science expect manual SB selection, manual pipeline processing, simple SB sets

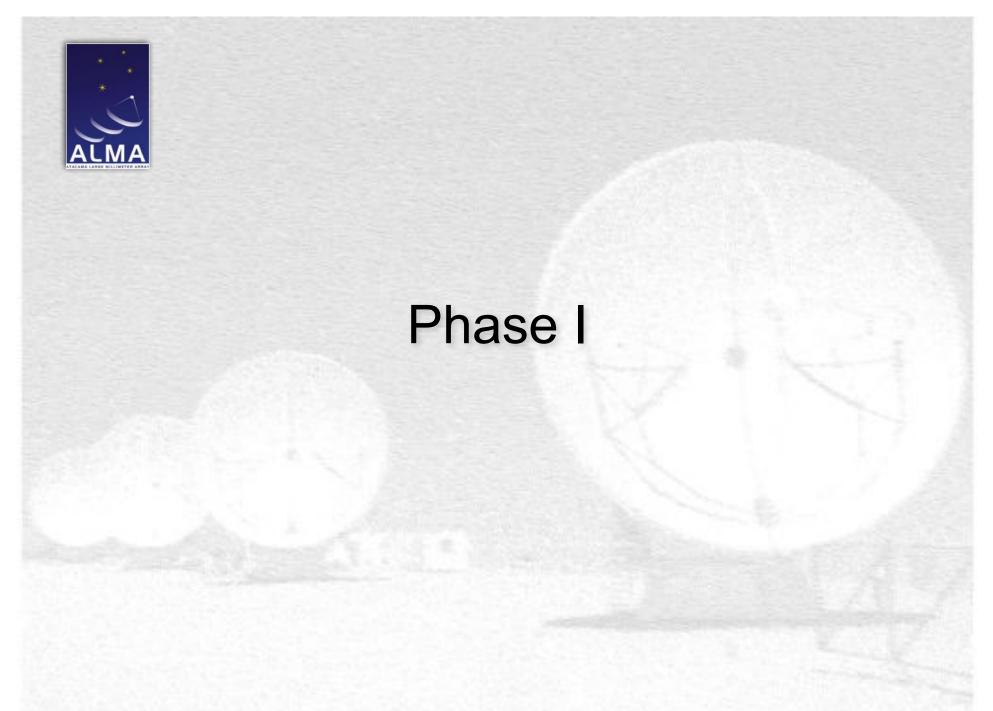
Observing Preparation: The ALMA OT

> Key Aim: Make it easy to use ALMA!

- A Single Tool for Phase I (Proposals), and Phase II (Observing Preparation)
 - Supporting "Novice" users,
 - But also "Experts" & Staff
 - Support for program review
 - Portable, easy to use, graphical user interface, user feedback of automatic choices, data rates, resources.
 - New release for each Proposal Cycle

ALMA OT: Download & Installation

- Java-based desktop client program: runs on a number of platforms:
 - Tested on Windows (XP or later), Mac OS X (10.5 & 10.6), GNU/Linux (several distributions)
 - Standard Oracle (Sun) JavaVM required. Current version uses Java 1.6
- Two primary methods of installation
 - Java Web Start: Using standard web browser, just click on hyperlink or image in a web page, & tool is downloaded & locally installed. Subsequent version updates are automatically searched for & can be installed whenever OT is launched *Preferred installation option*
 - **Tarball:** Download and install from standard tarball file. Full instructions provided. Option of including recommended Java.



ALMA OT: Primary Concepts

- OT captures observing information in the form of Science Goals
- Science Goals are common to both Phase I proposals and Phase II observing preparation
- Science cases, technical cases, figures, etc. included as PDF files
- Output of the OT after Phase II is sets of SBs
 - The OT performs automatic generation of SBs from Science Goals
 - SB may also be created from scratch (not in Early Science)

Phase I: Getting Started

- All investigators must register at the ALMA User Portal
- Create new proposal, & enter initial info into appropriate Editor Panel form
 - Proposal title, abstract, identify PI & co-Is (checked against user database), indicate scientific category, etc.
 - Attach PDF files containing the science case, technical case, tables, figures, etc. Checked for length during validation.
- Create as many Phase 1 Science Goals as needed

	10.000
* .	12.20
*	1025
1	100000
	Proposal Inf
	Proposal in
ATACAMA LARGE MILLIMETER A	

A modest proposal	
2010.3	
A very modest abstr	act/
is)	
Commit Changes	Launch Editor
y and the Galax hift Universe Nucle	ies and Galactic I
hemistry/Star Stella protoplanetary O Sun a planets Syste	
O Target	t Of Opportunity
Would like to coordina	ate observing with IRAM pr
i -	
	A very eodest abstruction A very eodest abstruction Commit Changes y and the hift Universe Protoplanetary O Sun a lanets O Target Would like to coordina

7

Basic Information

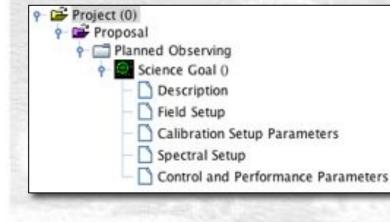
investigator search constraints

Name 🔻

contains andy,eelco,john

Find Investigators

Full name	Ersail	Affiliation	ALMA ID
John Lennon	John@thebeatles.com	organization	John
John Rambo	rambo@arnie.com	unset	rambo
John Hibbard	jhibbard@nrao.edu	NRAD	jhibbard.
Andy Biggs	abiggs@eso.org	European Southern Obs.	abiggs
Eelko van Kampen	evkampen/beso.org	unset	eelco
Eelko vanKampen	evkampen@eso.org	unset	eelco_ta
John Hibbard	jhibbard@nrao.edu	unset	jhbbard_ta
Andy Chen	andy.chen@nao.ac.jp	unset	achen
Doug Johnstone	douglas johnstone@nrc	unset	djohnstone



Basic Information

Investigators

7 Title Full name Affiliation ALMA ID Email Executive Alan Bridger alan bridger@stfc.a. EU P1 unset abridger Col John Hibbard hibbard@nrao.edu shibbard NA. NRA0 Col Andy Biggs abiggs@eso.org European Southern. abiggs CHILE Col evkampen@eso.org Eelco van Kampen eelco EU unset Add Col. Add from Proposal... Set PL... Remove Col Science Case and Supporting Documents 17 Science Case(Mandatory, PDF, 2 pages max.) ScienceCase.pdf Detach. View. Attach Technical Case(Optional, PDF, 2 pages max.) Attach Detach View Figures(Optional, PDF, 2 pages max.) OrgChart.pdf Attach Detach View. Tables(Optional, PDF, 2 pages max.) Attach Detach View

Science Goals

Science Goals

- Philosophically: Aim to abstract intended science from complexities of telescope
- Practically: Container (with some header information) containing 5 types of entry:
 - Description Optional description of science goal
 - Field Setup Used to denote which sky field(s) are to be observed
 - Calibration Setup Parameters Used to specify calibration strategy (types and details of calibrators, whether they are user-specified or system-selected
 - **Spectral Setup** Used to specify frequency ranges, resolutions, etc. to be used
 - Control and Performance Parameters Used to specify performance goals: angular resolution, largest scale, sensitivity, dynamic range, etc
- Currently one spectral setup and one sensitivity target per goal.

Field Setup & the Spatial Editor

Online name resolvers & connections to remote archive servers available

	Target						
	Sombrero						
	Source						0
	Source Name	Sombrero				Reso	sive
	Choose a Solar System Object		Name of ot	bject		-	
		-	Sexage	simal Parall	ax 0.00000	mas	
	Source Coordinates	System 120	display	1.21	A 0.00000	mas/yr	-
			2:39:59.431 1:37:22.995		EC 0.00000	mas/yr	
	Source Velocity	1			Contraction of the second s	-	
	10000000000	1197.000	- Annalas Rold	Contract of Cold States	ELATIVISTIC 🔻 Z	0.004001	
	Target Type	O Single P	oint Field 🛞 1 re	ectangular fie	eld		
	Field Center Coordinates						8
	Coords Type		ABSOLUTE	RELATI	VE		0
		OffsetLong	tude1-2.09282	arcsec	-		
					and a second		
		Offset(Latito	ide) 10.65108	arcsec			
C a 1/2x 3, 491 7014.0	Rectangle						
12:40:19.681, -11:34:07.85 (J2000)		p length	391.58012	aretec	Field	Sat	ur
ge filename : .jsky3/cache/jsky7287184760289912957.fts		p rengin		areec			up
/ Parameters		q length	204.26405	arcec	Fo	rm	
Frequency used 0.00000 CHz + Refresh		Position Ar	ngle-10.47639	de	, FU		
(Taken from)		4.5.5					
Arzena Dameter		Spacing	0.00000	arcsec	•		
Main beam size 0. arcsec	Adi	Target	Delete Target	Lord Ta	arget List		-
show FOV(circle) E Editor	- Income						
ge Query EUILUI							
age Server Digitized Sky (Version II) at ESO							
age Size(arcmin) 10 Query							
the sector runne 140							

EO7

let:

Calibration Setup Parameters

Goal Calibrators

- Fully Automatic setup, or
- User setup using
 - queries and/or
 - fixed calibrators
- Search calibrator catalogues, using...

Let the system decide how to calibrate your goal by selecting System selects calibration strategy, or specify your own calibration strategy and calibrator selection criteria with the User-defined calibration option.

- With user-defined calibration selected, add a dynamic calibrator (one that is found from the ALMA calibrator catalogue at execution time) or a fixed calibrator source with the Add Dynamic Calibrator....
- and Add Fixed Calibrator... buttons respectively. Remove calibrations by selecting a calibration and clicking Delete Selected Calibration. Edit the calibrator selection with the Edit Onteria... and Edit Target... buttons.

System selects calibration strategy

User-defined calibration

Calibration Int	Target Type	Source Name	RA	Dec	
Pointing	Dynamic Calibr		00:00:00.000	00.00.00.000	Edit Criteria
Phase	Dynamic Calibr		00.00.00.000	00.00.00.000	Edit Criteria
Bandpass	Dynamic Calibr		00:00:00.000	00.00.00.000	Edit Criteria
Delay	Dynamic Calibr		00.00.00.000	00.00.00.000	Edit Criteria
Amplitude	Fixed Target	Uranus	N/A	N/A	Edit Target
Phase	Foxed Target	115513-294948	11:55:15.290	-29:49:54.400	Edit Target

Add Dynamic Calibrator...

Add Fixed Calibrator....

Delete Selected Calibration

7

The Calibrator Query Tool

Amplitude Calibrator Query Editor

Calibrator Search Parameters

The ALMA calibrator catalogue will be filtered to find sources matching the selection criteria below. Enter a positive search radius to enable the cone search and/or enter values into the flux, frequency and time parameter pairs to enable these filters. Parameter pairs left as zero will disable the filter. If all filters are disabled, the entire calibrator catalogue will be returned.

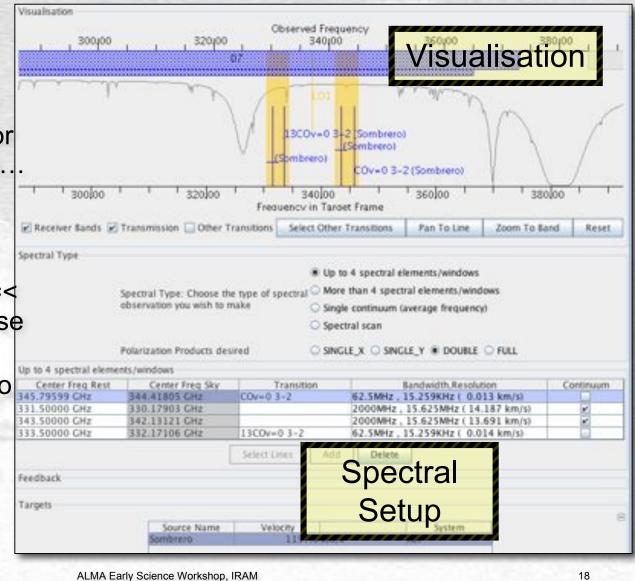
This filter has been removed from your search criteria. Enter a non-zero value to enable the filter.

Cone Search	RA	13:29:52.69	8		Dec	47:11:42	928
1	Search Radius (*)	20.0				Surgesting.	
Frequency	Min	70.00000	GHz 🔻		Max	120	GHz 🖛
Flux	Min	0.5	ly •		Мах	1	1y -
Time Since Observed	🐽 Min (days)	0.0			& Max (days)	0.0	
Calibrator Tag		UNDEFINED		-			

Search Results

Click the 'Test Query' button to find the set of calibrators that match your constraints.

These results could be different at project execution time.


Source Name	RA	Dec	Separation	Frequency	Flux Density	Last Observed
1146+399	11:46:58.297	39:58:34.304	19.871*	99.931 GHz	810 m/y	2003-11-09T
1203+480	12:03:29.854	48:03:13.629	14.532*	99.931 GHz	540 m/y	2003-11-09T
1331+305 (3c.	13:31:08.287	30:30:32.958	16.688*	99.931 GHz	660 m/y	2003-09-29T
1506+426	15:06:53.041	42:39:23.035	17.681"	99.931 GHz	530 m/y	2004-01-01T
		Test Query	using Local File C	Catalogue 💌		Close
		and the second second	And the second second	and a second second second		

2

Spectral Setup & Visualisation

- Simple interface to spectral setup
- Hides LO & correlator as much as possible..
- Single average frequency for continuum
- Simple setups with =< 4 windows just choose your windows
- For more you need to manage correlator resources (*not available in first call*)

Line Selection Tool (Splatalogue Queries)

- Select lines from a subset of the Spatalogue (when offline)
- Or query full splatalog (when online)
- Query by species, description, frequency/band, where detected
- Or you can simply type in your frequencies

Filter / Species

Line Selection Tool (Splatalogue Queries)

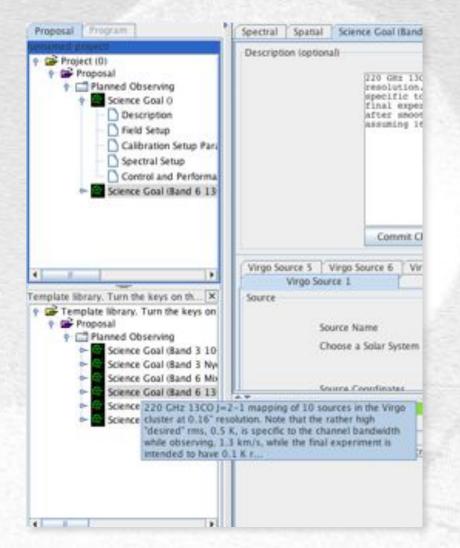
Filter / Species	Transitions matching joint			(d U I I	/		
°C0	Transition -	Description	Sky Trequency	Rest frequency W	pper-state Energy Ob	s. Intensity	50 µ ³
Include description in search	M2CO 3(2,2)-2(2,1)	Formaldehyde	218.476 GHZ	218.476 GHz	68.09 K	1.8	9.06 07 -
A across extendion in search	295(C2 9(2,7)-8(2,6)	Silicon Carbide	218.507 CHz	218.507 GHz	59.46 K		49.05 D ²
	SIN N=5-4	Silicon Mononitride	218.512 GHz	218.512 GHz	31.49 K		41.57 D
ALMA Band	SIN N=5-4	Silicon Mononitride	218-513 GHz	218.513 GHz	31.49 K	0.02	34.41.07
	S/N N= 5-4	Silicon Mononitride	218.514 GHz	218.514 GHz	31.49 K		28.47 D
1 2 2 4 5 6 7 9 9 10	H2CO 3(2,1)-2(2,0)	Formaldehyde	218.76	# 8.0.70 UPU		1.5	9.06 D ¹
1 1 2 4 2 0 1 0 2 10	HINCD V=D 10(1,10)-9(1,9)	hocyanic Acid	218.981 Hz	218.251 GHz	101,08 K	0.24	24,44.01
Sky Frequency (GHz)	c-H2COCH2 6(3,4)-5(2,3)	Ethylene Oxide	219.513 Hz	Sea	40.27 K	0.38	33.06 D ¹
	HINCD V=D 10(4,6)-9(4,5)	Isocyanic Acid	219.547 DHz	219.547 GHz	708.71 K		17.32 07
···· • • • • • • • • • • • • • • • • •	HNCO v=0 10(4,7)-9(4,6)	bocyanic Acid	219.547 MZ	219 7 640	208.71 K	0.4	17.32.01
Min 211 Max 275	HNCO v=0 10(3,7)-9(3,6)	bocyanic Acid	219.657 Hz	Res	UILS32.96 K	0.4	20.45 D ²
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HNCO v=0 10(3,8)-9(3,7)	bocyanic Acid	219.657 Hz	219.657 GHz	432.96 8		20.45 D ²
	HNCO v=0 10(2,9)-9(2,8)	Nocyanic Acid	219.734 Griz	£13.134 Unz	849-10 N	0.6	22.89 D ²
Line Type	HNCO v=0 10(2,8)-9(2,7)	bocyanic Acid	219.737 GHz	219.737 GHz	228.29 K	0.8	22.88 D ²
Show all lines	MNCD v=0 10(0,10)-9(0,9)	Isocyanic Acid	219,798 GHz	219.798 GHz	58.02 K	0.3	24.96 D ³
	E-HCDOH 10(0,101-9(0.9)	Formic Acid	220.038 GHz		58.62 K	0.1	20.14 D ²
all lives :	* p v=0 2-1	Carbon Monoxide	220.399 GHz	220.399 GHz	15.87 %	17	0.02 D ³
Res commonly observed lines	D v=0 10(1,9)-9(1,8)	Isocyanic Acid	220.585 GHz		101.5 K	0.13	24.44.01
lines detected towards hot cores	v=0 10(0,10)-9(0,9)	Silicon Carbide	220.774 GHz	220.774 GHz	59.77 K	0.87	56.67 D ³
lines detected in dark clouds	w=0.9(2,7)-8(2,6)	Silicon Carbide	222.009 GHz	222,009 GHz	60.24 K		49.06 D ²
Help lines detected in diffuse clouds	0 11(3,9)-10(3,8)	Ketene	222.2 GHz	222.2 GHz	181.37 8	15.2	61.6 01
The influes detected in AC8s, PPNs and	PNs 10 11(3,8)-10(3,7)	Ketene	222.2 GHz	2222.2 GHz	181.37 K	15.2	61.6 01
Observatines detected towards comets	0 11(2,10)-10(2.9)	Ketene	222,229 GHz	222.229 GHz	116.19 K	0.2	21.45 D ²
which dines detected towards planets	-CO 11(2.9)-10(2.8)	Ketene	222.314 GHz	222.314 GH2	116.2.8	0.2	21.45 D ²
The second	100 100 HOLD BO BO BO	Encesic Acad	133.411.084		71.45.8	n na	18.62.00
Additional transitions from the full	1		Add to Selected Tr	Anodiana			
ALMA catalogue can be retrieved from	4.4						
the network and added to the results set by clicking Search Online.	Selected transitions						
Set by cacking Search Course	Transition - Des	cription Sky Frequency	The Rest Freque	ency Upper-	-state Energy 0	Ibs. Intensity	50 #*
None- the Completion bottom is only				99 GH2	15.87 K		17 0.02 D
Query				C. A. TOTA			
one ALMA band is selected using the							
				~		- 14 L	
Specification				Seard	ch Resu	ilte I	
opeemeater				Ocur			
			and the second se	+0 k			
			Kemove from Selected	Transitions.			
			Kemove from Selected	Transition	be Used		
			Remove from Selected	Transition	Je Usec		Done

Control & Performance Parameters

Control and Performance Parameters								1
Representative Frequency	217.17830	010	-					1
Antenna Beamsize (ND)	12m 23.7 arcs	ec		7m4	0.7 ari	csec		
Angular Resolution	0.16000	arcse	ю		-			
Largest Scale	25.00000	arcse	0C -	-				
Desired Sensitivity per Beam	0.50000	K		quivalent to	0.00	045	11	-
	Ser	sitivity	Calc	ulator	Time	Estimate	1	-
Dynamic Range	22.0	er an de s						
Do you request complementary ACA Observations?	O Yes @ No		1	Suggest				
is this observing time constrained (occultations, coordinated observing)?	O Yes 🕷 No		2					
	Representative Frequency Antenna Beamsize (ND) Angular Resolution Largest Scale Desired Sensitivity per Beam Dynamic Range Do you request complementary ACA Observations? Is this observing time constrained	Representative Frequency 217.17830 Antenna Beamsize (MD) 12m23.7 arcs Angular Resolution 0.16000 Largest Scale 25.00000 Desired Sensitivity per Beam 0.50000 Dynamic Range 22.0 Do you request complementary ACA Observations? Yes * No Is this observing time constrained Yes * No	Representative Frequency 217.17830 GHz Antenna Beamsize (MD) 12m23.7 arcsec Angular Resolution 0.16000 arcse Largest Scale 25.00000 arcse Desired Sensitivity per Beam 0.50000 K Dynamic Range 22.0 Sensitivity Do you request complementary ACA Observations? Yes & No Is this observing time constrained O Yes & No	Representative Frequency 217.17830 GHz Antenna Beamsize (MD) 12m23.7 arcsec Angular Resolution 0.16000 arcsec Largest Scale 25.00000 arcsec Desired Sensitivity per Beam 0.50000 K arcsec Oynamic Range 22.0 Sensitivity Calc Is this observing time constrained Vas No	Representative Frequency 217.17830 GHt • Antenna Beamsize (MD) 12m23.7 arcsec 7m4 Angular Resolution 0.16000 arcsec 7m4 Largest Scale 25.00000 arcsec 7m4 Desired Sensitivity per Beam 0.50000 K • equivalent to Dynamic Range 22.0 Sensitivity Calculator 0 Do you request complementary ACA Observations? Yes • No Suggest	Representative Frequency 217.17830 GHE Antenna Beamsize (MD) 12m23.7 arcsec 7m40.7 arc Angular Resolution 0.16000 arcsec • Largest Scale 25.00000 arcsec • Desired Sensitivity per Beam 0.50000 K • equivalent to 0.00 Oynamic Range 22.0 Time I Do you request complementary ACA Observations? Yes < No	Representative Frequency 217.17830 GHz • Antenna Beamsize (MD) 12m23.7 arcsec 7m40.7 arcsec Angular Resolution 0.16000 arcsec • Largest Scale 25.00000 arcsec • Desired Sensitivity per Beam 0.50000 K • equivalent to 0.00045 Oynamic Range 22.0 Desired Complementary ACA Observations? Yes • No Is this observing time constrained Yes • No Suggest	Representative Frequency 217.17830 OH2 • Antenna Beamsize (MD) 12m23.7 arcsec 7m40.7 arcsec Angular Resolution 0.16000 arcsec • Largest Scale 25.00000 arcsec • Desired Sensitivity per Beam 0.50000 K • equivalent to 0.00045 Jy Oynamic Range 22.0 Time Estimate Do you request complementary ACA Observations? Yes • No Suggest Is this observing time constrained Yes • No Suggest

Sensitivity Calculator

 Calculate integration time to sensitivity, or vice versa (time per beam)


- Modify number of antennas (defaults to expected availability for cycle)
- Web version available

0.0.0		Sensitivit	A Cruch	MIDE .					
Common Parameters	0								
	Dec		-11:37	22.995					
	Polarizatio	an .	Dual			-			
	Observing	Frequency	344.41	805	GH2		11		
	Bandwidth	per Polarization	15.258	79	kHz	+			
	Water Vap	our Column Density	Calcula	tor Chooses	-				
	tau/Tsky)	tau=0.3	210, Tsky=55	5.558 K	-	<u>()</u>		
	Tsys		267.99	0 K					
Individual Parameter	\$								
	12m Array			7m Array		_	Total Power /	ray	_
	50	1	-	12		-	4		
Resolution	0,10000	arcsec		5.984649	arcsec		14.961622	arcsed	1
Sensitivity(rms)	0.10000	Jy		0.10000	Jy.	٠	0.10000	3¥	
(equivalent to)	113.64775	K		0.03173	K	¥	0.00328	K	-
Integration Time	3.90033	min		10.42017	h	٠	61.66679	h	
			inte	gration Time U	Unit Opt	ion	Automatic		-
	Calculate Integ	pration Time	Calcu	late Sensitivity			Close		

Template Library

- Selection of example Science Goals and common setups
- Drag and drop (or copy/paste) from the Library into proposal
- May copy whole Science Goal or components (e.g. spectral setup only)

Validation

- Provides a series of automated checks on the validity of the proposal at Phase I & Phase II
- Handles both errors & warnings
- Can be performed at any stage during the project creation process
- Detected errors/warnings trigger:
 - Indicator icons in the hierarchical structure
 - Clickable links within the error message that jump the user's view directly to the appropriate part of the proposal/program
- Also performed on the server side during submission to ensure that only valid projects can be submitted

Validation

Provides a series of automated checks on the validity of

Fee	edback	
Pr	roblems Information Log	
	Description	Suggestion
0	No Principal Investigator specified	Select the top level Project node in the tree and fill in the Principal Investigator field
0	No documents found - you must at least add a Science Case to your	Select the proposal node in the Proposal tab and add your documents
G.	Data rate too high	Contact your ARC for advice

- Detected errors/warnings trigger:
 - Indicator icons in the hierarchical structure
 - Clickable links within the error message that jump the user's view directly to the appropriate part of the proposal/program
- Also performed on the server side during submission to ensure that only valid projects can be submitted

Validation

Provides a series of automated checks on the validity of

Description		Suggestion
No Principal Investigator specified	Select the top level Project	node in the tree and fill in the Principal Investigator fi
No documents found - you must at least add a Science Case Data rate too high	to your Select the proposal node i Contact your ARC for advic	n the Proposal tab and add your documents
- D2	t proposal modest proposal (0) Proposal	
 Indicator icons in Clickable links wit view directly to the 	Planned Observing Science Goal (Band 3 Science Goal (Band 6 Science Goal (Band 9 Description Field Setup	e hat jump the user's proposal/program

Some other things

- Saving and Sharing
 - Export to local disk, import from local disk
 - You may use your own projects as "libraries" to copy from
- Some changeable user preferences
- Calibrator search can be used stand alone
- LO Setup tool for experimenting (warning: expertise required)

Help

- Contextual Help provided in the Overview panel
 - Step-by-step clickable walkthrough instructions, including links
 - Guides the PI through Phases I & II, as appropriate
- Additional help also provided via other means within the OT
 - Hover-over ToolTips
 - Searchable electronic copies of the complete user & reference manuals
 - Cookbook currently in development
 - In-form contextual help links into the reference manual
 - PDF versions of manuals

Help

Next Up Previous Contents Index

ALMA Observing Tool User Manual

Next: Baseband Specifications Up: Instrument Setup Previous: Correlator Configuration Contents Index

BaseBand Configurations

In the panel BaseBand Configurations up to four baseband configurations can be defined. An overview of the upper part of this panel is provided in Figure 8.10. A number of fields for specifying the basebands and their spectral windows are described below. More details can obtained in the OT Reference Manual.

This panel contains a summary table of the baseband configurations: it lists the name, center rest frequency, data products and sideband separation, the LO2 frequency and the data rate for each of the basebands. Just above this is the LO Setup Preferences panel that can be used to calculate the LO frequencies. Depending on how many baseband configurations have been defined, the LO Setup Preferences subpanel can be used for optimising the position of the frequency band by adjusting the LO1 and LO2 settings. In the Sideband(s) to priotise check boxes the user can indicate the priority for the USB and LSB. Below there are check boxes for each of the base bands in which the user can enter a weight between 0 and 100 to prioritier there have bands for calculating the LO1.

29

- 0 *

Time Estimates and Summaries

- OT generates a PDF version of the proposal, containing a distillation of all the key details:
 - Headed by the basic proposal information, such as PI, proposal title, etc.
 - Incorporates the provided PDFs for science & technical cases, figures, tables, etc.
 - Includes a full technical summary, containing all of the proposed observations, and associated setups, target lists, etc.
 - Includes a total execution time estimate
 - Available to the PI as a routine part of the proposal generation/submission process

Proposal Submission

Proposal Submission: Overview

- Client/Server system: OT client + Submission Server
- Connection via https secure
- Authorization required, PI username must be used
- Proposal must be valid only warnings are acceptable.
- PDF receipt returned on successful submission, including tracking code
- May re-submit up to the deadline
- All submissions to Santiago
- Project finder interface to Archive

Proposal Submission: Overview

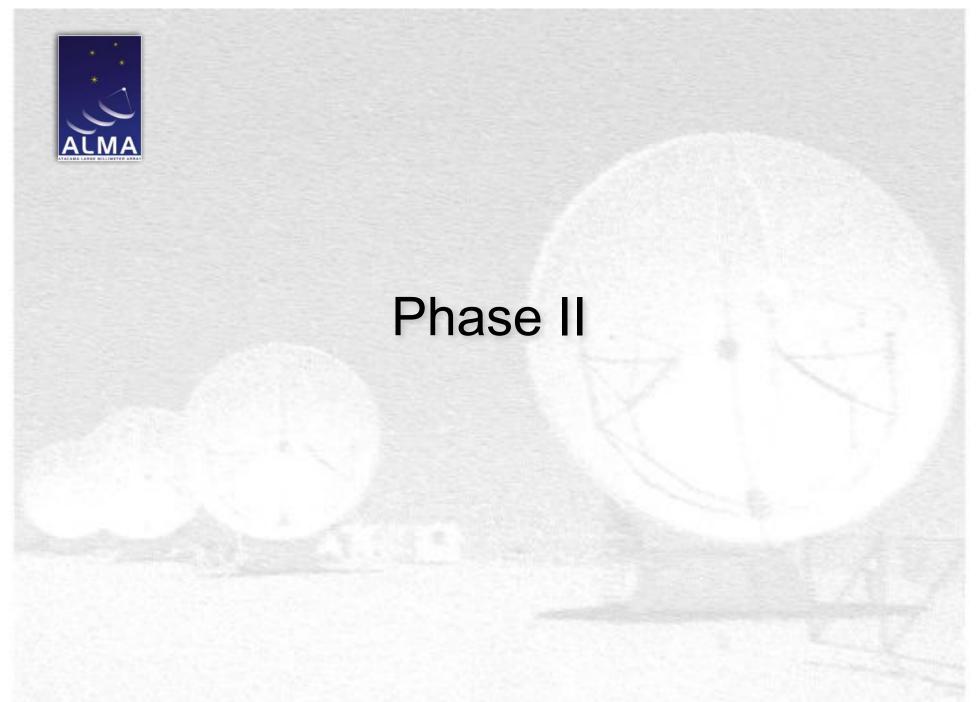
- Client/Server sys
- Connection via http://www.connection.com/
- Authorization req
- Proposal must be
- PDF receipt retur including tracking
- May re-submit up
- All submissions to
- Project finder inter

Congratulations!

Your project has been successfully submitted.

P1 Name	Alan Bridger
Project Name	A simple test using 8_0_0
Project Code	2010.3.00797.5
Date Submitted	2010-11-19 01:51:46
Internal Project ID	uid://X22/X60/X1

and the second sec	ProjectFinder	
Search for Projects -		
○ all projects		
all my projects		
🔾 by PJ ALMA ID		El tenore Car
O by Project Code		Exact Man
O by Project Name		Search
Found Projects		
Project Name TEST: Checking A simple test using	Project Code PI ALM Creation Time Status Project ID 2010.3.000 abridger 2010-08-25 09 Rejected uid://X22/X1 2010.3.007 abridger 2010-11-19 13 Phase1Subm uid://X22/X6	T. oper



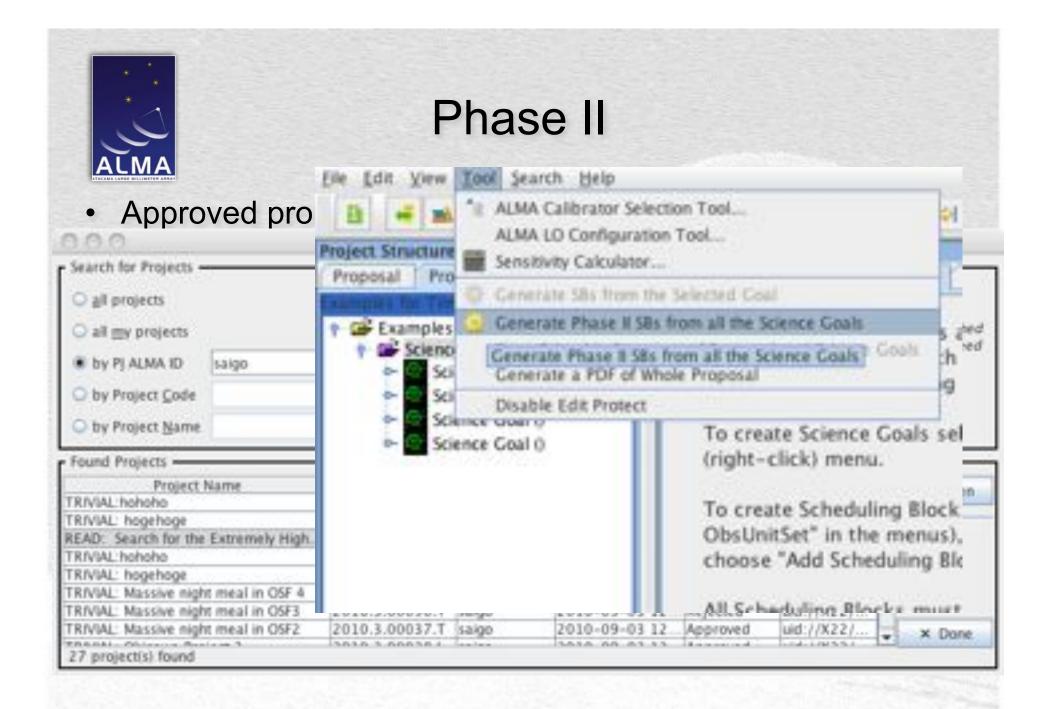
The Proposal Review Process takes place

(time passes...)

Success!

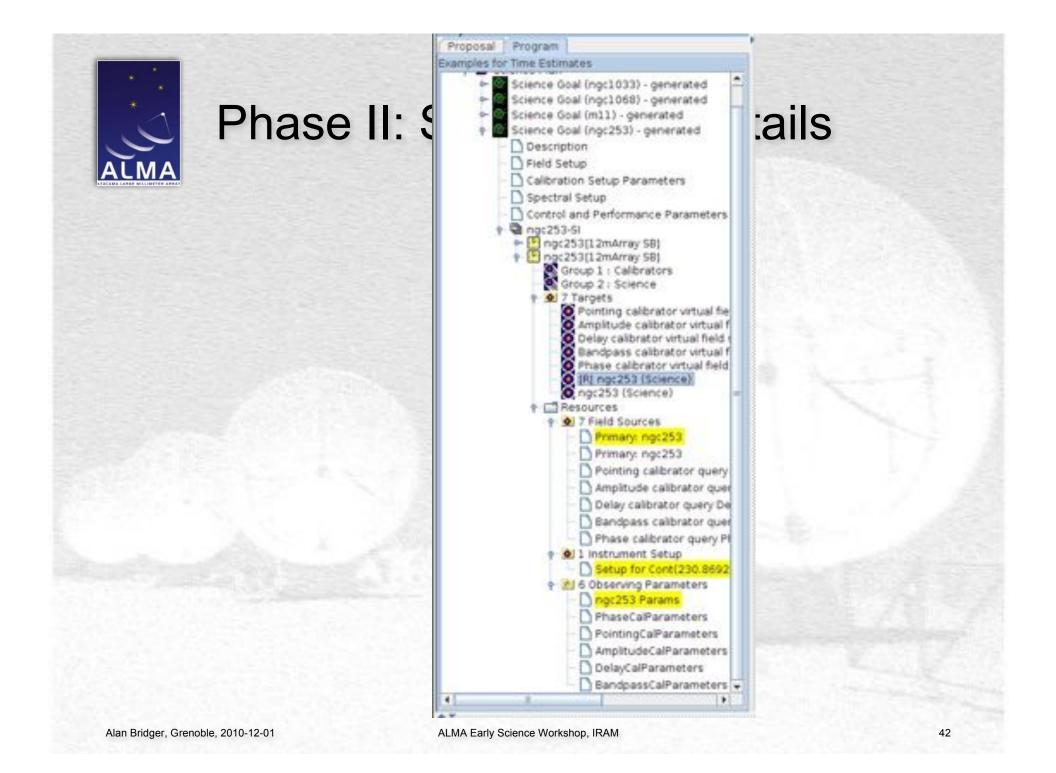
(The proposal gets ALMA time)

Phase II


- Approved proposals flagged in ASA as ready for Phase II; PI notified
- PI uses OT to retrieve successful proposal from ASA
 - Proposal Phase I content now read-only
 - Program tab in Project Structure tab now foregrounded; includes Phase II Science Goals
- Ideal Phase II case:
 - PI is happy with the Science Goals as initially presented at Phase II
 - PI hits "Generate SBs", & SBs are automatically generated
 - PI is happy with resultant SBs
 - PI re-submits project to ASA, including Phase II SBs

Phase II

Approved proposals flagged in ASA as ready for Phase II;


- Search for Projects -	2.							
C all projects								
all my projects							mings untou	
. by PJ ALMA ID	saigo				Ignore Case			
O by Project Code								
O by Project Name						Sear	ch.	
Found Projects		2004012-22011						=
Project	Name	Project Code *	PI ALMA ID	Creation Time	Status	Project ID	V 00	nen:
TRIVIAL hohoho	0.02.026	2010.3.00320.5	saigo	2010-09-03 12	Rejected	uid://X22/		
TRIVIAL: hogehoge	10000000000000000	2010.3.00302.5	saigo	2010-09-03 12	Rejected	uid://X22/		
READ: Search for the	Extremely High	2010.3.00207.5	saigo	2010-09-03 08.	Approved	uid://X22/	2	
TRIVIAL:hohoho		2010.3.00133.5	saigo	2010-09-02 19	Approved	uid://X22/		
TRIVIAL: hogehoge		2010.3.00132.5	saigo	2010-09-02 19	Approved	uid://X22/	1	
TRIVIAL: Massive nigh	it meal in OSF 4	2010.3.00063.T	saigo	2010-09-03 12	Approved	uid://X22/		
TRIVIAL: Massive nigh	it meal in OSF3	2010.3.00050.T	saigo	2010-09-03 12	Rejected	uid://X22/		
TRIVIAL: Massive nigh	and some our has a second over here in an all	2010.3.00037.T	and an	2010-09-03 12	Approved	uid://X22/	× × Do	-
27 project(s) found	and the second se	3010 3 000301	lastes	lasse an er sa	lansaria.	Log incore	* A DO	100

Phase II: SchedBlock Details

- SB contains series of Observing Setups ("targets" name may change)
- Targets are organised into Observing Groups
 - Only targets in a group are observed
 - Helps control order of observing
 - Group 1 is starting calibrators
 - Group 2 is science and frequent calibrators
- Target consists of field setup, spectral setup and observing parameters ("intents")
- SB contains name of the observing script
- And scheduling information (required conditions etc)
- Obsunit set connection to data processing

Phase II: Validation and Submission

As for Phase I:

- Authorization required, PI username must be used
- Phase II program must be valid only warnings are acceptable.
- May re-submit up to the deadline
- All submissions to Santiago

After Submission

Afterwards...

- JAO & ARCs verify SBs
- May iterate with PI
- SBs Made Ready for execution
- Track progress using the ALMA Science Archive

How does an SB "execute"?

- Actual run-time sequence is determined by the Control script
- This is an Observatory Standard Script
- Some control available in the SB via the populations of the Observing Groups...
- ...and cycle times for the calibrators

www.almaobservatory.org

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Alan Bridger, Grenoble, 2010-12-01