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Preface

This book contains the updated proceedings from the summer schools held at IRAM in Grenoble from
September 14 to September 18, 1998 for IMISS1 and from June 12 to June 16, 2000 for IMISS2. Both
schools were attended by more than 50 participants from abroad. Not all lectures have been put in written
form: the schools also included a general introduction to millimeter astronomy by Dr. Clemens THUM
(IRAM). IMISS2 also contained an introduction on interferometry from the point of view of the quantum
mechanics by Dr. Dennis DOWNES (IRAM). A visit to the IRAM interferometer on Plateau de Bure was
an essential part of the first school. In the second one, visits to the receiver and correlator laboratories
were organized.

The schools would not have occurred without the dedication of Mrs Catherine BERJAUD, who kindly
took care of all logistics problems before and during the schools. Dr. Stéphane GUILLOTEAU is also
thanked for organizing IMISS1 and doing the edition of the first series of lectures.

During IMISS1, the visit to the interferometer would not have been possible without the contribution
of the technical and operator staff of the telescope. Special thanks to the operators Sophie LEONARDON,
Michel DAN and André RAMBAUD who also made the films which were presented as an introduction to
the Plateau de Bure interferometer at IMISS2. We also acknowledge the receiver and correlator groups
who managed the visits to the labs during IMISS2.

We also thank Alain PERRIGOUARD and Roger AHTCHOQOU for help with the video equipment which
gave us a lot of fun during the “real time” sessions.

Finally, Anne DUTREY would like to thank Mrs Cathy BERJAUD for a careful reading of the
manuscript, fighting against the last typo errors.
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Chapter 1

Radio Antennas

Albert Greve

greve@iram.fr

IRAM, 300 rue de la Piscine, F-38406 Saint Martin d’Héres

1.1 Introduction

We can define a radio antenna as an instrument which collects, and detects, electromagnetic radiation from
a certain area and direction of the sky, allowing to build up an image from individual observations. In
radio astronomy we are interested in the detection and analysis of radiation emitted from celestial objects,
i.e. solar system bodies, stars, interstellar gas, galaxies, and the universe. The electromagnetic radiation
observed in radio astronomy covers the wavelength range from several meters, say 10m (= 30 MHz), to
a fraction of a millimeter, say 0.3mm (a 1000 GHz). Since the antenna must be many wavelengths in
diameter in order to collect a large amount of energy and to provide a reasonable directivity (angular
resolution), it is evident that antennas for meter wavelengths may have dimensions of many 10 meters to
several 100 meters, while antennas for millimeter wavelengths have dimensions of several meters to several
10 meters (=~ 10000 to 50000 X’s). The technique of mechanical contruction is therefore different for
meter and millimeter wavelength antennas: antennas for m—wavelengths can be constructed, for instance,
as mesh—wire networks and plate arrays, mm—wavelength antennas are full-aperture solid surface parabolic
reflector antennas. Typical examples are the obsolete Mills—Cross antenna, the Effelsberg and GBT 100-m
antennas, and the IRAM 30-m (Pico Veleta) and 15-m (Plateau de Bure) antennas. However, despite the
variety of mechanical constructions, all antennas can be understood from basic principles of eletromagnetic
radiation, optics, and diffraction.

Here we discuss full-aperture parabolic antennas, like the IRAM antennas, which are used for obser-
vations at ~ 3 — 0.8 mm wavelength (100 — 350 GHz). These antennas are very similar to optical reflector
telescopes and use in particular the Cassegrain configuration of a parabolic main reflector and a hyperbolic
subreflector (Figure 1.3), with an image formed at the secondary focus near the vertex of the main reflector
where the receiver, or a receiver—array, is installed. These antennas are steerable and can observe in any
direction of the visible hemisphere, with the facility of tracking, scanning, and mapping of a source.
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The collected radiation is concentrated in the secondary focus and is (coherently) detected by a receiver
at a certain frequency v (or wavelength A) and within a certain bandwidth Av (or A)). Heterodyne mm-—
wavelength receivers, which preserve the phase of the incident radiation, have small bandwidths of the
order of Av = 0.5 — 2 GHz so that Av/v = AX/A = 0.5 GHz/100 GHz ~ 1/200. From the point of view
of antenna optics, these receivers detect “monochromatic” radiation, and the antenna characteristics can
be calculated for a monochromatic wave (as will be done below). Bolometer receivers, on the other hand,
detect power in a broad bandwidth of the order of Av = 50 GHz so that Av = 50 GHz/250 GHz =~ 1/5.
These detectors are no longer monochromatic, and the chromatism of the antenna must be considered in
their application.

The construction and operation of a radio antenna is based on exact physical theories, like Maxwell’s
theory of electromagnetic radiation, the pointing theory of an astronomical instrument, the transformation
(mixing, down—conversion, amplification) and detection of electromagnetic radiation, etc. The theory of
a radio antenna presented here is, however, only the very tip of an iceberg (of several 100000 published
pages), but may provide sufficient information for the user astronomer to understand the basic principle
of a telescope, either a perfect one, which nobody has but which can be described with high precision,
or a real one, with small defects and aberrations, which can be described with sufficient detail to apply
corrections.

The theory, construction, and use of radio antennas is contained in many textbooks and journals
such as IEEE Transactions Antennas and Propagation, Radio Science, Applied Optics. A biased selec-
tion is mentioned here: [Born & Wolf 1975] [Reynolds et al. 1989] [Love 1978] [Lo and Lee] [Kraus 1982]
[Goldsmith 1988]

1.2 Basic Principles

The properties of electromagnetic radiation propagation and of radio antennas can be deduced from a few
basic physical principles, i.e.

1. the notion that Electromagnetic Radiation are Waves of a certain Wavelength (), or Frequency (v),
and Amplitude (A) and Phase (¢);

2. from Huygens Principle which says that each element of a wavefront is the origin of a Secondary
Spherical Wavelet;

3. the notion that the Optical Instrument (like a single-dish antenna, a telescope, etc.) combined with
a receiver manipulates the incident wavefront through their respective phase and amplitude transfer
functions.

Summarized in one sentence, and proven in the following, we may say that the radio antenna transforms
the radiation incident on the aperture plane (A) to an image in the image plane (Z), also called focal plane.
Following Huygens Principle illustrated in Figure 1.1, the point a(x,y) = a(7) of the incident wavefront in
the aperture plane A is the origin of a spherical wavelet of which the field dE(a’) at the point a'(u,v) =
a(@) in the image plane 7 is

O0E(@) = A(7F)expliks]/s (1.1)

with k = 27 /). The ensemble of spherical wavelets arriving from all points of A at the point a/(#) of the
image plane 7 produces the field

B@ - [ | AGIAB fexp(iks) sy (1.2)

For the paraxial case, when the rays are not strongly inclined against the direction of wave propagation
(i.e. the optical axis), the inclination factor A can be neglected since A(8) & cos(8) ~ 1. Also, s & sg for
paraxial rays, but expl[iks] # exp[iksg] since these are cosine and sine terms of s where a small change in
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: .o'(u,v)
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Aperture Image
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Figure 1.1: Nllustration of Huygens Principle. The individual points of the plane wavefront in the aperture
plane (A) are the origin of secondary spherical wavelets, which propagate to the right, and superpose to
form a plane wavefront in the image plane (7). The optical instrument (telescope) is placed in between A
and 7.

s may produce a large change of the cosine or sine value. Thus, for the paraxial approximation we may
write

s=[x-u’+F-v)+22"? ~ R+gxy,R) - (xu+yv)/R (1.3)
with
R=(+y’+2)"? and g(x,y,R) = (x> +y%)/2R (14)

When using these expressions in Eq.1.2, we obtain
E(u,v) = [exp(ikR) /5] / AA(X’ y)exp[ik(g(x,y, R) — (ux + vy)/R)]dxdy (1.5)

This equation describes the paraxial propagation of a wavefront, for instance the wavefront arriving from
a very far away star. In particular, this equation says, that without disturbances or manipulations in
between A and 7 the plane wavefront continues to propagate in straight direction as a plane wavefront.

1.3 The perfect Single—Dish antenna

We now place an optical instrument (a mirror, lens, telescope etc.) in the beam between A and Z with the
intention, for instance, to form an image of a star. Optical instruments are invented and developed already
since several centuries; however, the physical-optics (diffraction) understanding of the image formation
started only a good 200 years ago. Thus, speaking in mathematical terms, the telescope (T) manipulates
the phases (not so much the amplitudes) between the points (¥) of the aperture plane (A) and the points
(@) of the image plane (Z) by the phase transfer function Qo (7, @), so that the wavefront converges in
the focal point. The receiver (R)/detector introduces an additional modulation of the amplitude Qg (7, @),
as described below. Using this information, the field distribution in the focal plane (Z) of the telescope

becomes
E(@) = [exp(ikR) /s, / AA(F)QoQRexp[ik(g(X; v, R) — (ux + vy)/R)]dxdy (1.6)

The phase modulation of the parabolic reflector used in a radio telescope is, fortunately,

Qo = exp[-ikg(x,y, F)] (1.7)
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Reflector

W

Figure 1.2: Phase modulation of a reflector. The plane wavefront (W) propagates to the left and the ray
reflected at P(x,y) toward the focus F is shifted in phase by the amount A.

(where F is the focal length of the reflector), which inserted into Eq.1.6 eliminates this term in the exponent
so that

E(7) = [exp(ikF)/F]/AA(F')QRexp[—ik(ux +vy)/Fldxdy = FT[A()Qr(7)] (1.8)

This equation says that the field distribution E(#) in the focal plane of the telescope is the Fourier trans-
form (FT) of the receiver—weighted field distribution A(7)Qg (7) in the aperture plane. Since E(@)E*(@) #
0(@—1,) for a realistic optical instrument /telescope with limited aperture size, we arrive at the well known
empirical fact that the image of a point—like object is not point-like; or; with other words, the image of a
star is always blurred by the beam width of the antenna Oy, & A\/D, with D the diameter of the reflector.

To close the argumentation, we need to show that the telescope manipulates the incident wave in the
way given by Eq.1.7). To demonstrate this property in an easy way, we consider in Figure 1.2 the paraxial
rays of a parabolic reflector of focal length F. From geometrical arguments we have

(F—A) +(* +y*) =F? (1.9)
which for small A becomes
A= _(X2 +y2)/F = - g(x,y,F) = QO(F) (1'10)

which is the instrumental phase modulation function Qo used above. The proof is given for a simple
parabolic reflector; however, a combined telescope with main reflector and subreflector can be treated in
a similar way, leading to the same result.

The fundamental Eq.1.8 can be used to show that an interferometer is not a single dish antenna, even
though one tries with many individual telescopes and many telescope positions (baselines) to simulate as
good as possible the aperture of a large reflector. If we assume for the single dish antennas that A(7) =1
and Qg = 1, then the power pattern P(@) (beam pattern) in the focal plane of the single antenna is

P(it) = B(@)E* (i) = / ) / expl-ikil(@ — )| (dxdy), (dedy), o< [3:0) (1.11)

where J; is the Bessel function of first order (see [Born & Wolf 1975]). The function [J; (u)/u]? is called
Airy function, or Airy pattern. The interferometer does not simulate a continuous surface, but consists
of individual aperture sections Aeo, Ag, .... of the individual telescopes, so that its power pattern Px (@)
(beam pattern) in the focal plane is

@ =3 3, | . / _ explikil(d) - 2)(dxdy) (dxdy), # P(3) (1.12)

The important result of this equation is the fact that the image obtained with the interferometer is “incom-
plete”, though certainly not as blurred as seen with a single telescope (Op o A/D), but having the superior
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resolution of the spatial dimension (approximately the longest baseline B) of the array (05 o< A/B). For
the Plateau de Bure interferometer B/D = 300m/15m & 20 so that O = 1/20 Op. The incompleteness
sometimes requires (in particular for mm—VLBI observations which are very similar) additional informa-
tion for a full image reconstruction, for instance that the object consists of several point-like sources, or
a point-like source and a surrounding halo, etc. (see for instance the number of components in CLEAN).

The single telescope selects a part of the incident plane wavefront and ’bends’ this plane into a spherical
wave which converges toward the focus. This spherical wavefront enters the receiver where it is mixed,
down—converted in frequency, amplified, detected, or correlated. The horn—lens combination of the re-
ceiver modifies the amplitude of the spherical wavefront in a way expressed by the function Qg (7). This
function, called taper or illumination function of the horn-lens combination, weighs the wavefront across
the aperture, usually in a radial symmetric way. Figure 1.3 shows, schematically, the effect of a parabolic
taper as often applied on radio telescopes, and expressed as

Or(p) =K +[1-pI (1.13)

with p the normalized radius of the circular aperture, and K and p being constants. For A(7) =1 (i.e. an
incident wavefront without structure) the diffraction integral is

Br(d) = / On(@explikitfdsdy and B@)E (7) = Ax(d) (1.14)

Er is the tapered field distribution in the focal plane, and At the tapered beam pattern.

Figure 1.4 shows as example a two—dimensional cut through the calculated beam pattern At of the
TRAM 15-m telescope at A\ = 3mm, once without taper (i.e. for Qg (%) = 1), and for a -10 dB edge taper,
i.e. when the weighting of the wavefront at the edge of the aperture is 1/10 of that at the center (see
Figure 1.3). As seen from the figure, the taper preserves the global structure of the non—tapered beam
pattern, i.e. the main beam and side lobes, but changes the width of the beam (BW: ©4,), the position of
the first null (Og,), and the level of the side lobes. The effect of the taper depends on the steepness of the
main reflector used in the telescope, as shown in Figure 1.5. The influence of several taper forms is given
in Table 1.1 [Christiansen and Hogbom 1969].

The complete telescope, i.e. the optics combined with the receiver, has a beam pattern Ar(@) (in
optics called point—spread—function) with which we observe point-like or extended objects in the sky
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Figure 1.5: Illustration of the tapered beam pattern for telescopes using parabolic main reflectors of
different steepness, expressed by the opening angle §,. TRAM 30-m and 15-m telescopes: 6, ~ 63°,
optical telescopes: 8, ~ 5°. From [Minnet & Thomas 1968], Copyright: @ 1968 IEE, with kind permission

from IEE Publishing Department.
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SN O First sidelobe  Aperture
p K (radian)  (radian) (dB) Efficiency
0 0 1.02\/D 1.22 \/D 17.6 1.00
1 0 127A\D 1.62\/D 247 0.75
2 0 1.47 A\/D 2.03 \/D 30.7 0.55
1 025 117A/D 149 \/D 23.7 0.87
2 025 123X/D 1.68A/D 32.3 0.81
1 05 1.13A\/D 133 A/D 22.0 0.92
2 05 116A/D 151\/D 26.5 0.88

Table 1.1: Beamwidths, side lobe levels, and maximum aperture efficiency (e,) for various parameters of
the tapering function. Adapted from [Christiansen and Hogbom 1969

with the intention to know their position, structural detail, and brightness distribution Bg as function of
wavelength. The telescope thus provides information of the form

(@) / A (@ — @)Bs(@)diT (1.15)
Source

If the telescope is perfect, and we know Ar, we can use the information I(%#) to derive the calibrated
brightness distribution Bg of the source distribution.

When we point the antenna toward the sky, in essence we point the beam in the direction of observation.
If, for instance, we observe a point-like source it is evident that the peak of the main beam should point
exactly on the source which requires that the pointing errors (A®) of the telescope should be small in
comparison to the beam width. The loss in gain is small, and acceptable, if the mispointing A® < 1/10 Oy,
Since modern radio telescopes use an alt-azimuth mount, this criterion says the mispointing in azimuth
(A®,,) and elevation (A®) direction should not exceed 1/4/2 this value. The pointing and focus (see
below) of the IRAM antennas are regularly checked during an observation, and corrected if required. The
corresponding protocol of an observing session at Plateau de Bure, using 5 antennas, is shown in Figure
1.6.

1.4 The real Single-Dish Antenna

A telescope, however, is never perfect since mechanical, thermal, and wind—induced deformations of the
structure occur, and the optics may be misaligned and/or have production imperfections, for one or
the other reason. The resulting effect on the beam pattern is negligible if the corresponding wavefront
deformations introduced by these imperfections are small compared to the wavelength of observation,
generally smaller than ~ \/15; the effect is noticeable and disturbing when the wavefront deformations
are large compared to the wavelength (~ 1/4\ and larger). The wavefront deformations due to such
imperfections may be of systematic nature, or of random nature, or both.

1.4.1 Systematic Deformations: Defocus, Coma, Astigmatism

There are three basic systematic surface/wavefront deformations (occasionally associated with pointing
errors) with which the observer may be confronted, i.e. defocus, coma, and astigmatism (a transient
feature on the IRAM 30-m telescope).

1. The most important systematic wavefront/beam error is due to a defocus of the telescope. This
error is easily detected, measured, and corrected from the observation of a strong source at a number
of focus settings. Figure 1.7 shows, as example, the beam pattern measured on Jupiter with the
telescope being gradually defocused. Evidently, the peak power in the main beam decreases, the
power in the side lobes increases, until finally the beam pattern has completely collapsed. To be on
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Figure 1.6: Protocol of pointing corrections applied in azimuth and elevation direction, and focus correc-
tions; shown for 5 antennas during an observation which lasted 6 hours.

the safe side for observations, the defocus of the telescope should not exceed ~ 1/10\. A defocus
does not introduce a pointing error.

2. A telescope may have a comatic wavefront/beam error due to a misaligned subreflector, shifted
perpendicular off the main reflector axis. Figure 8 shows, as example, a cross scan through a
comatic beam of the IRAM 15-m telescope, especially produced by displacement of the subreflector.
A comatic beam pattern introduces a pointing error. It may be useful for the observer to recognize
this error, in particular if unexplained pointing errors occur in an observations. [The IRAM telescopes
are regularly checked for misalignments, and correspondingly corrected.]

3. A telescope may have an astigmatic wavefront/beam error, usually introduced by complicated
mechanical and/or thermal deformations (a transient feature on the IRAM 30-m telescope). While
this beam deformation is easily recognized by the observer from the difference in beam widths
measured from in—and—out—of—focus cross scans, the improvement of the telescope usually is difficult,
and out of reach of the observer. A focused astigmatic beam does not introduce a pointing error.
Figure 1.9 shows the focused beam pattern measured on a telescope which has a strong astigmatic
main reflector (amplitude of the astigmatism ~ 0.5 mm).

The beam deformation of systematic wavefront deformations occurs close to the main beam, and
the exact analysis should be based on diffraction calculations. A convenient description of systematic
deformations uses Zernike polynomials of order (n,m) [Born & Wolf 1975]. Without going into details, the
Zernike-type surface deformation dn.m = on,m Rn(p) cos(mb) [with (p,6) normalized coordinates of the
aperture, and R special polynomial functions| with amplitude o m has a quasi rms—value 0 = anm/vn + 1
and introduces a loss in main beam intensity of

€sys /€0 = exp[—(dma/N)?/(n + 1)] (1.16)

For primary coma n = 1, for primary astigmatism n = 2. Although the beam deformation may be very
noticeable and severe, the associated loss in main beam intensity may still be low because of the reduction
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Figure 1.9: [Illustration of an
astigmatic beam pattern; well fo-
cused.

APERTURE

Figure 1.10: Explanation of ran-
dom errors (§) and their corre-
lation length (L), for Gaussian
caussian  hat-like deformations (example).
HATS From [Ruze 1966|, Copyright: @
1966 IEEE, reprinted by permis-

sion of IEEE, Inc.

by the factor (n+1).

1.4.2 Random Errors

Besides systematic surface/wavefront deformations explained above (mainly due to misalignment of the
optics), there are often permanent random deformations on the optic surfaces like ripples, scratches, dents,
twists, misaligned panels, etc., with spatial dimensions ranging from several wavelengths to significant areas
of the aperture. These deformations introduce identical deformations of the wavefront, which cannot be
expressed in mathematical form (as the Zernike polynomials used above). Nevertheless, the effect on
the beam pattern of this type of deformations can be analyzed in a statistical way and from a simple
expression, the RUZE equation. This equation is often used to estimate the quality of a telescope, in
particular as function of wavelength. The values obtained from this equation are directly related to
the aperture efficiency, and beam efficiency, of the telescope, and hence are important for radiometric
measurements (see Sect.1.5).

As illustrated in Figure 1.10, there are two parameters which allow a physical-optics description of the
influence of random errors, i.e. the rms-value (root mean square value) o of the deformations, and their
correlation length L.

Random errors occur primarily on the main reflector; the other optical components of the telescope
(subreflector, Nasmyth mirror, lenses, polarizers) are relatively small and can be manufactured with good
precision. In order to explain the rms—value o, we assume that the reflector aperture is divided into many
elements (i = 1,2,...N), and that for each element [i] the deformation §(i) of the reflector is known with
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respect to a smooth mean surface. The rms—value of these random surface deformations is

o= Zizl,N 8(i)2/N (1.17)

The surface deformations §(i) introduce corresponding wavefront deformations (i), approximately two
times larger than the mechanical deformations § in case we are dealing with reflective optics. The rms—
value o, of the corresponding phase deformations of the wavefront is

o, =2kRo (1.18)

again with k = 27/\, and R ~ 0.8 a factor which takes into account the steepness of the parabolic main
reflector [Greve & Hooghoudt 1981].

A description of the wavefront deformation by the rms-value o, is incomplete since the value does
not contain information on the structure of the deformations, for instance whether they consist of many
dents at one part of the aperture, or many scratches at another part. A useful physical-optics description
requires also a knowledge of the correlation length L of the deformations. L is a number (L < D) which
quantifies the extent over which the randomness of the deformations does not change. For example, the
deformations of a main reflector constructed from many individual panels, which may be misaligned, often
has a random error correlation length typical of the panel size, but also a correlation length of 1/3 to 1/5
of the panel size due to inaccuracies in the fabrication of the individual panels. A typical example is the
30-m telescope [Greve et al. 1998].

When knowing, by one or the other method, the rms—value o, and the correlation length L, it is
possible to express the resulting beam shape in an analytic form which describes well the real situation.
The beam pattern F(x) of a wavefront with random deformations (¢, L) [the telescope may actually have
several random error distributions| consists of the degraded diffraction beam F.(x) and the error beam
Fe(x) such that

F(O©) = Fe(©) + Fe(0) (1.19)
with

Fe(©) = exp[ — (0,)*]A1(0) (1.20)
where A7 (0) is the tapered beam pattern (Eq.1.14), and

Fo(©) = aexp[—(mOL/))?] (1.21)
where

a= (L/D)’[1 - exp(~0})]/e, (1.22)

In these equations, D is the diameter of the telescope aperture, A the wavelength of observation, © the
angular distance from the beam axis, and ¢, the aperture efficiency of the perfect telescope. In the
formalism used here the beam is circular symmetric. The error beam Fe(x) has a Gaussian profile of
width FWHP) ©, = 0.53\/L [radians|, i.e. the smaller the correlation length (the finer the irregular
structure), the broader is the beam width ©,. The random errors of panel surface deformation and panel
alignment errors may have large error beams (up to arcminutes in extent) which can pick up radiation from
a large area outside the actual source. A knowledge of the structure and of the level of the error beam(s)
is therefore important when mapping a source and making absolute power measurements. Figure 1.11
shows the diffraction beam and the combined error patterns measured on the 30—m telescope at various
wavelengths. The smaller the wavelength of observation, the smaller is the power received in the main
beam and the larger the power received in the error beam. Due to its particular mechanical construction,
this telescope has three error beams [Greve et al. 1998].
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Figure 1.11: Beam pattern mea-
sured on the TRAM 30-m tele-
scope. The beam consists of the
diffraction beam (=~ main beam)
and a combined, extended error
beam (solid line).
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1.5 Radiometric Relations

The imperfections of a telescope, either due to systematic or random errors, produce beam deformations,
a loss in gain, and focus and pointing errors. These effects must be taken into account when mapping
and measuring a source. Information on the beam pattern obtained from a map (for instance holography
map) of a strong point—like source; information on the sensitivity [Jy/K] and calibration of the telescope is
obtained from absolute power measurements of, for instance, the planets, of which the brightness temper-
atures are quite well known. This information is usually collected by the observatory staff, and provided
to the observer (30-m Telescope Manual; observation protocols of Plateau de Bure measurements).

We summarize the influence of random deformations, at least as far as the main beam is concerned,
since for this case the RUZE equation provides sufficient precision for an understanding of the telescope
behaviour; also for the astronomer observer without going into complicated radio optics detail. This
relation appears in the expression of the diffraction beam F. (see Eq.1.20) and shows clearly the fact
that the degradation of the telescope, in particular for power measurements, increases exponentially with
wavelength.

Aperture Efficiency:

€ap = €0 exp[—0,] = €,exp[—(47Ra /N)?]

Antenna Gain:
S/T% =2(k/A)ns/€ap = 2(k/A) exp[+(40R/N)?]/€ap [Jy/K]
Beam Efficiency:
m = 0.8899[0h/(A/D)I/eap
Op =a)\/D, 1<a<12 [radians]
ny ~ 1.2 €,exp[—(47Ra /N\)?]

The quantities in these expressions are €,: aperture efficiency of the perfect telescope (usually of the
order of ~ 75 — 90 % ; see Table 1.1); €,,: effective aperture efficiency at the wavelength A, including all
wavefront / telescope deformations; o: rms—value of the telescope optics deformations; R = 0.8: reduction
factor for a steep main reflector (N = F/D = 0.3); S: flux density of a point source [Jy]; T}: measured
antenna temperature [K] (see also Chapter 10); A: geometric surface area of the telescope [m?]; n;: forward
efficiency, measured at the telescope for instance from a sky dip; ©p: main beam width (FWHP).
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Chapter 2

Millimetre Interferometers

Stéphane Guilloteau
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IRAM, 300 rue de la Piscine, F-38406 Saint Martin d’Héres, France

This lecture presents the principle of the heterodyne interferometer. An heterodyne interferometer is
composed of antennas (described in A.Greve lecture, Chapter 1), receivers (described in B.Lazareff
lecture, Chapter 5), a correlator (described in H.Wiesemeyer lecture, Chapter 6) and an awful lot of
cables and connections. This lecture only describes the basic principles; a more complete description,
including subtleties due to multiple frequency conversions and digital delay lines, is given in R.Lucas
lecture, Chapter 7.

2.1 Basic principle

The antenna produces a Voltage proportional to the linear superposition of the incident electric field
pattern. For a simple monochromatic case:

U(t) = Ecos(2nvt + ) (2.1)
In the receiver, a mixer superimposes the field generated by a local oscillator to the antenna output.

ULo(t) = Qcos(2rvrot + @10) (2.2)
The mixer is a non-linear element (such as a diode) whose output is

I(t) = ap + a1 (U(t) + Uro(t)) + a2 (U(t) + Uro(t))* + a3(U(t) + Uro(t))® + ... (2.3)

15
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The second order (quadratic) term of Eq.2.3 can be expressed as
I(t) =
+  agF*cos®(2mut + @)
+ 2a2:EQcos(2nvt + ®)cos(2nvrot + Pro)
+  asQ*cos?(2mvrot + ®10o)
+ .. (2.4)
Developping the product of the two cosine functions, we obtain
I(t) =
+ aEQcos(2n(v +vpo)t+ @ + ®10)
+ asEQcos(2n(v —vpo)t + @ — Pro)
+ .. (2.5)
There are obviously other terms in 2vyp, 2v, 3vro £ v, etc...in the above equation, as well as terms at

very different frequencies like v, 3v, etc. ..
By inserting a filter at the output of the mixer, we can select only the term such that

I/IF—AI//ZS |I/—I/Lo‘ SI/IF+AV/2 (2.6)

where vrp, the so-called Intermediate Frequency, is a frequency which is significantly different from than
the original signal frequency v (which is often called the Radio Frequency vgr).
Hence, after mixing and filtering, the output of the receiver is

I(t) «x EQcos(2n(v—vro)t+ @ — ®10) (2.7
or
I(t) o« EQcos(2r(vpo —v)t — @+ Pro) (2.8)

i.e.
e changed in frequency: v -+ v —vpp or v = vpo — v
e proportional to the original electric field of the incident wave: x E
e with a phase relation with this electric field: ® > ® —®;p or ® - &0 — P
e proportional to the local oscillator voltage: x @

The frequency change, usually towards a lower frequency, allows to select v;p such that amplifiers and
transport elements are easily available for further processing. The mixer described above accepts simulta-
neously frequencies which are (see Fig.2.1)

e higher than the local oscillator frequency.
This is called Upper Side Band (USB) reception

e lower than the local oscillator frequency.
This is called Lower Side Band (LSB) reception

and cannot a priori distinguish between them. This is called Double Side Band (DSB) reception. Some
receivers are actually insensitive to one of the frequency range, either because a filter has been placed at
the receiver input, or because their response is very strongly frequency dependent. Such receivers are
called Single Side Band (SSB) receivers.

An important property of the receiving system expressed by Eq.2.8 is that the sign of the phase is
changed for LSB conversion. This property can be easily retrieved recognizing that the Frequency v is
the time derivative of the Phase ®. Assume the phase varies linearly with time:

®(t) = 2mnt

1 d®
_ 1 2.9
" 2 dt (2.9)
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A

Ay Av Av

N,

Figure 2.1: Relation between the IF, RF and local oscillator frequencies in an heterodyne system

In this case, the signal

I(t) o cos(2mvt + ®(t))
o  cos(2m(v + n)t) (2.10)

is just another monochromatic signal with slightly shifted frequency.

2.2 The Heterodyne Interferometer
Figure 2.2 is a schematic illustration of a 2-antenna heterodyne interferometer.
Let us forget the frequency conversion for some time, i.e. assume vip = Vgp ...

The input (amplified) signals from 2 elements of the interferometer are processed by a correlator, which
is just a voltage multiplier followed by a time integrator. With one incident plane wave, the output r(t) is

r(t) =< v1 cos(2mu(t — 74(t)))va cos(2mvt) >= vivs cos(2mvTy(t)) (2.11)
where 7, is obviously the geometrical delay,
74(t) = (b.s)/c (2.12)

The derivation assumes that vi,vs and 7,(¢) varies slowly compared to the averaging timescale, which
should nevertheless be long enough compared to frequency v.

As 7, varies slowly because of Earth rotation, r(t) oscillates as a cosine function, and is thus called
the fringe pattern. As we had shown before that v; and vy were proportional to the electric field of the
incident wave, the correlator output (fringe pattern) is thus proportional to the power (intensity) of the
wave.

2.2.1 Source Size Effects

The signal power received from a sky area dfQ in direction s is (see Fig.2.3 for notations) A(s)I(s)dQddv
over bandwidth dv, where A(s) is the antenna power pattern (assumed identical for both elements, more
precisely A(s) = A;(s)A;(s) with A; the voltage pattern of antenna i, and I(s) is the sky brightness
distribution

dr = A(8)I(s)dQdv cos(2mvy) (2.13)

T dv A(8)I(8) cos(2mvb.s/c)df (2.14)

Sky

Two implicit assumptions have been made in deriving Eq.2.14. We assumed incident plane waves, which
implies that the source must be in the far field of the interferometer. We used a linear superposition of the
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Voltage
Multiplier
vy cos(2mv(t—7g)) : v, cos(2mut)
R—Corre\etor
Integrator :

(1) l r(7¢) (2)

Figure 2.2: Schematic Diagram of a two-element interferometer

Figure 2.3: Position vectors used for the expression of the interferometer response to an extended source,
schematically represented by the iso-contours of the sky brightness distribution. sg is the tracking center
of the interferometer, s the source vector, and d2 a solid angle around the source.
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incident waves, which implies that the source must be spatially incoherent. These assumptions are quite
valid for most astronomical sources, but may be violated under special circumstances. For example VLBI
observations of solar system objects would violate the first assumption, while observations of celestial
masers could violate the second one (if they were coherent as laboratory lasers, but observations have
revealed astronomical masers are in fact incoherent).

When the interferometer is tracking a source in direction s,, with s = s, + &

r = dvcos(2nvb.s,/c) A(o)I (o) cos(2nvb.o/c)d
Sky

— dvsin(2nvb.s,/c) A(o)I(o)sin(2rvb.o [c)d (2.15)
Sky

We define the Complex Visibility
V:Hm@V:/ A(o)I(o)el~2imvba/e) g (2.16)
Sky
which resembles a Fourier Transform...

We thus have

r = dv(cos(2mvb.s,/c)|V|cos(Py) — sin(2nvb.s,/c)|V|sin(Py))
= dv|V|cos(2nvrg — Py) (2.17)
i.e. the correlator output is proportional to the amplitude of the visibility, and contains a phase relation

with the visibility.

2.2.2 Finite Bandwidth
Integrating over dv,
1 vo+Av/2
R= —/ |V|cos(2mvre — ®v)dv (2.18)
Av 0—Av/2
Using v =19 +n

Av/2
R = L/ |V | cos(2mvgrg — @y + 2mnT,)dn (2.19)
Av Av/2

Av/2
= [/ |V| cos(2mvgTa — ®y) cos(2anTy)dn

Av/2
Av/2
- V|sin(2rvgrg — Py ) sin(2mrnt, )dn (2.20)
Av/2 I

= [V]cos(@mvore — By) fsin(2mnm, )X,

= 3z, |VIcos@mrora v) [sin(2mn7y) A, 2,

1 . Av 1
+E|V| sin(2rvgTg — Pv) [cos(2wm-g)]7A/V2/2 gy (2.21)

in(rA

= |V]cos(@rryrg — By) SRTAVT) (2.22)

TAVT,

The fringe visibility is attenuated by a sin(z)/z envelope, called the bandwidth pattern, which falls off
rapidly. A 1% loss in visibility is obtained for |Av7,| ~ 0.078, or with Av = 500MHz and a baseline length
b = 100m, when the zenith angle 6 (defined in Fig.2.3) is 2 arcmin only. Thus, the ability to track a source
for a significant hour angle coverage requires proper compensation of the geometrical delay when a finite
bandwidth is desired.
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7o = bs /c
b
Vg <
VRF
Mixer Local Phase
T X Oscillator | 7] Shifter

Vio P 0

A\ 4

USB  (vr—¥10) Compensating

Delay 7

LSB (vio—Vrr)

Correlator
Vip Vie

(1) ¥t (2)

Figure 2.4: 2-element heterodyne interferometer with delay tracking after frequency conversion

2.3 Delay Tracking and Frequency Conversion

To compensate for the geometrical delay variations, delay lines with mirrors (as in optics...) would be
completely impractical given the required size of the mirrors. The compensating delay is thus performed
electronically after one (or several) frequency conversion(s), as illustrated in Fig.2.4. This can be imple-
mented either by switching cables with different lengths, or in a more sophisticated way, by using shift
memories after digital sampling of the signal in the correlator. Apart for a few details (see R.Lucas lecture,
Chapter 7), the principle remains identical.

In the case presented in Fig.2.4, for USB conversion, the phase changes of the input signals from
antenna 1 and 2 before reaching the correlator are respectively

¢, = 2nvTg = 27T(I/L0+V[F)TG (223)
q>2 = 271'1/7'_[ + q’LO (224)

Introducing AT = 7, — 77 as the delay tracking error, the correlator output is

r = Ao|V]cos(®1 — By — By)
USB r = A,|V|cos2n(vrota + virAT) — @y — &10)
LSB r = AO|V| COS(QW(VL()TG — I/IFAT) — <I)V — (I)LO) (2.25)

When the two sidebands are superposed, we can just sum the USB and LSB outputs, which yields (after
usual re-arrangement of the cosine expressions)

DSB r = 2A,|V]cos(2n(vrorag — Py — ®ro)) cos(2nvrr AT) (2:26)

This shows that the amplitude is modulated by the delay tracking error. The tolerance can be exceedingly
small. For example, at Plateau de Bure, the IF frequency vir is 3 GHz, and a 1 % loss is obtained as
soon as the delay tracking error would be 7.5 picoseconds, i.e. a geometrical shift of 2.2 mm only. Due
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to Earth rotation, the geometrical delay changes by such an amount in 0.1 s for a 300 m baseline. Hence,
delay tracking would have to be done quite fast to avoid sensitivity losses. To avoid this problem, it is
common to use sideband separation. The delay tracking error should then be kept small compared to
the bandwidth of each spectral channel, A7¢ << 1/Awv, and the delay can then be adjusted much less
frequently.

2.4 Fringe Stopping and Complex Correlator

With the Earth rotation, the cosine term of Eq.2.22 modulates the correlator output quasi-sinusoidaly
with a natural fringe rate of

I/Lod’rg/dt ~ QeartthLO/c (2.27)

which is of order of 10 Hz for b= 300 m baselines and vo = 100 GHz. Note that the fringe rate only
depends on the effective angular resolution (bvpo/c ~ b/A is the angular resolution, 2" in the above
example).

The fringe rate is somewhat too high for simple digital sampling of the visibility. An exception is
VLBI (because there is no other choice), although the resolutions are < 1mas. The usual technique is
to modulate the phase of the local oscillator ®1o such that ®.0(t) = 2rvro7,(t) at any given time.
Then Eq.2.25 is reduced to

rr = A0|V|COS(:|:27FVIFAT — ‘iv) (2.28)

(with the + sign for USB conversion, and the — sign for LSB conversion), is a slowly varying output, which
would be constant for a point source at the reference position (or delay tracking center). This process
is called Fringe Stopping, since it stops the fringe pattern modulation. After fringe stopping, we can no
longer measure the amplitude |V| and the phase ®y separately, since r, is now a constant for a point
source. A modulation of the delay tracking could be used to separate |V| and ®y. Instead, it is more
convenient and effective to use a second correlator, with one signal phase shifted by 7 /2. Its output is

r; = AO|V|Sin(:|:27TV[FAT — Qv) (2.29)

With both correlators, we measure directly the real r, and imaginary r; parts of the complex visibility r.
The device is thus called a “complex” correlator.

Note: From Eq.2.28, a delay tracking error A7 appears as a phase slope as a function of frequency, with

<I>(1/1F) = :EZWV[FAT (2.30)

2.5 Fourier Transform and Related Approximations

The Complex Visibility is

V= |V|eiq>v — A(U)I(U)e(fﬁwub.a/c)dﬂ (231)
Sky

Let (u,v,w) be the coordinate of the baseline vector, in units of the observing wavelength v, in a frame of
the delay tracking vector sg, with w along s¢. (z,y, z) are the coordinates of the source vector s in this
frame. Then

vb.sfe = wur+vy+wz
vb.sg/c = w
z = \1—a2—y?
and do = TW _ dedy (2.32)

z /1— 22 — 2
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Thus,
Hoo peo i / 2_ 42 d.’L’dy
V(u, v, 'I,U) = / 14(3;'7 y)I(.Z'7 y)e—Zwr(u:c—i-vy—i-w( 1-z2- _1)) ﬁ (2.33)
—0o0 —0o0 — xrc — y

with I(z,y) = 0 when 22 +y% > 1.

If (z,y) are sufficiently small, we can make the approximation

(V1-22 —y? - Dw ~ %( 24w ~0 (2.34)
and Eq.2.33 becomes
V(u,v) = // Al (z, ) I(z, y)e 2im(ueten) g =il +y*)w gy gy, (2.35)
Az, y)

with  A'(z,y) (2.36)

V1—a? —y?
i.e. basically a 2-D Fourier Transform of AI, but with a phase error term 7(z? + y?)w. Hence, on limited
field of views, the relationship between the sky brightness (multiplied by the antenna power pattern) and
the visibility reduces to a simple 2-D Fourier transform.

There are other approximations related to field of view limitations. Let us quantify these approxima-
tions.

e 2-D Fourier Transform
We can further neglect the phase error term in Eq.2.36, if the condition

|7 (z® +yH)w| << 1 (2.37)
is fulfilled. Now, note that
bmax i

~

A 0.

where 6, is the synthesized beam width. Thus, if 6, is the field of view to be synthesized, the
maximum phase error, obtained at the field edges 6, /2, is

(2.38)

W < Wmax

762

Ad = 46,

(2.39)

Using A¢ < 0.1 radian (6°) as an upper limit (note that this is the maximum phase error, i.e. the
mean phase error is much smaller) result in the condition (with all angles in radian...):

f: < %\/0_5 (2.40)

¢ Bandwidth Smearing
Assume u, v are computed for the center frequency vy. At frequency vg, we have

V(u,v) = Al(z,y) (2.41)

The similarity theorem on Fourier pairs give
140} o Vo 14 v
V(i—u,—v) =(—)I(—z,— 2.42
(B, 20) = (2)*L( =z, Zy) (2.42)
Averaging over the bandwidth Av, there is a radial smearing equal to

~ ﬂ\/502 +y2 (2.43)

Yo
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Config. Resolution | Frequency | 2-D | 0.5 GHz 1 Min Time | Primary
(GHz) Field | Bandwidth | Averaging Beam
Compact | 5" 80 GHz 5 80" 2! 60"
Standard | 2" 80 GHz 3.5 30" 45" 60"
Standard | 2" 220 GHz 3.5 1.5/ 45" 24"
High 0.5" 230 GHz 1.7 22" 12" 24"

Table 2.1: Field of view limitations as function of angular resolution and observing frequency for the
Plateau de Bure interferometer.

and hence the constraint

91/0
v z2 2<0.1=
r°+y* < Ay

(2.44)

if we want that smearing to be less than 10% of the synthesized beam.

e Time Averaging
Assume for simplicity that the interferometer observes the Celestial Pole. The baselines cover a
sector of angular width Q.At, where (2. is the Earth rotation speed, and At the integration time.
The smearing is circumferential and of magnitude Q,At\/2? + y2, hence the constraint

0
vVaz+y?2 <0.1—

Q. At

(2.45)

For other declinations, the smearing is no longer rotational, but of similar magnitude.

To better fix the importance of such approximations, the relevant values for the Plateau de Bure
interferometer are given in Table 2.1. Note that these fields of view correspond to a maximum phase error
of 6° only, or to a (one dimensional) distortion of a tenth of the synthesized beam, and thus are not strict
limits. In particular, atmospheric errors often results in larger errors (which are independent of the field
of view, however).

2.6 Array Geometry & Baseline Measurements

The uv coverage

Using a Cartesian coordinate system (X,Y, Z) with Z towards the pole, X towards the meridian, and YV
towards East, the conversion matrix to u, v, w is

u 1 sin(h) cos(h) 0 X
v | == | —sin(d)cos(h) sin(d)cos(h) cos(d) Y (2.46)
w cos(d) cos(h)  —cos(d)sin(h) sin(d) Z
where h,d are the hour angle and declination of the phase tracking center.
Eliminating h from Eq.2.46 gives the equation of an ellipse:
2 o (2= 21N cos(9) 2 X 4y (2.47)
sin(4) A2 '

The uv coverage is an ensemble of such ellipses. The choice of antenna configurations is made to cover the
uv plane as much as possible.
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Baseline measurement

Assume there is a small baseline error, (AX, AY, AZ). The phase error is

Ap = ?Ab.so (2.48)
= cos(d) cos(h)AX — cos(d) sin(h)AY +sin(6)AZ (2.49)

Hence, if we observe N sources, we have for each source
Ok = ¢o + cos(dx) cos(hg)AX — cos(dg) sin(hg)AY + sin(dx)AZ (2.50)

i.e. a linear system in (AX,AY,AZ), with N equations and 4 unknown (including the arbitrary phase
¢0). This can be used to determine the baselines from phases measured on a set of sources with known
positions hy, 6.

From the shape of Eq.2.49, one can see that the determination of AX, AY requires large variations in
h, preferably at declination § ~ 0, while that of AZ requires large variations in §. However, ¢y, in Eq.2.50
is multi-valued (the 27 ambiguity...). Retaining the function in the [—x, n[ interval only, the system to
solve is in fact

mod(po + cos(dy) cos(hr)AX — cos(dy) sin(hy)AY + sin(6x)AZ — ¢ +7,27) — 1= 0 (2.51)

which is a linear system of equations only if AX, AY, AZ are small enough so that the shifted modulo
function is the identity. Baseline determination usually proceeds through a “brute force” technique, by
making a grid search (with 7 phase steps) around the most likely values for X,Y, Z.
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Millimeter—Wavelength Very Long Baseline Interferometry is interferometry at millimeter wavelengths
(8.5—1.3mm: 86 GHz- 230 GHz) with disconnected telescopes using the longest baselines on Earth (1000 -
10 000 km) in order to achieve the highest angular resolution (0.01 — 0.00005" ). The disconnected telescopes
need special time/frequency references provided by the observatory-own Hydrogen—masers, synchronized to
GPS time signals. The observations are recorded on tape for correlation at special correlator stations.
The correlation gives visibility tables. mm—VLBI sees only sources which emit non—thermal radiation at
brightness temperatures of T ~ 10° —10'2 K. These sources represent the *hot’ and energetic component
of the Universe, for instance masers and quasars.

3.1 Introduction

Throughout the universe, the common astronomical objects — stars, stellar clusters, molecular clouds,
galaxies, AGNs, QSOs, clusters of galaxies — have typical linear dimensions, and only seldom span a factor
of 10 to 100 in scale. The more distant the objects, the smaller therefore their apparent angular size,
and hence a higher angular resolution and larger collecting area of a telescope is required to distinguish
significant structural detail at a significant level of detection. According to a fundamental optics principle,
the angular resolution © of a full aperture telescope (optical or radio) of diameter D, or of an interferometer
consisting of several connected or disconnected telescopes of longest baseline separation B, observing at
the wavelength A, is

25
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© x A\/Dor® x A/B[rad] (3.1)

If, therefore, the telescope or the baseline has a diameter/length of D = B = n A, the resolution is

OxA/D x A\B x1/n (3.2)

In words, the larger the number (n) of wavelengths spanned by the diameter /baseline the higher is the
angular resolution. From these relations it is evident that a high angular resolution is obtained by using
short wavelengths (for instance millimeters instead of centimeters), and/or large telescopes, and/or long
baselines ([inter]continental distances instead of kilometers). In order to obtain a resolution of ® = 1"
[the seeing limit at optical wavelengths set by the turbulence of the Earth’s atmosphere], the size of the
telescope or interferometer baseline must be

D[1"] = B[1"] = 2 x 10°, A (3.3)

which is D[1"] = B[1"] = 600m at A = 3mm (100 GHz). To be comparable in resolution with the HST
of @ ~ 1072 x 1" = 0.01"”, a telescope/baseline of D = B = 60km at A = 3mm is required. To obtain
however a resolution of ® = 1072x1072x1" = 0.0001" = 0.1 mas at mm-wavelengths it is evident that
the telescope must have Earth dimensions. Such a ’telescope’ can only be an interferometer of some sort,
of which the telescopes are disconnected and located across a continent, or on different continents, or on
different continents and in Space.

The image quality of a mm—VLBI array depends on the available uv—coverage. However, mm—VLBI
telescopes cannot be displaced, they are arranged in the given configuration of the observatory sites (see
Fig. 3.1), and uv-coverage is only obtained by Earth rotation. The sensitivity of a mm—-VLBI array
depends on the collecting area and the precision (aperture efficiency) of the participating telescopes.

Very long baseline interferometry, on baseline dimensions of the Earth’s diameter and satellite orbits,
requires special techniques to record in—phase the different segments of a wavefront emitted by a source
and being received by the individual telescopes of the array. This in—phase recording is achieved by
locking the oscillators of the receiver and tape recorder unit to a very precise observatory time standard
(Hydrogen—maser), which in turn is synchronized to an ’outside clock’, available at all stations. This
outside clock is provided by time signals of the Global Positioning System (GPS).

3.2 mm—-VLBI Arrays

The wet atmosphere, even at high altitudes, has transmission windows at ~3mm (~ 100 GHz), ~2mm
(~150GHz), ~1.3mm (~ 230 GHz), and at shorter wavelengths, through which radio signals can propa-
gate to the surface of the Earth. The observing facilities of mm—VLBI, summarized in Table 3.1, make
use of these atmospheric windows.

The remark 'Proposal’ in Table 3.1 indicates that the array is available to observers on a competitive
proposal basis. The 2-mm and 1.3—mm observations are in an experimental state. The mentioned 1.3—
mm observations were experimental, and successful.

3.2.1 The CMVA Array

The CMVA (Coordinated Millimeter VLBI-)array contains the telescopes of 12 observatories which operate
together in coordinated observations for approximately 15 days per year. The telescopes are located in
North—America, Europe, and Chile. The performances of the telescopes at 8 GHz (3.5 mm) are given in
Table 3.2, the location of the telescopes is shown in Figure 3.1. The European telescopes of the CMVA
are located essentially in the direction North—South, the American telescopes are located essentially in the
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Table 3.1: mm—VLBI Arrays and Experimental Observations

| Frequency (Wavel.) [  Array | Telescopes | Baseline | Observing |
86 GHz (3.5mm) | CMVA Table 2 ~ 8000 km Proposal
86 GHz (3.5mm) | VLBA(*) Table 3 ~ 8000 km Proposal
150 GHz (2.0 mm) — PV-KP-SEST experim.
230 GHz (1.3 mm) - OVRO-KP ~500km | experim. (*¥)
- PV-PdBure | ~1000km | experim. (**¥)

PV: Pico Veleta (Spain), KP: Kitt Peak (USA), OVRO: Owens Valley Obs. (USA), SEST: La Silla (Chile).
(*) sub-array of the VLBA array (Table 3.3); (**) [Padin et al. 1990]; (***) [Greve et al. 1995],
[Krichbaum et al. 199§]
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Figure 3.1: Observatories participating in cm and mm-wavelength VLBI. The mm-VLBI observa-
tories of the CMVA (Table 3.2) are concentrated in Western Europe and North America. From
[Felli & Spencer 1989], Schilizzi p404, with kind permission from Kluwer Academic Publishers.
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Figure 3.2: Tllustration of the low elevation visibility (E1, Es) of the QSO 3C 273 (RA: 128 29™, Dec: 2° 3/,
1950). The lower part of the figure shows the relative elevation of 3C 273 at Pico Veleta (Spain; LST: local
siderial time reference), SEST (Chile), Kitt Peak (USA), and Ownes Valley (USA). The mutual visibility
is given by the overlap areas of the individual curves.



3.3. AVAILABLE RESOLUTION

Table 3.2: The Coordinated Millimeter VLBI Array = CMVA (86 GHz)

Telescope Country D Tsys | Gain 1A Altitude
] | [K] | [K/Jy] fm]
CMVA
Effelsberg Germany 60 350 0.13 0.13 ~0
Haystack USA 37 200 | 0.058 | 0.15 ~0
Pico Veleta Spain 30 150 0.14 0.60 3000
Onsala Sweden 20 250 | 0.056 | 0.49 ~0
SEST Chile 15 300 | 0.032 0.50 2500
Ambherst USA 14 300 | 0.024 | 0.43 ~0
Metsdhovi Finland 14 300 | 0.017 | 0.30 ~0
(Kitt Peak(*) USA 12 | 150 | 0.023 | 0.56) | 2000
Owens Valley USA 4x10.4 | 300 | 0.067 | 0.55 1500
Hat Creek USA 7x6.1 | 300 | 0.050 | 0.65 1000
Expected
P. de Bure France 6x15 150 | 0.045 0.7 2500
GBT USA [100] ~0
LMT Mex(-USA) | 50 4600
Yebes Spain 40 500
ALMA Chile 64x12 | (70) | (0.03) | (0.8) 5000
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(*) out of operation since July 2000.

direction East—-West. As applied in other interferometers, the CMVA array uses Earth rotation to obtain
uv—coverage. Some of the strong mm—VLBI sources (3C 273, 3C 279), which are regularly monitored (see
Figure 3.9), are located at low declination (Dec = 2°, —5°) so that they can be simultaneously observed
only at low local elevations, as illustrated in Figure 3.2 for 3C 273 and the stations Pico Veleta — SEST
— Kitt Peak — Owens Valley. The low elevation usually implies a high line-of-sight system temperature
(Tsys), thus a low signal-to-noise ratio, and thus a low detection sensitivity (Sect.3.5). The low elevation
implies also that the uv—coverage may be incomplete, the synthesized beam asymmetric, and the final map
distorted.

Table 3.2 contains also several telescopes expected to be available in future. These are telescopes with
large collecting areas; the dedicated mm—wavelength telescopes (PdB, LMT, ALMA) are located at high
altitudes.

3.2.2 The VLBA Array

The VLBA (Very Long Baseline-)array, which consists of 10 dedicated 25-m diameter telescopes (Table 3.3,
Figure 3.3), is located on the North—American continent, including one antenna on Hawaii. This array
observes routinely at 43 GHz. The array is being upgraded for observations at 86 GHz (3.5 mm); a sub—
array (+) is available for 86 GHz VLBI observations. Some of these telescopes collaborate in CMVA
observations.

3.3 Available Resolution

Table 3.4 gives an overview of the angular resolution available from the Plateau de Bure interferometer and
the CMVA-VLBA mm-wavelength VLBI-arrays (USA + Europe). The table gives for comparison the
parameters of the Pico Veleta 30—m telescope (Spain). The table gives also the linear scale corresponding
to the angular resolution © for a source located at 50 Million pc distance.
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Figure 3.3: The VLBA array (Table 3.3) (from [Zensus et al. 1995]).

Table 3.3: The VLBA Array [10x25 m antennas| (partially operating at 86 GHz)

Code | Location (USA) | Elevation (m)
SC St. Croix VI 16
HN Hancock NH 309
+ | NL N. Liberty IA 241
+ | FD Ford Davis TX 1616
+ | LA Los Alamos NM 1967
+ | PT Pie Town NM 2371
+ | KP Kitt Peak AZ 1916
+ | OV Owens Valley CA 1207
BR Brewster WA 255
+ | MK Mauna Kea HI 3720
Table 3.4: Diameter (D), Baselines (B), Resolution (0), Linear Scale
Diameter/ Telescopes A =3.5mm | A = 3.5mm | Linear Scale
Baseline B/ () at 50 Mpc
D = 0.03km 30-m PV 8x10° 24" 6000 pc
(Single Dish)
B = 0.3km PdB 8x 107 2.4" 600 pc
(Interferom.)
B = 1500 km PV - PdB 4x10% 0.0005" 0.1pc
(VLBI)
B =8000km | CMVA/VLBA 2x10° 0.000 09" 0.02pc
(VLBI)




3.4. POLARIZATION OBSERVATIONS

Table 3.5: Polarization Possibilities (LCP, RCP)

Telescope Polarization Bandwidth
(number of channels, 4 MHz)
Effelsberg 14 LCP 122 MHz LCP
Onsala 14 LCP 122 MHz LCP
+ Pico Veleta 7LCP / 7 RCP 56 MHz LCP / 56 MHz RCP
+ Haystack 7LCP /7 RCP 56 MHz LCP / 56 MHz RCP
Ambherst 14 LCP 122 MHz LCP
+ Pietown 4 LCP / 4 RCP 28 MHz LCP / 28 MHz RCP
+ BIMA 7LCP /7 RCP 56 MHz LCP / 56 MHz RCP
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3.4 Polarization Observations

The continuum radiation of Quasars (QSQO) and the line radiation of SiO masers is polarized, in single
dish and interferometer observations from a few percent to ~10% for QSO’s, and up to ~ 70 — 80 % for
the individual components of SiO masers. VLBI observations are normally made at Left Hand—Circular
Polarization (LCP = £) in order to eliminate amplitude modulations of a polarized source due to hour
angle variations. For polarization observations, measurements are made at LCP and RCP (right hand-
circular, R) polarization. The Stokes parameters 1,Q,U,V, describing the polarization, and the complex
correlations RR, LL, RL, LR arerelated by RR =1+ V; LL=1-V; RL=Q +iU;and LR =Q —
iU ([Kemball et al. 1995]).

Table 3.5 summarizes the possibility of VLBI polarization observations (status 2000) at 86 GHz. The
BIMA (Hat Creek) interferometer can be phased and split into 3 antennas LCP and 3 antennas RCP; this
will eventually also be possible with the PdB interferometer.

Polarization observations at 86 GHz of QSQ’s are so far without convincing success, mainly because of
their low degree of polarization; VLBI polarization observations at 86 GHz of SiO masers are in progress.

3.5 The Feasibility of mm—VLBI: Signal-to—Noise Ratio and De-
tections

The operation and sensitivity, and the present situation and future wishes of mm—-VLBI are easily ex-
plained from a discussion of the relation expressing the signal-to—noise ratio of an observation with a
two—telescope VLBI interferometer. An unresolved source with a size comparable or smaller than the
synthesized beamwidth (©), measured with both telescopes (1,2), is considered to be detected if the
signal-to—noise ratio (SNR) of the observation is ~ 7 or higher, i.e. 7 < SNR. The relation of the SNR is
(JRogers et al. 1984])

SNR = Ly/m Ay A/ (Th sy T,eys) X 2780 x (F/2K) (3.4)

SNR = L(n/4) Dy Do/ (s (Th, sy T s4s) X 270 x (F/2k) (3.5)

with A the geometrical area = 7(D/2)? and D the diameter of the telescope (Tables 3.2 & 3.3); 7 the
aperture efficiency (Table 3.2); nA the effective collecting area; Ty the system temperature (Table 3.2);
Av the bandwidth (112MHz for MKIIT); 7 the integration time; F the correlated flux density; k the
Boltzmann constant; and L the correlator efficiency (= 2/7 for a 2-level quantization).

From this relation we note that:

e the incorporation of a large—diameter high—precision telescope significantly improves the performance of
a mm-VLBI array. If an array of two telescopes of diameter D; = Dy = 15m and efficiency 71 = 12 = 0.3
performs at the signal-to—noise ratio SNR(2x15m), the replacement of one telescope by, for instance, the
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Table 3.6: SNR for 86 GHz (3.5 mm) Observations: Pico Veleta — Haystack (~ 6000 km)

Source S(86 GHz) [Jy] SNR

(single dish) (VLBI)

3C273 25 182-203

3C279 20 163

3C 345 5.5 6-13
NRAO530 6.5 21-81
17494096 3.0 21-43
18234-568 2.8 35-43
21454067 4.5 5-19
3C454.3 10 78-66

Results obtained at 215 GHz (1.3 mm) on the ~ 1000 km baseline Pico Veleta—PdB are given in Table 3.7
([Krichbaum et al. 1998]).

IRAM 30-m telescope with Dy = 2D; = 30m and 72 = 27, = 0.6 improves the signal-to—noise ratio by
SNR(15m & 30m) = 2 x SNR(2x15m): the array has a 2 times higher sensitivity. It is evident that the
future incorporation of the PdB interferometer, the LMT, and ALMA (Table 3.2) will greatly improve the
sensitivity of mm—VLBI.

o for observations at mm-wavelengths the location of a telescope at 2000 — 3000 m altitude generally reduces
T,sys because of the lower amount of atmospheric water vapour, i.e. Tsys(high site) & (1/3)xTgys(low
site) =~ (1/3)x(300-500) K = 150 K. The lower value of T, increases the SNR by a factor of 2, or more.
Such a decrease of the line—of-sight T, is especially important for intercontinental /transatlantic baselines
where the sources are usually observed at low local elevations (Figure 3.3). Table 3.2 shows that several
telescopes of the CMVA array unfortunately are located at low altitudes. Again, the incorporation of PdB
Interferometer (2500 m), the LMT (4600 m), and ALMA (5000m) will greatly improve the sensitivity of
mm-VLBI.

e for continuum observations, the foreseen increase in bandwidth of presently Av = 112MHz by a factor
of two, or more (MkIV), will increase the sensitivity of mm—VLBI by a factor of 1.5, or more.

e the integration time 7 is usually limited by the stability of the Hydrogen—maser to values 7(100 GHz)
~ 1000s and 7(230 GHz) ~ 100s (Sect.3.6). Often however, the integration time is shorter, 7(100 GHz)
~100-200s and 7(230 GHz) ~ 10-20s, because of phase disturbances introduced by atmospheric water
vapour fluctuations. Segmented correlations and atmospheric phase corrections increase the sensitivity of
mm-VLBI.

e the SNR is proportional to the correlated (unresolved) flux density (F) of the source. At mm-wavelengths
it is found that the correlated flux density is often significantly smaller than the total flux density (S)
measured with a single dish telescope. It is found, globally, that F ~ (1/3—1/5)xS. As example, for
3C 273 it is observed that S(86 GHz) ~ 20Jy while F(86 GHz) ~ 4Jy, and S(230 GHz) ~ 10Jy while
F(230GHz) ~ 2Jy. The presently available CMVA array has sufficient sensitivity to detect sources of
total flux density S < 2-3 Jy.

To illustrate the present situation and possibilities of mm—VLBI, Table 3.6 summarizes the SNR, of detec-
tions at 86 GHz measured on the baseline Pico Veleta (Spain) — Haystack (USA) ([Krichbaum et al. 1994];
[Beasley et al. 1995]).

3.6 From observations to correlations, step by step

3.6.1 Observing Techniques

A 2-telescope disconnected mm—VLBI array and the (far away) correlator station are shown in Figure 3.4.
mm-VLBI observations are made with telescopes separated by several hundreds or thousands of kilometers
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Figure 3.4: Disconnected two-telescope VLBI array; one telescope is located in Europe, the other one is
located in the USA. At both observatories, the local oscillators (LO1, LO3), the sampler, and the tape unit
are locked to the observatory H-maser, synchronized to the satellite GPS time signal. The observations
are correlated either at Haystack or Bonn; here the delays and Doppler shifts are introduced.
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Table 3.7: SNR for 215 GHz (1.3 mm) Observations: Pico Veleta — Bure (~ 1000 km)

Source z | S(215GHz) [Jy] | SNR | F(215GHz) [Jy]
(single dish) (VLBI) (VLBI)
4C39.25 | 0.69 3.5+0.7 <4 < 0.5
3C273 0.16 9.2+0.6 7 0.4-0.7
3C279 0.54 11.0£1.0 35 3-3.8
1334-127 | 0.54 3.1+£0.7 12 0.5-1.1
3C 345 0.59 3.0x04 6 <04
NRAO530 6.2+0.5 11 0.5-0.8
Sgr A* 4.140.5 6 0.5-0.9
T T T T T
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Figure 3.5: Allan standard deviation vs. integrated time for several frequency standards. The
phase fluctuations of mm—VLBI are usually dominated by atmospheric phase fluctuations. From

[Thompson et al. 1986]. Copyright: @1986 Wiley-Interscience Publications. Reprinted by permission
of John Wiley & Sons, Inc.
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Figure 3.6: Typical H-maser drift measured at Pico Veleta (by courtesy of J. Penalver, IRAM).
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not sharing a common time/frequency reference as used in connected interferometry. At each VLBI-
telescope therefore the receivers, frequency down—up converters, tape recorders, phase—calibration systems
etc. are locked to a Hydrogen—maser which has a typical short—term stability of ~107!% and a typical drift
of a few 10 nano—seconds per day, or smaller, as shown in Figures 3.5 & 3.6. The VLBI time/frequency
systems of the individual telescopes are locked to the GPS system which gives an absolute time reference
at the participating telescopes of a few hundred nano—seconds, or better. This time difference must be
retrieved a posteriori in the data correlation.

mm—VLBI observations are made at a fixed frequency, preferably at Single-Side-Band tuning in order to
reduce noise from the non—used sideband. Fringe rotation and Doppler shifts are introduced a posteriori
at the correlator.

3.6.2 Data Recording

In VLBI observations, the telescopes are disconnected and real-time correlation of the signals from the
individual telescopes is not possible. At each telescope, the signals are recorded on tape synchronous with
the time signal provided by the Hydrogen—maser. In MKIII mode observations, the data are available as
28 channels of 4 MHz bandwidth each; the bandwidth of the recording is Av = 28x4 MHz = 112 MHz.
The 28 tracks are recorded simultaneously on magnetic tape. The required bitrate of the recording is

bits/s = 2n.Av (3.6)

For Av =112 MHz and a sampling efficiency n, &~ 1—1.6, the bitrate recorded on tape is ~ 224 Megabites/s.
mm-VLBI is being upgraded to 256 MHz bandwidth, and more (MkIV).

3.6.3 Correlation Time

The short-term frequency stability (up to a few 1000s, see Figure 3.5) of a Hydrogen-maser is ~ 10~1°.
There are long—term drifts which can be checked against GPS signals (see Figure 3.6) and adjusted so
that they are below, say, ten nano—seconds per day. The maximum possible integration time (7) of an
observation is set by the requirement that the relative frequency drift Av must not exceed, say, Av =0.2
radians. The integration time then is ([Kellerman & Thompson 1985])

Av/(27vT) = 0.2/(2nvT) ~ 10710 (3.7)

This relation gives 7(86 GHz) ~ 350s & 5 minutes and 7(230 GHz) ~ 150s & 2 minutes.

3.6.4 Phase Correction

Because of phase variations introduced by atmospheric water vapour fluctuations, the correlation time 7
derived above can be significantly shorter, 7 & 10—-30s, especially when observing at high frequencies.
Because of the scarcity of strong mm—wavelength VLBI sources at sufficiently close distances in the sky,
phase referencing as used in connected mm-wavelength interferometry (for instance used on PdB) has
not yet generally been applied in mm—-VLBI. Efforts are however undertaken to apply phase corrections
from local line—of-sight water vapour measurements (sky emission measurements). As an example, the
phase stability of a 86 GHz and 215 GHz measurement between Pico Veleta and Plateau de Bure is shown
in Fig.3.7. A typical atmosphere-induced phase variation and phase correction applied to 86 GHz VLBI
measurements made at Pico Veleta is shown in Figure 3.8.

3.6.5 Correlation

The recorded mm—wavelength VLBI data are correlated at Haystack (USA) or at Bonn (Germany). The
end—product of the correlation are calibrated visibility values (uv—tables) which can be used in the same
way as data, for instance, obtained with the PdB interferometer.
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Figure 3.7: VLBI at 215GHz and 86 GHz between Pico Veleta and Plateau de Bure (1994). The 6.5
minute records show amplitude and phase stability for 3C 279 at 215 GHz (upper panel) and 21454067 at
86 GHz (lower panel).
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3.7 The observable sources with mm—VLBI

3.7.1 Which Kind of sources can we observe

Mm-VLBI sees non—thermal sources emitting, for instance, maser or synchrotron radiation at a high
brightness temperature (Tg). The associated astronomical sources are, for instance, masers (SiO) and
AGNs and QSOs with jets. mm—VLBI is insensitive to the cold component of the Universe like molecular
clouds and other thermal sources. The cold component is observed with interferometers like the Plateau
de Bure instrument.

The correlated flux density F of a source with brightness temperature Tg, subtending the solid angle Q
in the sky, is

F = (2k/\*)TB0 (3.8)

The correlated flux density AF observable within the bandwidth Av and integration time 7 is

AF = (Qk/Aeff)Tsys,eff/V QTAI/ (39)

with Aeg = VmAin2As the effective surface area of telescope 1& 2 and Tyyser = /11,5ys12,sys the
effective system temperature. To arrive at a numerical value of T let us assume that we want to detect

the source with an accuracy of AF =~ €¢F, where 0 < € < 1. We assume furthermore that the source is
unresolved and small and has a size comparable to the VLBI array resolution, hence Q ~ (A\/B)?. Using
these relations we obtain

Tg = Tsys,eft B2/ (€AV2TAV) (3.10)

A mm-VLBI array of two telescopes of 15-m diameter, observing at a system temperature Tgys o =
200K, a bandwidth of Av = 112MHz, and an integration time limited by the system and atmospheric
phase stability to 7 & 100s, can only detect sources which have brightness temperatures of Tp & 10° —
10" K.

3.7.2 The field of view

Evidently, a mm-VLBI array of 800010000 km baseline has only a limited field of view (g, ). Since a
disconnected mm—VLBI array does not directly track phase, an estimate of the field of view is obtained by
noting that the delay 7 between two antennas (see Figure 3.4) separated by the baseline B and observing
in the direction 6

T = (B/c)cosb (3.11)

and that the delay difference A7 for a small angular displacement A6 from the main direction of observation
is

AT = —(B/c)sinf) Al (3.12)
with ¢ the velocity of light. Since delay corrections are only made in the correlator, the field of view is
restricted to directions in which delay smearing (A7) does not exceed, approximately, A7 < 1/(2 Av).
Using this criterion, the field of view is

Ofov = A/ B(v/Av) (3.13)

For v = 86 GHz, Av = 112MHz (MKIII), and B = 10000 km we obtain 8¢, =~ 0.05-0.02" = 50—-20 mas.
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Figure 3.8: mm—VLBI phase correction at 86 GHz. The upper panel shows the phase variation measured on
the baseline Pico Veleta — Onsala. The center panel shows the contribution of the phase variation predicted
for Pico Veleta from atmopsheric water vapour measurements (200 GHz line—of-sight sky emission). The
lower panel shows the improvement in phase stability when the predicted phase fluctuations are taken into
account (by courtesy of M. Bremer, IRAM, A. Roy and D. Graham, MPIfR).
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3.7.3 An example: mm—VLBI Observations of QSO 3C 273

Fig.3.9 shows observations of the Quasar 3C 273 at 22 GHz (top), 43 GHz (center), and 86 GHz (bottom),
performed nearly at the same epochs of 1995.15 (22 and 43 GHz) and 1995.18 (86 GHz). Contour levels
in all maps are (-0.5,) 0.5, 1, 2, 5, 10, 15, 30, 50, 70, and 90 % of the peak flux density of 3.0 Jy/beam
(top), 5.4Jy/ (center), and 4.7 Jy/beam (bottom). All maps are restored with the same beam of size of
0.4 x 0.15mas, oriented at pa = 0°. The maps are arbitrarily centered on the eastern component (the
core); the dashed lines guide the eye and help to identify corresponding jet components in the three maps.
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Figure 3.9: VLBI observations of QSO 3C273 at 22 GHz (1.3cm) [top], 43 GHz (7.0 mm) [center]|, and
86 GHz (3.5mm) [bottom]. The 86 GHz map is obtained from observations with the CMVA array (by
courtesy of T. Krichbaum, MPIfR).
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LAOG, BP 53, F-38041 Grenoble Cedex 09, France

4.1 Introduction

This chapter is focused on optical (i.e. visible and infrared) interferometry with in mind the comparison
of this technique with radio interferometry developed in the other chapters of this book. The objective
is to give some keys to understand how optical interferometers works. I present first a small history of
optical interferometry followed by a census of interferometers in operation or in construction (Sect. 4.1).
Section 4.2 discusses the common points and main differences between optical and radio interferometry
at millimeter wavelengths. Then I describe how an optical interferometer works (Sect. 4.3) at the system
level and at the signal detection level (Sect. 4.4). Finally I present in Sect. 4.5 the main limitations that
optical interferometry faces like the atmospheric turbulence and other sources of noise in the measured
signal.

4.1.1 Brief history of optical interferometry

Stellar interferometry has been first proposed by Fizeau in 1868. At that time, the phenomenon of light
interference is already well studied and the physicists know that the contrast of the fringes depends on
the geometry of the source. [Fizeau 1868] suggests to deduce the star diameter from the extinction of
the fringe contrast with widely separated slits. [Stéphan.1873] installs a mask with two apertures on the
0.80-m telescope of the Marseille observatory to test Fizeau’s method. He detects fringes but the contrast
of fringes do not decrease with the aperture distance. He concludes that stars must be smaller than 0.158
arcsec.

43
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Figure 4.1: Michelson 20-foot interferometer installed on 100-in telescope at Mount Wilson.

Following his own work on the measurement of light speed, Michelson seems to have independently
discovered optical interferometry in the 1890’s. In order to span a large range of baselines, he and Pease
install a 20-foot metal beam above the 100-in telescope of Mount Wilson. Two mirrors inclined by 45
degrees send the light to the middle of the telescope where two other mirrors inject the light in the
telescope. The interferometric fringes are formed at the focus of the telescope (see Fig. 4.1). By translating
the outside mirrors, the baseline changes and therefore also the contrast of the fringes. In the 1920’s,
[Michelson & Pease 1921] measure the first diameters of stars that required baselines longer than 3m. To
extend these first results, Pease builds a stand-alone interferometer on a 50-foot metal beam, but fails in
getting calibrated results because of the unexpected importance of mechanical flexures.

During almost 50 years, direct detection interferometry stalled. [Hanbury Brown & Twiss 1956 in-
vented intensity interferometry which is limited to a small handset of bright sources. Interferometry had
a new birth in the mid-1970’s with the advent of new technology: detectors, actuators, servo-control, etc.
[Labeyrie 1975] was the first to directly combine the light from two separated telescopes in the optical
range. Since that time several interferometers with relatively small apertures have been built and operated.
A list of current and future interferometers is given in Table 4.1 and commented in next section.

In 1988, the heterodyne techniques used in the radio domain was first implemented in an operating
interferometer at 10 pm by the Infrared Spatial Interferometer (ISI, [Danchi et al. 1988]).

4.1.2 Current and future optical interferometers

Current interferometers (see list in Table 4.1) are composed of relatively small telescopes, with diameters
ranging between 15 centimeters to 1.5 meters. The number of telescopes used to combine the light is usually
two, but if two facilities work routinely with 3 or more apertures (COAST and NPOI). The maximum
baseline length ranges between a few meters up to several hundreds of meters (e.g. SUSI). Almost each
interferometer has its own beam combination scheme (see Sect. 4.4.1). They work either in the visible
(0.4 — 1 pm) or the infrared (1 — 10 gym) domains.

Each interferometer has been designed with one main astrophysical objective: synthetic aperture imag-
ing (COAST, UK), high resolution spectroscopy in the visible (GI2T, France), high accuracy measurement
in the near-infrared (IOTA, USA), high resolution spectroscopy in the thermal infrared (ISI, USA), wide
angle astrometry (NPOI, USA), narrow angle astrometry and phase reference (PTI, USA), stellar astro-
physics in the visible (SUSI, Australia). CHARA (USA), which obtained its first fringes at the end of
1999, aims at binary observations and synthetic aperture imaging.

The new generation consists of interferometers with very large telescopes: the VLTI with 4 x 8-m
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Table 4.1: List of ground-based optical interferometers in operation or in construction.

Name Facility # tel. D(m) B (m)
COAST Cambridge Optical Aperture Synthesis Telescope 5 0.4 20
GI2T Grand Interférométre a 2 Télescopes 2 1.52 65
IOTA Infrared & Optical Telescope Array 2* 04 38
ISI Infrared Spatial Interferometer 2* 1.65 85*
NPOI Naval Prototype Optical Interferometer 3* 0.12*  35*
PTI Palomar Testbed Interferometer 3 0.4 110
SUSI Sidney University Stellar Interferometer 2 0.14 640
CHARA Center for High Angular Resolution Astrophysics 6 1 350
KI-main Keck Interferometer main array 2 10 60
KI-outriggers Keck Interferometer auxiliary array 4 1.8 140
VLTI/VIMA  Very Large Telescope Interferometer main array 4 8 130
VLTI/VISA  Very Large Telescope Interferometer sub-array 3 1.8 200
LBT Large Binocular Telescope 2 8.4 23

*

upgrade in progress

telescopes, the Keck Interferometer with 2 x 10-m telescopes and the LBT with two 8-m telescopes. Their
main objective is the gain in flux sensitivity which will allow for the first time the study of extra-galactic
sources. Both the VLTI and the Keck Interferometer are supplemented by auxiliary 1.8-m telescopes, that
are still larger than the largest apertures in the previous generation of interferometers.

4.2 Optical versus millimeter radio interferometry

Optical and millimeter radio interferometry are essentially the same technique used in two different wave-
length domains. Although they share the same fundamentals and the same objectives (see Sect. 4.2.1),

their implementations can exhibit some significative differences (see Sect. 4.2.2). More details are given in
Chap. 21.

4.2.1 Common issues

Both optical and millimeter interferometers study the coherence of the electric field by the mean of sepa-
rated apertures, called telescopes, siderostats or antennas. The principle of these two techniques is based
on the Zernike-Van Cittert theorem, i.e. the degree of coherence of the light is directly related to the
Fourier transform of the spatial distribution of the intensity of the observed object [Goodman 1985].

By using separated apertures, both techniques achieve high angular resolution observation, with a
resolution tens to hundreds of time larger than single aperture in the same wavelength domain. They
therefore face similar difficulties, since they both used diluted arrays and have to find the best array
configurations to reach their respective objectives. Similarly to millimeter radio interferometry, optical
interferometry has also to calibrate the measured complex visibilities.

When optical interferometry will become as mature as millimeter interferometry, one will probably use
very similar algorithm to reconstruct images from the calibrated visibilities.

4.2.2 Main differences

The differences come mainly from the wavelength domains: the typical optical wavelength is 1 ym, which
corresponds to a frequency of 300 THz to be compared with the typical millimeter radio wavelength of 1
mm and the corresponding 300 GHz frequency.

The first consequence is the actual angular resolution that can be achieved, defined by the fringe
spacing A/B. The typical resolution reached in the optical domain is about 1 milli-arcsecond whereas in
the millimeter domain, the Plateau de Bure Interferometer (PdBI) reaches about 1 arcsecond. ALMA
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with its extended baselines will be able to get 0.03 arcsecond but the information will still be 100 times
less resolved than with optical interferometers.

A second difference comes from the type of detection and beam combination. In millimeter interfer-
ometry, the signal detection occurs at the antenna level thanks to the heterodyne technique. The signal is
coupled with a reference signal of high coherence and therefore one records the amplitude and the phase of
the coming electric field. The signals from each antenna are then digitized and the combination takes place
in the correlator (see first chapters of this book). An electronic phase delay is applied to take into account
the difference in path length between two arms. In the optical domain, the heterodyne technique has been
successful at 10 pm [Gay & Journet 1973, Johnson et al. 1974]. This technique however happens to be
not sensitive. That is why optical interferometry is usually achieved by direct detection of interferences.
The light beams are propagated to a central lab, where the optical path is equalized and are combined to
form interferences before being detected. Since the detection techniques measure only the power of the
electric field, one has to code the fringes either temporally or spatially (see Sect. 4.4.2). Finally the two
techniques give different types of interferences: respectively multiplicative and additive. The heterodyne
technique directly gives access to the electric field 1 for each aperture and therefore the interference signal
is multiplicative (see also Chapter 2 and 21).

The quadratic detection in the direct technique gives additive interferences:
T =< (Y + ) Wk +01)* >= I + I + 24/ It Iy v €08 ppa (4.1)

where < ... > stands for a temporal average over a time long compared to the inverse frequency of the
signal, Ij is the intensity of the k-th beam, and vy; and ¢y; are respectively the amplitude and phase of
the normalized visibility. One of the consequences is a different type of calibration process, another is that
visibility unit is Jansky in the millimeter domain, whereas in the optical domain it is dimension-less, i.e.
flux normalized.

A third and important difference is the influence of the atmosphere. In the optical domain the dominant
effect is the corrugation of the wavefront. The spatial Fried’s parameter, 1y, which corresponds to the
spatial scale of the turbulence is smaller than the telescope size. Typical numbers are 0.1 — 0.2 m in the
visible and 0.5 — 1 m in the near infrared. That is a reason why many interferometers have aperture
diameters below 1 m (see Table 4.1). In the millimeter, r¢ is larger than the antenna sizes. The temporal
Fried’s parameter, to, which corresponds to the temporal scale of the turbulence is of the order of 10-
100 ms in the optical versus several minutes in the millimeter. That is why it is possible to use phase
referencing (phase calibration on a source with known phase) with radio interferometers by off-pointing the
interferometer, when it is almost impossible to calibrate the phase in the optical. The only way to retrieve
the phase is to measure closure phases with more than 3 apertures or to use a dual-beam interferometer
and an accurate metrology like for narrow-angle astrometry (see Sect. 4.3.2). The fact that the phase is
almost impossible to get in the optical makes therefore a large difference in the way the data are processed
to obtain images.

A last difference is the type of noise encountered. The main source of noise in millimeter interferometry
is the thermal noise. In optical interferometry, the three type of noises are the photon noise, the read-
out noise of the detectors and the background noise, coming either from thermal emission or from the sky
brightness. In addition, noise from the atmosphere turbulence, either photometric fluctuations or speckles,
must be taken into account.

4.3 Description of optical interferometers

This section is dedicated to the overview of interferometric systems. We first go through the functional
description of a typical optical interferometer, then describe the different types of interferometers with
specific objectives.

4.3.1 Functional description

Optical interferometry aims at measuring the complex degree of coherence of the observed object. To
achieve such a goal, optical interferometers require the following functionalities:
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CHARA VLTI

Figure 4.2: Four examples of optical interferometers. The array can be linear and continuous (GI2T),
L-shaped with several stations (IOTA), Y-shaped with fixed telescopes (CHARA) or the filling of an
equivalent 200-m aperture (VLTT).

e Interferometric array. Several types of array configurations have been designed in order to give ac-
cess to the different spatial frequencies (see Fig. 4.2). The three criteria are the number of telescopes,
but also the length and the orientation angle of their associated baselines. One can choose to have
either fixed telescopes (PTI, KI, VLTI/VIMA) or movable telescopes (GI2T, IOTA, VLTI/VISA).
Like in radio interferometry, Earth rotation allows to sample the uv tracks. If the object displays a
wavelength-independant structure like a binary, the coverage of the wv plane can be performed with
spatial frequencies at different wavelengths.

e Apertures. They ensure the light collection. Either siderostats (IOTA, PTI, SUSI) with diameter
less than 50 cm or more or less traditional telescopes (GI2T, CHARA, KI, VLTI) for larger diameters
can be used. In case of large siderostats, a fixed beam compressor is used to compress the beam
diameter for propagation toward the central lab.

e Beam transportation. Once the object light has been captured by the apertures, one carries
out the individual beams toward the combination laboratory. Usually the optical path is designed
so that a complete symmetry of the mirrors in each arms minimizes the differential polarization
effects. The optical train contains typically of the order of 20 mirrors. [Froehly 1981] suggested to
use optical fibers to carry the light from the apertures to the lab. This technology has been tested
by [Coudé Du Foresto, Mazé, & Ridgway 1993] and is the key of the coming O’HANA project which
will gather the light from the 8-m class telescopes on the Maunea Kea in Hawaii [Perrin et al. 2000].
Some interferometers use vacuum optics (PTI, IOTA, NPOI,...) to decrease the dispersion due to
the propagation in the air of the delayed beam (see Sect. 4.5.2).

e Wavefront correction. The incoming light travels through the atmospheric turbulence (see Sect.
4.5.1). The wavefront is then corrugated and the images of the object move due the seeing. Almost
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Figure 4.3: Some examples of delay lines

all interferometers have therefore at least a 2-actuator adaptive optics system that corrects from the
tip and the tilt (IOTA, NPOI, PTI). Large interferometers with aperture diameter larger than 1 m
have plans for higher correction of the wavefront (VLTI/VIMA, KI-main, GI2T, LBT, CHARA).
The goal is to stabilize the light and to increase the Strehl ratio of individual beams, i.e. the quality
of the central peak. One should note that GI2T currently works in multi-speckle mode and therefore
does not formally require AO systems to properly work, even if it would increase its sensitivity
performance.

Delay lines. When the object observed is traveling across the sky, the external optical path differ-
ence (OPD) between two arms is equal to Bsin z, where B is the baseline length and z is the zenith
angle. To achieve the fringe detection, the two arms should be equal at the level of the micrometer.
In the first experiment by [Labeyrie 1975], the stabilization of the OPD was performed by moving
the beam combination table. Nowadays, most interferometers prefer to use optical delay lines (DL)
using cat’s eyes located on movable chart. Moving a DL either in one arm or another compensates
the sidereal motion of the star, exactly like telescope mounts follow the stars displacements. For
very long delays, one often has to design and build long DLs that offer only optical delays by steps
of a few meters coupled with DLs with shorter strokes (KI, CHARA).

Optical path difference stabilization. The atmospheric turbulence produces not only wavefront
corrugation at the level of individual apertures but also at the level of the interferometer called
atmospheric piston. The consequence is that the OPD is fluctuating and the fringes move back and
forth. Using a fringe sensor (a simple beam combiner that measures the OPD at a frequency higher
than the typical atmosphere timescale), one is able to send corrective commands to the DLs. This
feature is the zero-degree of adaptive optics for an interferometer. A fringe sensor coupled with a
DL is called a fringe tracker and allows to stabilize the signal for longer integration.

Beam combination. The interferences between the various beams can be achieved in many ways
(see Sect. 4.4). One usually distinguishes the so called co-axial beam combiners (BCs) that combine
the light coming from the same optical axis (like with a beam splitter in the laboratory Michel-
son interferometer) and the multi-axial ones that produce interferences between beams coming from
different directions (like in the Young’s experiment). The beam combination is usually made with
lenses, mirrors and /or beam splitters. However, the optical functions used by the telecommunication
industry has given birth to fibered BCs (e.g. FLUOR [Coudé Du Foresto, Mazé, & Ridgway 1993])
and integrated optics ones (see IONIC experiment [Malbet et al. 1999]) using single mode waveg-
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Figure 4.4: Beam combiners. Left: beam combiners in bulk optics. Right: beam combiners using the
integrated optics technology.

uides.

e Detection. This fundamental step makes use of photon detector either with photo-counting capa-
bility in the visible range or CCD with low read-out noise in the infrared. The dispersion of the light
can be done just before the detection and the instrument looks similar to a spectrograph.

The schematic layout of the VLTI is displayed on Fig. 4.5. It is typical of most of interferometers. A
difference is that the focal plane hosts several instruments: VINCI the commissioning BC based on known
technology, AMBER the near infrared spectrograph and MIDI the thermal infrared camera. Smaller inter-
ferometers have usually only one dedicated instrument optimized for their astrophysical targets (binaries,
stellar diameters, envelopes,...).

4.3.2 Specific applications

I see 5 types of scientific usages of the interferometric light combination.

Interferometry in the past has been most often used with only two apertures. Therefore since the at-
mospheric piston prevents any absolute phase calibration, the astronomers can only measure the amplitude
of the complex visibility and a phase difference between two spectral channels when the instrument has
some spectroscopic capability. The goal is then to measure the visibility amplitude or a differential phase,
also called two-color phase, and to interpret the variations of these measurements with time, with baseline
length, or with baseline angle. An important field of application is the measure of stellar diameters and
binary orbits, but recently it has been extended to circumstellar envelopes and accretion disks.

The dream of most interferometrists is to perform actual imaging like in the radio domain using
aperture synthesis. The interferometer COAST has been built with this goal in mind. That is why it
is composed of 4 telescopes in order to increase the efficiency of the uv plane coverage, but also to use
the technique of closure phases. This closure phase technique, used to be of high importance in radio
interferometry, allows to self-calibrate the sum of the phases measured simultaneously by three baselines.
This method is very similar also to the bispectrum one in speckle interferometry. However for technical
reasons, the beam combination of N > 3 beams appears to be difficult and only few reconstructed images
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Figure 4.5: VLTI optical layout

have been obtained so far. The outcome of integrated optics might change the situation in the future
[Malbet et al. 1999).

The group working on NPOI has been focusing on the wide-angle astrometry for a long time
(previously at the Mark III interferometer, ancestor of PTT and NPOI). The idea is simple and once again
similar to what is being done in radio: when the interferometer detects fringes, the two paths of the
interferometer are equal to a fraction of a micrometer. Since the delay due to the sidereal motion of the
stars is given by

6 =Bcosf +C, (4.2)

where B is the length of the baseline, 8 is the altitude of the star in the sky and C an internal constant,
then the knowledge of B and C together with the measure of the stroke given to the DL give access to
cosf. The objective consists in measuring the group delay of several tens of stars at different moments of
the night and to fit the curves with cosine of the same amplitude B. The internal metrology measures the
internal constant C. After post-processing, both the position of the stars and the baseline are deduced
with a precision of the order of the fringe spacing A/B, i.e. about 1 mas.

Recently, following the work on Mark ITI, [Shao & Colavita 1992] proposed the narrow-angle astrom-
etry technique. The idea is to observe two objects sufficiently close so that the atmospheric perturbations
affecting the stellar path on each telescope is almost the same for the two objects. The correlations in
the perturbations is used to increase the accuracy of astrometric measurements down to 10 pas opening
the search for the reflex motion of stars due to the presence of planets. To achieve such an objective,
one has to separate the field at each aperture in two sub-apertures and to propagate in parallel the light
from the two stars in two different interferometric systems. A differential metrology allows to link the two
interferometers. When the fringes are detected on the two detectors, the differential metrology gives the
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Figure 4.6: Principle of a nulling interferometer (see text for details).
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differential delay between the two stars:
Ad =BAO +d, (4.3)

Where Af@ and d are respectively the differential angle between the two stars and the internal constant.
One interesting application of such a dual interferometer is phase referencing like in radio: if a close-by
reference star has a zero-phase then the measure Ad leads to the actual phase of the science target. In
radio, the atmosphere is quiet enough to measure the phase reference by depointing the interferometer
whereas in the optical domain, the two measurements must be made at the same time. The PTI is the
interferometer that hosts this technique.

Finally, many groups are working on the concept of nulling interferometers. The idea [Bracewell 197§]
is to use the coherence of the light to interferometrically cancel the light arriving in the interferometer
boresight. An object located off-axis has translated fringes. In certain directions, the bright peaks of the
object fringes are located over the dark zones of the central star fringes. If the nulling in the dark fringes
is high enough, the dynamic range of this technique can reach high values (see Fig. 4.6). This application
is extremely interesting in the case of the study of extra-solar planets. Those planets are expected to be
between 10* and 10° fainter than their parent stars. Nulling the light of the central star is the only way
to detect photons from these worlds. To achieve such performances, the instruments like DARWIN pill up
several stages of such nulling interferometers to reach high rejection rate.

4.4 Formation of the interferometric fringes

In this section, I focus on the light combination and the signal detection.

4.4.1 Beam combination

[Mariotti et al. 1992] tried to classify the different types of beam combination (see Fig. 4.7). They have
defined 4 levels of criteria:

e Beam étendue: what is the field accessible by the detector at each telescope? If this field is limited
to the diffraction pattern of the telescope, then the interferometer is called single-mode, whereas if
the interferometer processes more information than the one in the diffraction pattern it is multi-mode.
For example in radio, all interferometers are single-mode.

e Beam direction: how the light coming from the different arms are combined? If the beams
are combined with beam splitters so that they appear to come from the same direction, then the
combination is called co-azial (see Fig. 4.8a) and gives a flat tint on the detector. If the beams appear
to come from various direction (see Fig. 4.8b) like in the Young’s experiment the beam combination
is called multi-axial.
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Figure 4.7: Mariotti’s classification (adapted from [Mariotti et al. 1992]).

Figure 4.8: All-in-one coaxial (left) and multiaxial (right) 4-way beam combination schemes.
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e Combination plane: does the beam combination occur in the image plane, conjugated with the
sky, or, in the pupil plane, conjugated with the telescope pupils (see Fig. 4.9)7

¢ Relation between the input and output pupils: what is the interferometric field of view? The
answer depends on the relationship between the input / output! pupil geometry. One can distinguish
3 cases:

1. Fizeau-Stéphan setup where the input and output pupils are homothetic (both pupil separation
and diameters).

2. Densified pupil used by the hyper-telescopes [Pedretti et al. 2000] where the position of the
sub-pupils in the output pupil are scaled to the input ones but the diameters of the sub-pupils
are magnified.

3. Michelson-Pease setup where there is no link between the input pupils and the output pupils.

The resulting field of view (FoV') are sorted by increasing size: FoV; > FoVa, > FoVi. The
Fizeau-Stéphan set-up gives access to a larger field of view but is difficult to implement since the
homethetic relation must be conserved during the transit of the object. It would require continuously
reconfigurable beam combiners.

The tree that corresponds to this classification (see Fig. 4.7) shows the complexity of beam combination
in optical interferometry. However, all but one current interferometers have been designed to be single-
mode, GI2T-REGAIN being the only one using the multi-mode beam combination scheme.

4.4.2 Fringe coding and detection

Once the beams have been combined, one still needs to detect the fringes. Since optical detectors have
access only to the intensity of the electric field, the signal must be modulated in phase in order to measure
both the amplitude and the phase of the visibility. The signal measured from the combination of two arms
A and B is deduced from Eq. (4.1):

I pmod) =14 + Ip + 2/ 14l VoVi cos(do + dmod)- (4.4)

The goal is to evaluate the complex visibility Vp exp(i¢o) of the object. One needs to modulate ¢peq SO
that the variation of I(@med) in function of ¢meq leads to the amplitude of the visibility. There are mainly
two types of fringe coding: the temporal or spatial coding.

In the multiaxial combination scheme, since the beams from the different arms come from different
directions, ¢mod(z) = 2m(bz/d)/A. Therefore analyzing the light at different positions on the detector
plane, gives the visibility information (see Fig. 4.10). In the coaxial combination scheme, one introduces
a variable optical path length on one arm: @moda(d) = 24/ (see Fig. 4.11). There exists also other types
of coding using the polarization or wavelength dependence of the phase, but they are rarely used.

When combining more than two beams, one has to decide if one uses all-in-one or pairwise beam
combination. When the number N of telescopes increases the all-in-one combination is prefered because
it involves less optical elements. In a pairwise scheme, all beams must be splitted in NV — 1 beamlets to be
combined with the other telescopes. The all-in-one solution is displayed both for co-axial and multi-axial
combinations in Fig. 4.8. However, one has to be cautious on the redundancy of the fringe frequencies
so that the signals from two different baselines are not mixed together. That is why in the multi-axial
combination the sub-pupils are separated by non-redundant separations, and, in co-axial combination the
OPD scan frequencies and amplitudes are also not redundant.

4.5 Main challenges in interferometry

In this section, I address the main difficulties encountered in optical interferometry. The main one is the
effect of turbulence due to the atmosphere. I will also tackle the limitation in terms of performance due
to the various types of noise.

IThe input pupil is the plane where the electric field coming from the object enters the interferometer. The output pupil
is the plane where the electric field exiting from each optical train before being combined on the detector.
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4.5.1 Atmosphere turbulence

The main effect of the presence of the atmosphere is the corrugation of the incoming wavefronts. Due
to difference of temperature between the ground and the upper layers of the atmosphere, convection
occurs and creates turbulent eddies. These eddies are characterized by different temperature and therefore
different refractive indices. They move up and down with different spatial scales. When looking to
objects through the atmosphere, the light rays are deviated randomly, i.e. the plane incoming wavefront
is corrugated by different phase delays depending on the total optical thickness of the atmosphere along
the propagation path (see Fig. 4.12). In optical interferometry, this phenomenon called seeing yield two
main consequences:

e at each telescope pupil entrance, the local wavefront is corrugated. One does not get diffraction-
limited images of the object, but seeing-limited ones. In short exposure images and for multi-mode
interferometers, the image is formed of various speckles (see left panel of Fig. 4.13) and in long-
exposure images its typical size is given by the characteristic size of turbulent cells where the light
is coherent, i.e. several tenths of meters. In addition, these features move with time at timescale of
several milliseconds. In the case of single-mode interferometers, the speckles are spatially filtered at
the entrance of the interferometer and are translated in fluctuations of the light coupling. Therefore
one has to correct from the photometric fluctuations induced by the turbulence (see right part of
Fig. 4.13 and Sect. 4.5.3).

e the atmosphere induces fluctuations of the optical path differences for each baseline. The
result is that the fringes are not stable at a given optical delay but randomly move around the
sidereal position. It is impossible to calibrate the phase of the fringes and their amplitude is also
decreased due to smearing during the integration time.

The atmosphere decorrelates the phase between different points of the incoming wavefronts both in space
and in time. That is why we usually present the turbulence as yielding coherence volumes inside which the
wavefront can be considered as a non-disturbed plane wave. The geometric parameters of the coherence
cell are called the Fried’s parameters:

— the size of the cell, rg, typically 10 cm at A = 0.5 gm and 1 m at A = 2.5 ym depending of the
turbulence strength.

— the coherence time, tg, typically 10 ms at A = 0.5 pm and 100 ms at A = 2.5 um.

The turbulence occurs at different spatial scales and a popular model is the Kolmogorov model that
represents the power spectrum of the turbulence as a power law [Roddier 1981]. However the turbulence
at small spatial frequencies saturates, i.e. the size of the largest eddies is limited. This limit, L is called
the outer scale of the turbulence and is important in interferometry since we estimate its size to be of the
order of 10 — 100 m, typical lengths of most interferometer baselines. If the baseline is larger than the
outer scale then the effect of turbulence is less than predicted by the Kolmogorov model.

4.5.2 Other atmosphere systematics

Optical interferometers must also take into account the atmospheric refraction and the longitudinal
spectral dispersion.

The wavelength dependence of the air refractive index implies wavelength-dependent refraction angles
when the light enters the atmosphere. The atmosphere acts like a prism and the images at each aperture
are spectrally dispersed. Single mode interferometers spatially filter the incoming wavefront, that means
they select a part of the image. Therefore this refraction effect decreases the coupling factor in the
interferometer. The larger the telescope size, the smaller the diffraction-limited images: this effect begins
to be important for large telescopes. Atmospheric dispersion correctors are classical devices made of
two prisms that can rotate and compensate the dispersion due to the atmosphere refraction.

The refraction induces chromatic arrival angle, but does it result in chromatic OPD. Fig. 4.15 shows
that even if the optical paths are different for two different wavelengths, they are the same for each aperture
and the OPD remains zero for all wavelengths. The refraction does not yield a chromatic OPD.
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However, the optical delay due to the zenith angle of the observed object has to be compensated by
delay lines. If the delay lines are located in vacuum the compensation matches exactly the geometrical delay
above the atmosphere, but if the optical delay in performed in air, then the compensation is performed
only for one wavelength because of the chromatism of the air refractive index n(A). The resulting OPD
given by a delay L of the delay line that matches the geometrical delay § at A = Ag is then:

_ () )
OPD()) (n()\o) 1)4 (4.5)
Therefore the location of the zero-OPD changes with wavelength. At high spectral resolution, the main
effect is to twist the fringes, whereas at low spectral dispersion the contrast of the fringes can be severely
decreased. To overcome this effect and besides using vacuum delay lines, two translating prisms produce a
variable glass thickness that compensates exactly the chromatic OPD. This device is called a longitudinal
dispersion compensator.

4.5.3 Fighting the atmosphere: complexity and accuracy

The previous sections show that the propagation in the air implies several problems. The chromatic
effect of the air refractive index can be compensated by an atmospheric dispersion compensator and a
longitudinal dispersion corrector. These phenomena are completely predictable and therefore can easily
be controlled by computer in function of the zenith angle.

However the effect of the turbulence is much more difficult to control since the time scale is of the
order of several milliseconds and the spatial scales are small. Adaptive optics (or tip-tilt compensation)
and fringe trackers are therefore required to increase the sensitivity of optical interferometers (see Sect.
4.3). However the correction is never perfect and some residuals can still affect the signal.

One solution is to use speckle techniques to calibrate those residuals. GI2T has proven that one can
use several speckles to calibrate the visibility of an object. Another method is to filter out the incoming
wavefront. The principle is well-known by the opticians: they clean up images by placing so-called spatial
filters in the Fourier plane associated to the images. With a pinhole at the focus of a telescope, the
wavefront in the exit pupil is then cleaned up and flat. The wavefront corrugation is transfered in intensity
fluctuations since the speckle image on the pinhole is not stable. Optical waveguides, like optical fibers,
are optical devices that behave like infinitively small pinholes but with a high coupling efficiency (typically
70%). The signal that exits from a waveguide is an electric field whose shape is given by the geometry of
the waveguide (and therefore is fixed) and for which only two parameters can vary: the global amplitude
and the phase. By measuring the variations for the photometry for each beam, we can compute a visibility
corrected from the atmospheric perturbations. The visibility estimator,

Veorr = 2]-1714[13 VmeSa (4-6)
A+1Ip
little depends on the turbulence with Vi, the raw visibility, 4 and Ig the intensities measured for each
beam.

This method has proven to be very accurate in measuring visibilities. FLUOR reaches 0.3% for some
targets [Coudé Du Foresto, Ridgway, & Mariotti 1997]. However, one should keep in mind that the mea-
sured visibility is not exactly the object visibility except if the objet is not resolved by the individual
apertures. When the object is larger than the projected size of the spatial filter on the sky, one has to
apply a visibility correction using the information given by the image obtained with the resolution of the
individual apertures.

4.5.4 Noise sources - Sensitivity

The signal measured with an optical interferometer is affected by several sources of noises. In the case of
the instrument AMBER on the VLTI these sources of noises are:

— the photon noise is the fundamental noise associated to the detection of the photons. It follows a
Poisson-type statistics.
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— the detector read-out noise is the noise of the electronics that reads the signal. It is an additive
Gaussian noise with a characteristic level called the read-out noise (RON).

— the thermal noise is the noise that comes from the detection of background photons. The back-
ground level is measured and subtracted. The background estimation gives an error due to the
photon statistics.

— the instrument OPD stability is not a noise that affects the detected photons, but the measured
visibility. The residual motions of the optics in the instrument induce a blurring of the fringes at a
small level. In AMBER, we expect this level to be lower than 10™* of the unit visibility.

— the atmosphere fluctuations, even corrected by simultaneous measurements of the photometry
induce degradation of the signal-to-noise ratio. The obvious situation is the case where no photons
are coupled into the interferometer.

Computing the error propagation in the final signal allows to calculate a signal-to-noise ratio (SNR) for
different type of situations. To illustrate the consequence of the source brightness on the performance
of an interferometer, I show in Fig. 4.17 the SNR curve for different star magnitudes in the case of the
AMBER instrument on the unit telescope of the VLTI with different typical values of the site.

For bright objects the dominant noise source is the instrument stability. When observing faintest
objects, the limitations become first the photon noise, then depending on the integration time, either the
thermal background noise or the read-out noise.

4.6 Conclusion

I have presented some elements of the present state of the art in optical interferometry focusing on the
functional description, some design choices and the various limitations with the objective to give to the
readers the keys to compare this technique with radio interferometry at millimeter wavelengths.

We see that optical interferometry is a younger technique than the radio interferometry because of the
complexity of the systems mainly due to the struggle against the atmosphere. It leads to smaller spatial
resolution but has still to learn from the radio experience.

We are entering a new era where optical interferometers with large telescopes and increased sensitivity
become general user instruments (KI, VLTI). I did not address the topic of optical interferometry in space
that faces other challenges. However the search for extra-solar terrestrial planets is certainly driving this
area with two main projects: the Space Interferometry Mission (SIM) dedicated to astrometry and the
TPF/DARWIN mission focused on nulling interferometry.

Note: To obtain exhaustive and todate information on optical interferometers, I advise the reader to
browse OLBIN, the optical long baseline interferometry newsletter managed by P. Lawson. The
address is http://olbin. jpl.nasa.gov.
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(Fig. 4.1)

— GI2T: http://www.obs-nice.fr/fresnel/gi2t (Fig. 4.2)

~ IOTA: http://cfa-www.harvard.edu/I0TA (Fig. 4.2)

— CHARA: http://www.chara.gsu.edu/CHARA (Fig. 4.2)

— VLTI: http://www.eso.org/projects/vlti (Figs. 4.2, 4.3, 4.5)

— COAST: http://www.mrao.cam.ac.uk/telescopes/coast (Figs. 4.3, 4.4)

PTI: http://huey. jpl.nasa.gov/palomar (Fig. 4.3)

NPOLI: http://ad.usno.navy.mil/npoi (Fig. 4.4)

— IONIC: http://www-laog.obs.ujf-grenoble.fr/activites/hra/ionic (Figs. 4.4, 4.13)

MPIfR: http://www.mpifr-bonn.mpg.de/div/ir-interferometry (Fig. 4.10)

AMBER: http://wuw.obs-nice.fr/amber (Figs. 4.14, 4.17)

— FLUOR: http://despa.obspm.fr/fluor (Fig. 4.16)
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Figure 4.10: Multiaxial beam combination and spatial coding of two-aperture fringes. Left: the OPD
changes with the x-position on the detector. Center: the fringes appear superposed to the beam shape.
Right: fringes (y-axis) spectrally dispersed (z-axis) in the IR channel of GI2T [Weigelt et al. 2000].
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Figure 4.11: Coaxial beam combination and temporal coding of two-aperture fringes. Left: different types
of OPD modulation. Center: theoretical signal. Right: signal observed with the IR table at IOTA.
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Figure 4.12: Effect of the atmosphere turbulence on the incoming wavefronts.
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Figure 4.13: Effect of the turbulence of each aperture. Left: in multi-mode beam combination, the image is
formed of speckles with fringes at different phases (GI2T, adapted from [Labeyrie 1978]). Right: in single-
mode beam combination, the wavefront corrugation is translated into photometric fluctuations (IONIC,
[Berger et al. 2001]). Upper curve: raw interferometric signal; center curves: photometric signals; lower
curve: photometry-corrected interferometric signal (see also Sect. 4.5.3)
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Figure 4.14: Optical path fluctuations due to the turbulence. Left: simulations of the fluctuations for two
Unit Telescopes at the VLTT with typical seeing parameters (in microns). Right: the power spectrum of
the fluctuations follows a Kolmogorov law with a saturation at low frequency due to the outer scale.
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Figure 4.15: Effect of the atmosphere refraction. The object image at each telescope entrance is in fact a
small spectrum. However there is no effects on the optical delay since the optical path for the two beams
in the atmosphere is the same at each wavelength A\ and Ay, and, the resulting OPD does not depend on
wavelength. Even if Ly # Lo, we have L; = L} and Ly = L}, and §; = da.
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Figure 4.16: The FLUOR fiber beam combiner (right). Example of incoming signals: left top panel shows
the raw signal with two photometry channels that monitors the coupling in the fibers; left bottom panels
shows the corrected interferogram from [Coudé Du Foresto, Ridgway, & Mariotti 1997].
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Figure 4.17: Signal-to-noise ratio computed for the AMBER instrument at the VLTI in the K band
(2.2 pm) for an object of visibility of 1, a seeing of 0.5”, a low dispersion, and a long exposure using

fringe tracking.
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5.1 Introduction

The purpose of a receiver is to collect efficiently the astronomical signal that has been concentrated by
the antenna near its focal point, and to amplify it with a minimum of extra noise to a level suitable for
further processing by the spectrometers or continuum detectors. This is illustrated by figure 5.1.

Figure 5.2 shows the main subsystems of a receiver, that we will discuss below.

5.2 Coupling optics

Up to and including the antenna, the astronomical signal propagates in free space. On the other hand, the
first signal processing unit —the mixer— requires the electromagnetic energy to be confined by metallic
walls, in a waveguide. The transition between these two modes of propagation occurs at the horn.

Assume for a moment that the horn would be placed at the Cassegrain focus of the antenna. Good
matching would be difficult to achieve because the field amplitude from a point source (Airy pattern) ex-
hibits radial oscillations alternating between positive and negative values, and has a scalesize proportional
to wavelength.

These problems are avoided by coupling —via suitable relay optics— the horn to an image of the
aperture. This fulfills the condition of frequency-independent illumination. In other words, imagine that
we propagate the horn mode back to the antenna aperture as if we were dealing with a transmitter, then
the illumination pattern is independent of frequency. Using suitably designed corrugations on the inner

63
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Figure 5.1: Orders of magnitude for frequencies and power levels delivered by the antenna to the receiver,
and by the receiver to the spectrometer. The main roles of the receiver are to down-convert the signal
frequency to a range suitable for analysis, and to amplify it while adding as little noise as possible.
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Figure 5.2: Synoptic diagram of a typical receiver. This diagram is grossly simplified; for instance,

the optics involves mirrors, elliptical and planar, and also grids; the LO/PLL system is actually more
complicated than shown.
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Figure 5.3: A corrugated horn for the 150GHz band. The phase-correcting lens normally present at the
aperture has been removed to reveal the corrugations. The diameter of the aperture is about that of a
typical coin (1DM/100Ptas/1F). All the waves collected by the 30-m antenna converge to the horn with
a precise phase relationship and are then squeezed into a waveguide 2 x 1 mm across. The ratio of areas
is three hundred million!
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Figure 5.4: Frequency down-conversion by mixing. Left: schematic diagram. Right: representation in
frequency space.

wall of the horn (see fig. 5.3) the TE10 mode of the rectangular waveguide couples to a mode at the
aperture of the horn whose amplitude has circular symmetry, and whose polarization is pure linear.

5.3 Why we need heterodyne receivers

In the present context, heterodyne refers to receivers where the frequency of the input signal is shifted to
lower frequencies. This is done by adding to the (small) input signal a (relatively) strong monochromatic
signal, called the local oscillator (LO) and passing the sum through a non-linear device, whose output
contains (among others) the difference frequency. Although a non-linear device is involved, the transforma-
tion from input to output is linear for the small signal. This process is called mixing or down-conversion.
The output signal is called the intermediate frequency (IF). Actually the complete signal processing at
a radiotelescope can involve up to four heterodyne conversions. The process of mixing is illustrated by
figure 5.4 and by the simple equations below.

vco = Vio cos(wrot)
vs = Vs cos(wst+ ds)
virp = A(vpo +vs)?

AVioVscos((ws —wro)t + ¢s) + -+
= AVioVs COS(((.ULO - wg)t - ¢5) + -

Interferometric observers, take a look at the last two lines, and note that, if you insist on keeping positive
angular frequencies (and you really should), the signal phase enters in the IF phase with a positive sign
in USB (ws > wro), and a negative side in LSB.

The first reason why heterodyne down-conversion is needed is that only few signal processing devices
exist at millimeter frequencies, and definitely not the fully parallel spectrometers (as opposed to multiplex
devices such as FTS) that are routinely used for spectroscopic observations.

Then arises the question of where in the signal processing chain to operate the down-conversion.
Basically we have no choice, because hardly any amplifiers are available in the millimeter range, except in
the 3mm band, where they do not match the low noise properties of SIS mixers (to be discussed below).
So we must perform a down-conversion before we can amplify the signal.

Before we leave the topic, it is worth noting that heterodyne means different things to different people.
For engineers, it means that a mixer is used for down-converting the signal frequency; that’s how the
word is used above. For astronomers, heterodyne receivers are associated with spectroscopic observations;
yet, there is only a quantitative difference, but no essential difference, between bolometer detection with
a 80-GHz bandpass, and observing with a filterbank having 1-MHz bandpass. Finally, for physicists,
heterodyne means with phase-preserving. In that sense, indeed, a bolometer is not phase-preserving,
while a “heterodyne” receiver is phase-preserving only if it is defined without the final detector.
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5.4 Local oscillator system

All the local oscillators in the IRAM telescope use Gunn oscillators. A Gunn diode is a semiconductor
device that exhibits negative dynamic resistance over a suitable range of frequencies. Output powers of the
order of 10-50mW can be obtained between 60 and 120 GHz. To achieve oscillation at a precise frequency,
two means are combined. First, the Gunn diode is coupled to a coaxial cavity that defines the oscillation
frequency, and whose high quality factor provides a good spectral purity. Its resonant frequency can be
adjusted mechanically; this allows the desired frequency to be approached within ~10 MHz. Secondly, a
fraction of the millimetric radiation from the Gunn oscillator is used to produce a beat with a reference
microwave oscillator at a frequency of a few GHz; actually, the Gunn oscillator signal beats with a harmonic
(n=17-65, depending on the systems) of the reference frequency. The beat signal is used to “servo” by
electronic tuning the Gunn oscillator to a multiple of the reference. Actually, not only the frequency, but
also the phase of the local oscillator is locked to the reference oscillator, which is essential for interferometry,
whether connected-array or VLBI. This description of the phase-lock system is over-simplified.

Local oscillator frequencies above 120GHz can generally not be generated directly by Gunn oscillators.
In that case, the Gunn power is fed to a frequency multiplier, which is a non-linear device like the mixer,
but based on non-linear capacitance, and optimized to produce a certain harmonic (x2, x3 or x4 in the
case of IRAM systems) of the input frequency. The efficiency of the multiplication process is typically a
few percent.

5.5 Local oscillator injection

As mentioned above, the local oscillator power must be added to the astronomical signal before it enters
the mixer. When the mixers were based on Schottky diodes (10 years ago and more), they required an
LO power of almost a mW. As a consequence, the LO power was coupled via a diplexer, which is like
a frequency-selective coupler, allowing the mixer to be coupled with close to unity efficiency to both the
input signal and the LO. With the advent of SIS mixers, and due to their modest LO power requirements
(read below), a new method can be used, based on frequency-independent couplers. A fraction f (typically
1%) of the LO power is coupled into the signal path; the rest is wasted! The fraction f must be kept small
because the same amount f of room-temperature blackbody noise is also coupled into the signal path. The
coupler requires no adjustment and is located close to the receiver, inside the cryostat (discussed below).

5.6 Photon-assisted tunneling

All mixers in TRAM receivers are based on SIS junctions. An SIS junction consists of two layers of
superconducting metal (Niobium) separated by a few nanometers of insulator (Aluminum oxide). The
insulator is so thin that charged particles can tunnel through the barrier. The area of a junction is
typically one to a few um?2. SIS junctions operate at the boiling temperature of He: 4.2K (at sea level).

Two kinds of charged particles can exist in a superconductor: a) ordinary electrons; b) so-called Cooper
pairs, consisting of two electrons interacting and weakly bound together by the exchange of phonons (lattice
vibrations); breaking a Cooper pair costs an energy 2A. Correspondingly, two kinds of currents can flow
across the junction: the Josephson current, consisting of Cooper pairs, and the so-called quasi-particle
current, consisting of “ordinary” electrons (presumably “electron” did not sound fancy enough). To keep
this digression into SIS physics short, let’s just state that the Josephson current can be ignored. At
the operating temperature of the mixer, and in an unbiased junction, the population of quasi-particles is
virtually negligible. But, if the bias voltage is raised to the gap voltage

Ve =2A/e

the flow of quasi-particles across the junction becomes possible because the energy gained across the drop
of electrical potential compensates for the energy spent in breaking a Cooper pair. See on figure 5.5 the
“LO oftf” I-V characteristic.
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Figure 5.5: Current-voltage characteristics of an SIS junction operating in a mixer. The two curves were
measured without and with LO power applied (frequency 230GHz); they have been slightly idealized (for
pedagogical reasons, of course).

In the presence of electromagnetic radiation, the situation is modified as follows. If a RF photon is
absorbed, its energy hv can contribute to the energetic budget, which can now be written as:

eVhias + hv = 2A

or, equivalently:
Vbias + hu/e = Vg

In other words, the onset of conduction occurs at V, — hv/e. The region of the IV curve below the
gap voltage where photon-assisted tunneling occurs is called the photon step. See the “LO on” curve on
figure 5.5. Figure 5.5 is based on actual measurements of a 2-junction series array: the voltage scale has
been scaled x% to illustrate a single junction. For a more detailed analysis of SIS junctions and their
interaction with radiation see e.g. [Gundlach 1989].

So far I’ve shown you qualitatively that an SIS junction can function as a total power detector. The
responsivity (current generated per power absorbed) can even be estimated to be of the order of one electron
per photon, or: D = e/hv. How does that relate to frequency down-conversion? Assume that a power
detector is fed the sum of a local oscillator (normalized to unit amplitude for convenience) vr,o = coswrot
and a much smaller signal at a nearby frequency: vs = ecoswgt. Assume this functions as a squaring
device and discard high-frequency terms in the output:

2 ].
Vout = (V20 +vs)” — Fecos(wro — ws)t

So, a power detector can also function as a frequency down-converter (subject to possible limitations in
the response time of the output).

The LO power requirement for an SIS mixer can be estimated as follows. A voltage scale is defined by
the width of the photon step: hr/e. Likewise, a resistance scale can be defined from Ry, the resistance
of the junction above Vj; junctions used in mixers have Ry = 50€2. So, the order of magnitude of the LO
power required is:

Pio = (hv/e)? /Ry
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Figure 5.6: Rough sketch of the main elements of a mixer

about 20 nW for a 230 GHz mixer. This makes it possible to use the wasteful coupler injection scheme
discussed above.

Because the insulating barrier of the junction is so thin, it posesses a capacitance of about 65fF um 2.
At the RF and LO frequencies, the (imaginary) admittance of that capacitance is about 3-4x the (ap-
proximately real) admittance of the SIS junction itself. Therefore, appropriate tuning structures must be
implemented to achieve a good impedance match (i.e. energy coupling) of the junction to the signals.

The minimum theoretical SSB noise for an SIS mixer is hv/k, 11K at 230GHz; the best IRAM mixers
come within a factor of a few (= 4x) of that fundamental limit. These numbers are for laboratory
measurements with minimal optics losses; practical receivers have a slightly higher noise.

5.7 Mixer

A sketch of a mixer is shown on figure 5.6, again grossly over-simplified. The junction is mounted across
the waveguide, in the direction of the electric field. One side of the junction is connected to the outside
of the mixer block, both to bring out the IF beat signal, and to provide the DC bias. That connection is
made through a low-pass filter to avoid losing precious RF energy.

One end of the waveguide is the input of the mixer; the other end must be terminated somehow. At
the zero-order approximation, one would like the junction to “see” an open circuit when “looking into” the
rear end of the waveguide. More generally, the junction should see a pure imaginary impedance, so that
no energy is wasted. A simple calculation shows that a transmission line having a length [, and terminated
into a short-circuit, has an apparent impedance:

ZBS = ] ZO tan(27rl/)\)

where Zy and A are respectively the propagation impedance and wavelength in the waveguide, and [ is

the distance to the short-circuit. In particular, for I = (§ + i))\, the apparent impedance is an open

circuit. More generally, by adjusting /, an arbitrary imaginary impedance can be placed in parallel with
the junction. Together with the tuning structures mentioned in the previous section, such an adjustable

backshort contributes to achieve the best possible match of the junction impedance.
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For various reasons (one of which is reducing the noise contribution from the atmosphere) it is desirable
that the mixer should operate in single-sideband mode. We explain how this is achieved with a crude zero-
order model. Assume that the best impedance match of the junction is obtained when the apparent
impedance of the backshort seen from the junction is an open circuit. Assume we observe in the lower
sideband at a frequency v, = vo — v;F, and want to reject the upper sideband vy = vo + vyr. That
condition can be achieved if, at the frequency vy, the junction is short-circuited. So, we must meet the
two conditions:

I = (g + i)/\L lower sideband
n 1 .
l= (5 + 5))\(] upper sideband

for some integer n; we gloss over the distinction between free-space and waveguide wavelengths. The two
conditions (one unknown) can be approzimately met for some [ close to

1 ¢

lreject = g E
Because for current mixers in the 100GHz band, the IF frequency is relatively low (1.5GHz), single-sideband
operation requires additional tricks. ..

Returning to practicalities, tuning a receiver requires several steps (which used to make astronomers a
bit nervous at the 30-m telescope when all was done manually). First the local oscillator must be tuned
and locked at the desired frequency. Then the backshort is set at the appropriate position, and the junction
DC bias voltage is set. Finally the LO power is adjusted to reach a prescribed junction DC current (of
the order of 20uA). These adjustments are made by a combination of table lookup and optimization
algorithms under computer control. Altogether this involves between 11 and 13 adjustments, mechanical
or electrical, yet this process takes only a few minutes with the current systems.

5.8 Cryostat

First, conducted heat would quickly evaporate the helium. Second, a big icicle of water, nitrogen, oxygen,
etc. .. would condense around the reservoir. Conduction and condensation are avoided by operating the
receiver in a vacuum enclosure (labelled 300K in figure 5.2). But infrared radiation must also be blocked.
Your body is receiving about 700W from the surroundings! (and radiating back about the same amount).
A typical 4-liter reservoir of liquid He, exposed to the same flux, would evaporate in 2 minutes! Yet the
hold time of a cryostat is one to several weeks, four orders of magnitude more. This is achieved via the
two radiation screens labelled 70K 15K in figure 5.2, as well as by reducing to a minimum all conduction
losses. The radiation screens are kept cold by a closed-cycle cryogenic machine involving the compression
and expansion of helium gas. The 15K stage is also used to cool the first stages of IF amplification. Future
receivers will feature fully closed-cycle cryogenics, including the 4K stage.

5.9 Actual receivers

Figure 5.7 shows the performance of one of the Plateau de Bure 230GHz receivers. The present LO/IF
system dictates a 1.5GHz IF, therefore, these receivers are operated in DSB mode; in the interferometer,
the sidebands can be separated due to their different fringe rates.

Figure 5.8 gives you a chance to peek at the cold RF assembly of one of the dual-channel receivers in
operation at the 30-m telescope since May 1998.
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72

CHAPTER 5. RECEIVERS : AN OVERVIEW FOR NON-SPECIALISTS



Chapter 6

Cross Correlators

Helmut Wiesemeyer

wiesemey@iram.fr

IRAM, 300 rue de la Piscine, F-38406 Saint Martin d’Héres, France

6.1 Introduction

As we already learned in the lecture on radio interferometry by S. Guilloteau (Chapter 2), the interferometer
measures the complex cross-correlation function of the voltage at the outputs of a pair of antennas (4, ).
This quantity, R;;(7) is defined as

Rij(r) = (vi(t)v; (t + 7)) (6.1)

(the brackets indicate the time average, see Appendix A). The cross-correlation function is related to the
visibility function V' = |V|exp (ipsky) by

Rij = A0|V|AI/IF COs (27”/1177—(; - QOSKY) (62)

where Ay is the collecting area of the antenna. Eq.6.2 only holds for a quasi-monochromatic signal,
Avp < v (i.e. the bandpass may be represented by a d-function). The signal phase varies with time
due to source structure and atmospheric perturbations (expressed by ¢sxv), and due to the geometric
delay 7. The timescale that is needed to fully sample a spectral line, given by the sampling theorem (see
below), is much shorter. Here are examples of the different timescales:

1. timescale for phase variation by 1° due to source structure (for a point source at 100 GHz with
Aa = 10" offset from phase reference center, east-west baseline of 180 m during transit): 10 min

2. timescale for phase variation due to atmospheric perturbations: (depending on atmospheric condi-
tions and baseline length): 1 sec — several hours

3. sampling time step for a 80 MHz bandwidth: 6.25ns

73
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4. maximum time lag needed for a 40 kHz resolution: 25us

The sampling time step in the above example is that short that the signal will be dominated by noise.
Any deterministic contribution will show in the correlation products. We have to assume that the noise is
due to a stationary random process (within a time interval given by the maximum time lag).

In the following, I will discuss digital techniques to evaluate Rjj(7). Analog methods of signal processing
are highly impractical in radio interferometry, for mainly two reasons:

1. In time domain, high precision is needed.

2. The signal needs to be identically copied, in order to cross-correlate the output of one antenna with
the outputs from all other antennas. This can be more easily done with digital techniques, than with
analog ones.

The first signal processing steps are analog, beginning with the mixing in the heterodyne receivers. For
reasons that will become clear later (see R. Lucas, Chapter 7), only the case of single-sideband reception is
considered. The sidebands may be separated by a periodic phase shift of 7/2 applied to the local oscillator.
The signals are demodulated in two different ways by the correlator. At the entry of the correlator, filters
are inserted, that are used to select the intermediate frequency bandpass. The following signal processing
steps are digitally implemented, and are performed within the correlator:

1. Sampling the signal: in order to digitize the signal, it needs to be sampled. Bandwidth-limited signals
(i.e. containing frequencies between zero and Av) may be sampled without loss of information if the
samples are taken at time intervals At < 1/(2Av).

2. In order to numerically compute the cross correlation function, the signals have to be discretized.
The data are affected by such a quantization, but may be corrected for it. However, the loss of
information cannot be recovered and degrades the correlator sensitivity.

3. Delay compensation: the geometric delays are eliminated for signals received from the direction of
the pointing center. Remaining delays are due to source structure.

4. Until now, everything is done in the time domain. However, for spectroscopic applications, the
desired output is the cross power spectral density, and not the cross correlation function. These
quantities are Fourier-transform pairs (Wiener-Khintchine theorem) !. The transformation can be
efficiently done by a processor performing a Fast Fourier Transform.

The plan of this lecture is as follows: after the basic theory, I will talk about the correlator in practice. Both
the intrinsic limitations and system-dependent performance will be discussed. For further reading, the book
of [Thompson et al. 1986] (chapters 6 — 8), and the introduction by [D’Addario 1989] are recommended.
Finally, as an example, the current correlator system on Plateau de Bure will be presented.

6.2 Basic Theory

The “heart” of a correlator consists of the sampler and the cross-correlator. Eq.6.2 represents an over-
simplified case, because the bandwidth of the signals is neglected. The correlator output is rather modified
by the Fourier transform of the bandpass function. For the sake of simplicity, let us assume an idealized
rectangular passband of width Ay, for both antennas, centered at the intermediate frequency vy, i.e.

. — |17, _ | Ho, |v—vg|<Avyg/2
|Hi()| = |Hi(v)| = { oyl < Qo

(6.3)

INote that the Fourier transform of a time series is not defined. However, in this context, we only work with finite sections
of a time series.



6.2. BASIC THEORY 75

Real
(cosine)
amplified 1 .
output
signals from two - Multiplier Integrator —
antennas > Compensating
delay
Imaginary
(sine)
output
/2 Multiplier Integrator —
phase—shift i—
network
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Figure 6.2: Architecture of a complex spectroscopic cross correlator.
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(this assumption will be relaxed later). The correlator response to this bandpass is the Fourier transform
of the cross power spectrum H;(v)H;(v)*, which is shown in Fig. 6.3:

sin (mAvyT)

o0
/ Hi(l/IF)Hj* (vir) exp 2TV T)dVy = HgAI/IF exp (127 vpT) (6.4)
0

TAVET

The correlator output consists of an oscillating part, and a sin (x)/z envelope (a sinc function). If the
delay T becomes too large, the sensitivity will be significantly decreased due to the sinc function (see
Fig.6.3). Strictly speaking, this is the response to the real part of the bandpass, which is symmetric with
respect to negative frequencies. The imaginary part of the bandpass is antisymmetric with respect to
negative frequencies, thus the correlator response is different. The separation of real and imaginary parts
in continuum and spectroscopic correlators will be discussed below.

This example shows that accurate delay tracking (fringe stopping) is needed, if the bandwidth is not
anymore negligible with respect to the intermediate frequency. In other words, the compensating delay 71
needs to keep the delay tracking error AT = 75 — 71 at a minimum. The offset kAt introduced in correlator
channel k needs to be applied with respect to a fixed delay. In the following, the correlator response to a
rectangular bandpass will be expressed by the more general instrumental gain function Gj;(7), defined by

Ap /000 Hi(v)H; (v) exp (2mivT)dv = Gij(T) exp (2miviyT) (6.5)

Gij(1) = |Gij(7)|exp (i®q) is a complex quantity, including phase shifts due to the analog part of the
receiving system (amplificators, filters)?. After fringe stopping, the single-sideband response of correlator
channel k becomes (for details, see R. Lucas, Chapter 7)

Ri;(kAt) = |V]|Gs5|Re {exp (£2mive (T + kKAL) — ipsiy £i9s)}
[V]|Gs;] cos (£27ve (T + kAL) — sy £ ©c) (6.6)

where the plus sign refers to upper sideband reception, and the minus sign refers to lower sideband
reception. From Eq. 6.6, we immediately see that the residual delay error (due to a non-perfect delay
tracking) enters as a constant phase slope across the bandpass (with opposed signs in the upper and lower
sidebands). The effect of such a phase slope on sensitivity will be discussed later. In order to determine
the phase of the signal, the imaginary part of R;;(7) has to be simultaneously measured. In a continuum
correlator (Fig.6.1), a w/2 phase shift applied to the analog signal yields the imaginary part. The signals
are then separately processed by a cosine and a sine correlator 3. In other words: the pattern shown in
Fig. 6.3 is measured in the close vicinity of two points, namely at the origin, and at a quarter wave later,
i.e. at 7 = 1/(4vr). Note, however, that due to the sinc-envelope, the decreasing response function cannot
be neglected if the bandwidth is comparable to the intermediate frequency.

In a spectroscopic correlator (Fig. 6.2), the imaginary part can be entirely deduced from the digitized
signal: if Ng, is the number of complex spectral channels, 2N¢, time lags are used, covering delays from
—NnAt to (Newh —1)At. The correlator output is a real signal with even and odd components (with respect
to time lags of opposed signs). The N complex channels of the Fourier transform at positive frequencies
yields the cross-power spectrum:

rus(ve) = rig(kdvie) = / Ryy(t) exp (2miviet)dt 6.7)
Nen—1

= > (ui(t)v(t + 7+ 1At)) exp (2milk/2Nen) (6.8)
l=—Ncn

(for channel k of a total of Ng, complex channels, spaced by dvr). The last expression represents the dis-
crete Fourier transform. According to the symmetry properties of Fourier transforms, the even component
of the correlator output becomes the real part of the complex spectrum, and the odd component becomes
the imaginary part. The Fourier transform is efficiently evaluated using the Fast-Fourier algorithm. In
practice, it is rather the digital measurement of the cross-correlation function that is non-trivial. It will
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Figure 6.3: Left: Correlator output (single-sideband reception) for a rectangular passband with Avyg /vy =
0.2. Due to the signal phase ¢sxy, the oscillations move through the sinc envelope by @sky/27vr. The
shift may also be due to the phase of the complex gain (in this case, the shift would be in opposed sense
for USB and LSB reception). Right: Sensitivity degradation due to a delay error A7 (with respect to the
inverse IF bandwidth). The effect is due to the fall-off of the sinc envelope.

be discussed in detail in Section 6.3.3. The ensemble of cross-power spectra r;;(vir), after tracking the
source for some time, becomes (after calibration and several imaging processes) a channel map.

6.3 The Correlator in Practice

In order to numerically evaluate the cross-correlation function Rjj, the continuous signals entering the cross
correlator need to be sampled and quantized. According to Shannon’s sampling theorem [Shannon 1949],
a bandwidth-limited signal may be entirely recovered by sampling it at time intervals At < 1/(2Awvr)
(also called sampling at Nyquist rate). The discrete Fourier transform of the sufficiently sampled cross-
correlation function theoretically yields the cross-power spectrum without loss of information. However,
in practice, two intrinsic limitations exist:

e In order to discretize a signal, it is not only sampled, it also has to be quantized. The cross-
correlation function, as derived from quantized signals, does not equal the cross-correlation function
of continuous signals. Moreover, the sampling theorem does not hold anymore for quantized signals.
The reasons will become clear below.

e Eq.6.7 theoretically extends from —oo to +oo. In practice (Eq. 6.8), only a maximum time lag can
be considered: limited storage capacities and digital processing speed are evident reasons, another
limiting factor are the different timescales mentioned before. The abrupt cutoff of the time window
affects the data.

These “intrinsic” limitations are discussed in Sections 6.3.1 and 6.3.2. The system-dependent performance
will be addressed in Section 6.3.3.

2Because T is restricted to a maximum time lag, this instrumental gain factor does not describe long-term variations.
3For the sake of completeness, it should be mentioned that this is a special case of the so-called Hilbert transform, which
property is to change signal phases by 7/2, but to leave amplitudes unchanged.
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6.3.1 Digitization of the input signal and clipping correction

As already mentioned, sampling at the Nyquist rate retains all information. However, quantizing the input
signal leads to a loss of information. This can be qualitatively understood in the following way: in order
to reach the next discrete level of the transfer function, some offset has to be added to the signal. If the
input signal is random noise of zero mean, the offset to be added will also be a random signal of zero
mean. In other words, a “quantization” noise is added to the signal, that leads to a loss of information. In
addition, the added noise is not anymore bandwidth limited, and the sampling theorem does not apply:
oversampling will lead to improved sensitivity.

Many quantization schemes exist (see e.g. [Cooper 1970]). It is entirely sufficient to use merely a few
quantum steps, if the cross-correlation function will be later corrected for the effects of quantization. For
the sake of illustration, the transfer function of a four-level 2-bit quantization is shown in Fig. 6.5. Each of
the four steps is assigned a sign bit, and a magnitude bit. After discretizing the signal, the samples from
one antenna are shifted in time, in order to compensate the geometric delay 7¢(¢). The correlator now
proceeds in the following way: for each delay step At, the corresponding sign and magnitude bits are put
into two registers (one for the first antenna, and one for the second). The second register is successively
shifted by one sample. In this way, sample pairs from both antennas, separated by a successively longer
time lag, are created. These pairs are multiplied, using a multiplication table. For the case of four-level
quantization, it is shown in Fig.6.5. Products which are assigned a value of £n? are called “high-level
products”, those with a value of £n are “intermediate-level products”, and those with a value of £1 “low-
level products”. The products (evaluated using the multiplication table in Fig.6.5) are sent to a counter
(one counter for each channel, i.e. for each of the discrete time lags). After the end of the integration
cycle, the counters are read out.

In practice, the multiplication table will be shifted by a positive offset of n2, to avoid negative products
(the offset needs to be corrected when the counters are read out). This is because the counter is simply
an adding device. As another simplification, low-level products may be deleted. This makes digital
implementation easier, and accounts for a loss of sensitivity of merely 1% (see Table 6.1). Finally, not all
bits of the counters’ content need to be transmitted (see Section 6.3.2).

Before the normalized contents of the counters are Fourier-transformed, they need to be corrected,
because the cross-correlation function of quantized data does not equal the cross-correlation function of
continuous data. This “clipping correction” can be derived using two different methods. As an example
for the case of full 4-level quantization:

e Four-level cross-correlation coefficient according to the multiplication table Fig.6.5. The cross-
correlation coefficient p is a normalized form of the cross-correlation function (see Appendix A):

py = 2n2(No1,01 — 2No1,11) + 4n(Noo,01 — Noo,11) + 2(Noo,00 — Noo,10) (6.9)
2(n2No1,01 + Noo,00) p=1 '

where Njj i is the number of counts with sign bit ¢ and magnitude bit j at time ¢ (first antenna),
and sign bit k¥ and magnitude bit [ at time ¢ + 7 (second antenna). +n is the product value assigned
to intermediate-level products.

¢ Clipping correction, first method: evaluate the Nj; i1 in Eq. 6.9, using joint probabilities Pj i (see
Appendix A for the definition of the jointly Gaussian probability distribution), such as

N B e —(z* +y? — 2pzy)
N = NP = dzd 6.10
oor =N =5 s [ [ Sy (610

(N is the number of signal pairs, separated by the time lag of the channel under consideration, vg is
the clipping voltage, see Fig. 6.4).

e Clipping correction, second method: using Price’s theorem for functions of jointly random variables.
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Table 6.1: Correlator parameters for several quantization schemes

method n | Vo [Orms) n((ll) for
sampling rate

2800 | 4ALY
two-level - | - 0.64 0.74
three-level | — | 0.61 0.81 0.89
four-level | 3 | 1.00 0.88() | 0.94
4 | 0.95 0.88 0.94
oo-level - | - 1.00 1.00
Notes:

(1) The correlator efficiency is defined by Eq.6.13.
The values are for an idealized (rectangular)
bandpass and after level optimization.

(2) Nyquist sampling,

(3) oversampling by factor 2

(4) 0.87 if low level products deleted

(case of Plateau de Bure correlator)

The result, derived in Appendix B, is shown in Fig. 6.4:

Ri= R i o 02 o (set) + o (st

+4(n — 1) exp (ﬁ) +2}dr. (6.11)

Although the discrete, normalized cross-correlation function and the continuous cross-correlation co-
efficient are almost linearly dependent within a wide range, the correction is not trivial. An analytical
solution is only possible for the case of two-level quantization (“van Vleck correction” [Van Vleck 1966]).

In practice, several methods are used to numerically implement Eq.6.11 (in the following, the index
k means k-level quantization). The integrand may be replaced by an interpolating polynomial, allowing
to solve the integral. One may also construct an interpolating surface p(Ry, o). As already discussed, the
clipping correction cannot recover the loss of sensitivity due to quantization. The loss of sensitivity for
k-level discretization may be found by evaluating the signal-to-noise ratio

Ry Ry
Ronp = —= = ] 6.12
T o (R — (Ra)? (6.12)

In order to minimize the loss of sensitivity, the clipping voltage (with respect to the noise o) needs to be
adjusted such that the correlator efficiency curve in Fig. 6.4 is at its maximum. The correlator efficiency
is defined with respect to the signal-to-noise ratio of a (fictive) continuous correlator, i.e.

§):Esn,k — \SRsn,k (613)

Nk = %sn,oo p Nq

where Ny is the number of samples. Table6.1 summarizes the results for different correlator types and
samplings.

Due to the discretization of the input voltages (as shown in Fig. 6.5), any knowledge of the absolute signal
value is lost. The signal amplitude is recovered by a regularly performed calibration (using a calibration
load of known temperature, for details, see Chapter 12 by A.Dutrey). Fig. 6.6 shows the signal processing
steps from the incoming time series to the derived spectrum.
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Figure 6.4: Left: Clipping correction (cross correlation coefficient of a continuous signal vs. cross cor-
relation correlation coefficient of a quantized signal) for two-, three- and four level quantization (with
optimized threshold voltage). The case of two level quantization is also known as van Vieck correction.
For more quantization levels, the clipping correction becomes smaller. Right: Correlator efficiency as
function of the clipping voltage, for three-level and four-level quantization (at Nyquist sampling).
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Figure 6.5: Left: Transfer function for a 4-level 2-bit correlator. The dashed line corresponds to the
transfer function of a (fictive) continuous correlator with an infinite number of infinitesimally small delay
steps. Right: Multiplication table. S(z) is the signal bit at time ¢, M (x) is the magnitude bit at time ¢
(respectively S(y) and M(y) at time ¢t + 7).
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Figure 6.6: The signal processing in a 3-level 2-bit correlator. From top to bottom: the original time series
(sampled in discrete time steps, but continuous in amplitude), the digitized time series (with high-level
weight 3), the digital correlation R4, the reconstructed spectral line.
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Table 6.2: Time lag windows

Description | Lag window Spectral window
rectangular | w(t) =1 for || < 7, else 0 w(v) = 2Tm%
. 2
Bartlett w(t) =1-— J,im for |t| < T, else 0 W(V) = T (%)
von Hann | w(t) = (1 + cos(%)) for [t| < T, else 0 | W(v) = 7y - Si"ﬁ:::“) . 17(2,1,Tm)2
Welch w(t) = (1 - (%)2) (V) = G (Sig(jj:y - cos(27r1/7'm))
¢ ) AN
o3 vo(2)
: 1
Parzen w(t) = for [t] < 7um/2 w(v) = %Tm (w)
2 (1 _ |t| 7I'1/Tm/
Tm
for T/2<|t| < Tm

6.3.2 Time lag windows and spectral resolution

According to the sampling theorem, we need a sampling timestep At = 1/(2Aw;z) if we want to fully recover
the cross-power spectral density within a bandwidth Avy. The channel spacing dv is then determined by
the maximum time lag Tmax = NenAt (where Ngp, is the number of channels), i.e.

1 1

6 = =
Y o T ONaAt

(6.14)

However, the data acquisition is abruptly stopped after the maximum time lag. After the Fourier transform,
the observed cross power spectrum is thus convolved with the Fourier transform #(v) of the box-shaped
time window w(t), producing strong sidelobes:

sin (20Tmax)
2UTmax

w(r) = { L 7| < Tmax } = (V) = 27 (6.15)

0, else
These oscillations are especially annoying, if strong lines are observed. They may be minimized, if the
box-shaped time lag window is replaced by a function that rises from zero to peak at negative time lags,
and decreases to zero at positive time lags (apodization). Such a window function suppresses the sidelobes,
at the cost of spectral resolution. A comparison between several window functions is given in Fig.6.7,
together with sidelobe levels and spectral resolutions (defined by the full width at half-power, FWHP, of
the main lobe of the spectral window). Table 6.2 summarizes the various functions in time and spectral
domains. The default of the Plateau de Bure correlator is the Welch window, because it still offers a good
spectral resolution. Moreover, the oscillating sidelobes partly cancel out the contamination of a channel
by the signals in adjacent channels. Of course, the observer is free to deconvolve the spectra from this
default window, and to use another time lag window.
Note: If you apodize your data, not only the effective spectral resolution is changed. Due to the sup-
pression of noise at large time lags, the sensitivity is increased. The variance ratio of apodized data to
unapodized data,

/_oo |w(t)|?dt = /_oo | (v)2dv = 1/B, (6.16)

defines the noise equivalent bandwidth B,. It is the width of an ideal rectangular spectral window (i.e.
w(v) = 1/By with zero loss inside |v| < B,/2, and infinite loss outside) containing the same noise power
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Table 6.3: Effects of delay pattern on the sensitivity

Intermediate frequency bandwidth vy = 160 MHz
Baseline b=100m

Zenith distance of source in direction s | @ = 30°

Results in geometric delay: Te =b-8/c=017pus
Attenuation according to Eq.6.4 1%

as the actual data. For sensitivity estimates of spectral line observations, the channel width to be used
is thus the noise equivalent width, and neither the channel spacing, nor the effective spectral resolution.
Fig.6.7 gives the noise equivalent bandwidths B, for commonly used time lag windows.

6.3.3 Main limitations

In real life, cross-correlators are subject to the performance of the whole receiving system. This comprises
the “analog part” (the signal path from the receivers to the IF filters at the correlator entry), and the
“digital part” (everything behind the sampler). Although the analog part is out of the correlator, its
performance requires to change our assumptions concerning the input data. This complicates the analysis
of the correlator response. The following discussion refers to instantaneous errors only. However, in
interferometric mapping, scan-averaged visibilities are used, and the data may be less affected.

Analog part

The shape of the bandpass function (amplitude and phase) at the correlator output is mainly due to the
correlator’s response to the filters inserted in the IF band at the correlator entry. So far, for the sake of
simplicity, rectangular passbands, centered at the intermediate frequency vz, have been assumed. A more
complex (and more realistic) case may be an amplitude slope where the logarithm of the amplitude varies
linearly with frequency. Although the bandpass function will be calibrated (see Eq.6.17, and R. Lucas
Chapter 7), the effect of such a slope on sensitivity remains. A derivation of the signal-to-noise ratio for
that case is beyond the scope of this lecture. To give an impression of the order of magnitude: a slope of
3.5dB (edge-to-edge) leads to a 2.5 % degradation of the sensitivity calculated for a rectangular passband.
A center frequency displacement of 5 % of the bandwidth leads to the same degradation.

As already demonstrated, delay-setting errors linearly increase with the intermediate frequency (Eq. 6.6).
Table 6.3 gives an impression of the decrease of sensitivity due to a delay error. The effect is also shown
in Fig. 6.3 for a range of delay errors. For example, a delay error of 0.12/Avy accounts for a 2.5 % degra-
dation. Delay errors are mainly due to inaccurately known antenna positions (asking for a better baseline
calibration), or due to errors in the transmission cables.

Phase errors across the bandpass may also be of random nature. A phase fluctuation of 12.8° (rms)
per scan leads to a degradation of (1 —exp (—0%/2)) x 100 % = 2.5%. Fluctuations across the bandpass
also appear as ripples. They may have several reasons, and are mainly due to the Gibbs phenomenon,
and due to reflections in the transmission cables. A sinusoidal bandpass ripple of 2.9dB (peak-to-peak)
yields a 2.5 % degradation in the signal-to-noise ratio. The Gibbs phenomenon also occurs in single-dish
autocorrelation spectrometers. For the sake of illustration, let us again assume a perfectly flat response
of receivers and filters. However, the filter response function is only flat across the IF passband. Towards
its boundary, steep edges occur. We already learned that strong spectral lines may show ripples, if no
special data windowing in time domain is applied. The Gibbs phenomenon is due to a similar problem
(but now the spectral line is replaced by the edge of a flat rectangular band extending in frequency from
zero to Avge). The output of the cosine correlator is symmetric, but the sine output (imaginary part) is
antisymmetric, thus including an even steeper edge. Convolving this edge with the sinc function (i.e. the
spectral window) results in strong oscillations. Let us call this function f(v). For calibration purposes,
the Gibbs phenomenon has to be avoided: the problem is that calibration uses the system response to a
flat-spectrum continuum source. A source whose visibility is V' (v) is seen as f(v) * [G;;(¥)V (V)] (where
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Figure 6.7: Several time lag windows, and their Fourier transforms (normalized to peak). The sidelobe
levels SL are indicated, as well as the spectral resolution (defined as the FWHP of the main lobe), and the
noise equivalent width. The delay stepsize, and channel spacing are indicated for the following example:
256 channels, clock rate 40 MHz, resulting in a channel spacing of 78.125 kHz.
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Figure 6.8: The Gibbs phenomenon. The convolution of the bandpass with the (unapodized) spectral win-

dow (sinc function) is shown for the real and imaginary parts. Note that for the real part, the phenomenon
is stronger at the band edges, whereas for the imaginary part, it contaminates the whole bandpass.



86 CHAPTER 6. CROSS CORRELATORS

Table 6.4: Maximum integration time of a 16-bit counter

clock frequency: 80 MHz

weight for intermediate-level products: | n =3

positive offset: n?=9

weight for autocorrelation product: 18 (using offset multiplication table)
carry out rate of a 4-bit adder 18/2* = 1.125

maximum integration time: 216 /(80 MHz x 1.125) = 0.73 ms
same with a 4-bit prescaler: 216 x 24 /(80 MHz x 1.125) = 11.7ms

Gij is now a frequency-dependent complex gain function). After calibration it becomes

oy )£ [Gy)V (W)
V) = = i)

(6.17)

Due to the convolution product the complex gain Gy;(v) does not cancel out, as desired, and V() # V (v).
Automatic calibration procedures have to flag the channels concerned. As shown in Fig. 6.8, for the real
part, the effect is stronger at the band edges, but the output of the imaginary part also shows ripples in
the middle of the band (thus, the problem is of greater importance for interferometers than for single-
dish telescopes using auto-correlators). If the bandwidth to be observed is synthesized by two adjacent
frequency windows, the phenomenon is stronger at the band center. You should avoid to place your line
there, if it is on top of an important continuum (see Section 6.4.1 for the case of the Plateau de Bure
system).

The above summary of the system-dependent performance of a correlator is not exhaustive. For exam-
ple, the phase stability of tunable filters, which depends on their physical temperature, is not discussed.
Alternatives to such filters are image rejection mixers (as used in the Plateau de Bure correlator).

Digital part

Errors induced by the digital part are generally negligible with respect to the analog part. In digital delays,
a basic limitation is given by the discrete nature of the delay compensation, which accuracy in turn is
limited by the clock period of the sampler. However, digital techniques allow for high clock rates, keeping
this error at a minimum.

Evidently, a basic limitation is given by the memory of the counters, setting the maximum time lag
(which in turn defines the spectral resolution, as already discussed): with 2K bits, we can exactly represent
N = 22K numbers. However, the information contained in the bits is not equivalent. For the 3-level 2-bit
correlator, the output of each channel ¢ =1,...,N is

R(i) = % (N + VN, /1- erf(vo /ﬁ)) (6.18)

(assuming white, Gaussian noise of zero mean and of unit variance, and neglecting the weak contribution
of the astrophysical signal). The lo-precision of the output is ~ v/N /2, contained in the last K — 1 bits,
which thus do not need to be transmitted. The maximum integration time before overflow occurs is set
by the number of bits of the counter, and the clock frequency. Table 6.4 shows an example.

The only error cause due to the correlator that is worth to be mentioned is the sampler, i.e. the
analog-to-digital conversion. As already shown, the threshold levels are adjusted with respect to the noise
in the unquantized signal. However, the noise power may change during the integration. In that case, the
correlator does not operate anymore at its optimum level (see Fig.6.4). This error cause can be eliminated
with an automatic level control circuit. However, slight deviations from the optimal level adjustment may
remain. Without going too far into detail, the deviations can be decomposed in an even and an odd
part: in one case, the positive and negative threshold voltages move into opposed directions (even part of
the threshold error). The resulting error can be equivalently interpreted as a change of the signal level
with respect to the threshold vy, and leads to a gain error. In the other case, the positive and negative
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threshold voltages move into the same direction (odd part of the threshold error). This error, however, can
be reduced by periodic sign reversal of the digitized samples (if the local oscillator phase is simultaneously
shifted by =, the correlator output remains unaffected). Combining the original and phase-shifted outputs,
the error cancels out with high precision. Such a phase shift is implemented in the first local oscillators
of the Plateau de Bure system (for details see Chapter 7 by R.Lucas). Note also that threshold errors
of up to 10% can be tolerated without degrading the correlator sensitivity too much: the examination of
Fig. 6.4 shows that such an error results in a signal-to-noise degradation of less than 0.2% for a 3-level
system, and of less than 0.5 % for a 4-level system (the maxima of the efficiency curves are rather broad).

Another problem is that the nominal and actual threshold values may differ. The error can be described
by “indecision regions”. By calculating the probability that one or both signals of the cross-correlation
product fall into such an indecision region, the error can be estimated. With an indecision region of 10 %
of the nominal threshold value, the error is negligibly small.

Finally, it should be noted that strict synchronisation of the time series from different antennas is manda-
tory: any deviation will introduce a phase error.

6.4 The correlator on Plateau de Bure

As an example of a cross-correlator used in mm-wave interferometry, I briefly introduce the correlator
system on Plateau-de-Bure. Only a spectroscopic correlator is in use. Continuum bands are synthesized
by channel averages covering the desired bandwidths. Aspects concerning concrete observing projects are
addressed in Chapter 8 by R.Neri.

6.4.1 The third-generation correlator

The third-generation correlator for the Plateau de Bure interferometer will allow for more flexibility, due
to the following improvements:

e global bandwidth: 2.56 GHz (vs. 0.96 GHz in the second generation system),

e flexibility: 8 units with channel spacings in powers-of-2 sequence (vs. 6 units, channel spacing in
powers-of-4 sequence)

e global digital performance: 9.8 Teramultiplications per second (vs. 1.3 TMs~1).

These improvements are made possible by using new, more integrated technology at both analog and
digital signal processing steps.

The cross-correlator comprises eight independent units. Each consists of three parts: an IF processor
(frequency setting, low-pass filter selection, oscillator phase control — i.e. the analog functions), a digital
part, controlled by a master processor (i.e. delay steps, clipping correction, FFT, small delay corrections,
bandpass correction), and a satellite micro reading out and further processing the correlations. Each
unit can be placed in the [100,1100] MHz IF band *, in steps of 0.625 MHz (by using a third frequency
conversion). There are seven combinations of bandwidth and channel spacing. The channel spacing follows
a power-of-two sequence. Three out of the seven modes are synthesized by the adjacent upper and lower
sidebands of an image rejection mixer. These bandwidths show the Gibbs phenomenon right in the middle
of the band (i.e. at the edges of the IRM sidebands). The central two channels are flagged by default, the
observer should avoid to place the most important part of the line there. The highest possible spectral
resolution (channel spacing 0.039 MHz) is produced by slowing down the clock rate from 40 to 20 MHz.

The spectroscopic capabilities of the cross-correlator at Plateau de Bure are summarized in Table 6.5. Part
of the flexibility is achieved by using the “time-multiplexing” technique. For example, a time-multiplexing
factor four means that the data, arriving at a rate of 160 x 106 samples/s, are alternately put into four
shift-registers. The shift registers are read out at the clock frequency of 40 MHz, thus creating four data

4Note that at Bure the total IF bandwidth available is limited by the receivers to the range [100,650] MHz
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Table 6.5: The Complex Cross Correlator on Plateau de Bure

Bandwidth Sub-band Clock Time Number | Complex | Channel Spectral
of IRM(™) Rate | Multiplex | of Lags | Channels | Spacing | Resolution [MHz]
[MHz] [MHz| Factor (2) [MHz] 3) (4)

2 x 160MHz | LSB + USB 80 4 2x 128 | 2x 64 2.500 3.018 3.975
1 x 160MHz | LSB or USB 80 4 1x 256 | 1x128 1.250 | 1.509 1.988
2x 80MHz | LSB + USB 80 2 2x 256 | 2x128 0.625 | 0.754 0.994
1x 80MHz | LSB or USB 80 2 1x 512 | 1x256 0.312 | 0.377 0.497
2x 40MHz | LSB + USB 80 1 2x 512 | 2x 256 0.156 0.189 0.248
1x 40MHz | LSB or USB 80 1 1x1024 | 1x512 0.078 0.094 0.124
1x 20MHz | LSB or USB 40 1 1x1024 | 1x512 0.039 0.047 0.062

Notes: (1) image rejection mixer (2) with negative & positive time lags (3) box-shaped time-lag
window (4) Welch time-lag window

streams taken at a rate that is lower by a factor of four (as compared to the sampling speed). Equivalently,
a time-multiplex factor two means two data streams at a rate of 80 MHz each.

For further technical specifications see the Correlator Web page®.
6.5 Appendix

6.5.1 Summary of definitions

e Cross-correlation function of voltage outputs v; and v; from antenna pair (i, j):

Rij (1) = (vi(t)vs(t + 7)) = Th_r};o 1 /OT vi(t)v;(t + T)dt (6.19)
e Covariance of two jointly random variables:
w = (zy) — (x){y) (6.20)
For signals of zero mean, and again identifying 2 = v;(¢) and y = v;(¢t + 7),
= Ri;(7) (6.21)
e Cross-correlation coefficient of two jointly random variables z,y of variance o2 and 03:
p= 0503 (6.22)

For jointly normal random variables of zero mean and of variance 02 = (z?) — (z)? = (2?), and with
x = v;(t) and y = vj(t + 7), the cross-correlation function R;;(¢) and the cross-correlation coefficient
are related by

Rz'j (T) = p0'2 (623)

e Bivariate Gaussian Probability Distribution:
Assume two Gaussian random variables z and y, both of zero mean, and variance 2. The probability
p(z,y) dr dy that the value of z is between z¢ and z¢ + dx, and that simultaneously the value of y
between yo and yo + dy, is given by the jointly gaussian probability distribution

, X 6.24
P(mo yO) 9 2 /—1 5 exp ( 2 2(1 2) ( )

In our case, the variable x is assigned to the output voltage of antenna ¢ at time ¢, and y the output
voltage of antenna j at time ¢ + 7.

Shttp://iram.fr/TA /backend /cor6A
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6.5.2 Clipping correction for 4-level quantization

The following determination of the clipping correction is due to [Hagen et al. 1973]:
Given two jointly normal random variables z and y with covariance u, and given some arbitrary function
g(z,y), Price’s theorem states that

™(g(z,y)) _ ,0°"g(z,y) / <[ P mg(x,y)
— — Z I 2

For random signals of zero mean, the covariance p is identical with the cross-correlation function R;;(7)
defined in Eq.6.1. As shown by Eq.6.1, we need to accumulate products of the voltage outputs of two
antennas (4, j), but using the quantized signals rather than the continuous ones. Thus, with the identi-
fication = v;(t) and y = v;(t + 7), and using # and § for the quantized signals, we can apply Price’s
theorem to the 4-level cross-correlation function Ry = (Z§) such that

dRy  ,dR:  Ld{F)) /°° /°° 8% 9§
dRy _ ,dRy _ _ oz 9y ded 6.26
rakde ettt B ayp(w,y) zdy (6.26)

(R = po? denotes the continuous cross correlation function, for the sake of simplicity, antenna indices are
omitted). The partial derivatives in the integrand are easily found by using the transfer function shown
in Fig. 6.5:

Z2=0(=)+ (n—1)[0(z —vo) — O(—z — 19)] O(—2) (6.27)

where ©(z) =1 for > 0, and 0 else. Thus,

o3

a_z =25(z) + (n — 1) [8(z — o) + d(x + vo)] (6.28)
Re-writing Price’s theorem, we find

dR

aky / / (26(z) + (n = 1) [5(z — vo) + 8(z + v0)])
-(20(y) + (n — 1) [6(y — vo) + 6(y + vo)]) p(x, y)dxdy . (6.29)

Inserting the jointly normal distribution p(x,y), and evaluating the integral yields

ARy _ 24

a_
™

—— {(n —1)? [exp (%) + exp (#ﬂ_‘%p))]

2
+4(n — 1) exp (ng)) + 2} , (6.30)

dp

or, alternatively, the integral form given in Eq.6.11.
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Chapter 7

LO System and Signal Transport

Robert Lucas

lucas@iram.fr

IRAM, 300 rue de la Piscine, F-38406 Saint Martin d’Heéres, France

7.1 An Heterodyne Interferometer

7.1.1 The simple interferometer

This is composed of 2 antennas, a multiplier, an integrator (Fig. 7.1); we directly multiply the signals, and
average in time. 7¢ = 2wb.s/c is the geometrical delay. Provided the geometrical delay is compensated in
the hardware, after filtering out the high frequency terms, the output of the correlator is the real part of
the visibility:

r(t) = Acoso(t) (7.1)

A complex correlator using a quadrature network can be used to measure the imaginary part; or (equiva-
lently) one uses a spectral correlator.

7.1.2 The heterodyne interferometer

We now consider a more realistic two antenna system (Fig. 7.2), which includes two frequency conversions:
e.g. one in the SIS mixer, and one to move the IF band to baseband for numerical sampling and digital
correlation. This again is a simplification, but includes all the important effects. The PdB system has in
fact 4 frequency conversions (see below).

Let us first consider the effect on phase of a simple frequency conversion.

91
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Antenna

Receiver K7

Correlator

Figure 7.1: A simple, two-antenna interferometer

7.1.3 Frequency conversion

The input signal to the mixer is U(t) = Ecos(wt + ¢), and the first LO signal (LO1) is Uroi(t) =
Er01 08 (Wro1t + ¢Yro1). Mixer output is proportional to [U(t) + Uro:(t)]?> and we select by a filter a band
Aw centered on wr. We note: wy = wros + wir, and wy, = wio; — wir the angular frequencies in the upper
sideband and in the lower sideband, respectively.

The IF output is

UIF(t) x FEycos [(UJU - WL01)t + oy — 90L01] + E;, cos [(_UJL + wLOl)t — L+ (PL01]
Ur(t) o« Eycos(wt + @y — @ro1) + Er cos (wist — o1 + @ro1) (7.2)

After the frequency conversion the phase is the difference of the signal phase and the LO phase, with a
sign reversal if the conversion is lower sideband:

USB LSB
frequency: | wir = Wy —Wro1 Wik = —Wr, + Wrot
phase: Prr = PYu — Pror  Prr = —PL + Pro1

7.1.4 Signal phase

One antenna is affected by the geometrical delay 7¢, and by the phase (py in the upper sideband, ¢,
in the lower sideband), which is the quantity to be measured. We apply a compensating delay 7; in the
second IF (IF2), as well as a phase 1, to the first LO and a phase @0, on the second LO (LO2). We
note AT = 711 + 7¢ the delay tracking error. In a 2-antenna system, we may assume that the signal path
through the first antenna suffers no delay of phase offset terms. Obviously the compensating delay 7; in
the second antenna may need to be negative, if the second antenna is closer to the source: in that case one
will apply the positive delay —7; on the first antenna. In a N antenna system, one will apply phase and
delay commands to all the antennas; a common delay will be applied to all the antennas since no negative
delay can be built with current technology.
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Antenna
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LO1
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X0z | X

Correlator

Figure 7.2: A heterodyne, two-antenna interferometer, with two frequency conversions
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Let us first consider the upper sideband of the first LO (second LO conversion is assumed upper
sideband for simplicity):

USB LSB
HF Frequency (RF) Wuss Wr,
HF Phase Yu + WuTe QYL + wLTe
LO1 Frequency Wro1 Wrot
LO1 Phase Pro1 Pro1
IF1 Frequency Wrr1 = Wy — Wr.ot Wip1 = Wro1 — W
IF1 Phase Yu + WuTe — Pro: —rL — WLTg + Pro1
LO2 Frequency Wros2 WLo2
LO2 Phase Proz Proz
IF2 Frequency Wir2 = Wy — WLo1 — WLoz2 Wirpe = Wro1 — WL — WLoz2
IF2 Phase Yy + WuTe — Pro1 — Proz —@L — WLTg + Yro1 — Proz
after ., Yu + WuTe — Pror — Proz + WireTt | —PL — WLTg + Pro1 — Proz + WipTi
Final Py + W AT — L + W AT
_(‘PL01 + wLOlTG) +(‘;0Lo1 + wLOlTG)
_(‘PL02 + wLOZTG) _(‘PL02 + wLOZTG)

To stop the fringes in both sidebands we need the following conditions:

Ar=71+4+717 = 0 (7.3)
Yro1 + wWeo1Te = 0 (7.4)
Proz + Wro2Te = 0 (7.5)

One sees that delay tracking in the second IF imposes a phase tracking on the first and second oscillators.
The delay error AT appears as a phase term proportional to frequency in the IF2 band wip,.

The condition that e.g. ¢ro1 = —WLo17¢ means that ¢, must be commanded to vary at a rate
. . b 2«
$Pro1 = —Wro1Tg ~ QWA—IM (7-6)

which is about 10 turns per second for A; = Imm and b = 1km. The condition is much easier for the
second LO. In practice the phase is commanded typically every second, as well as its rate of change during
the next second (the real curve is approximated by a piecewise linear curve). Note that a linear drift with
time of the phase is strictly equivalent to a small frequency offset.

7.2 Delay lines requirements

7.2.1 Single sideband processing in a finite bandwidth

Assume that the conversion loss is negligible for the lower sideband. At a given IF2 frequency wig, the
directly correlated signal is:

Vi = A cos (o + wipAT) (7.7
while the sine correlator would give:
Vi = Asin (¢ + wimAT) (7.8)

V =V, +iV; = Aeiletwman (7.9)

Assume we use a correlator with a finite bandwidth Av. The correlator output is obtained by summing
on frequency in the IF passband:

V= / Al tem2AT) By Y dwigs (7.10)
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where B(wyrs) is a complex passband function characteristic of the system: gain of the amplifiers and
relative phase factors.

V = Aet® /ew“’zATB((,‘)IFZ)dt,uIF2 (7.11)

We have assumed that the source visibility is constant across the band; the source visibility, when the
delay error varies, is multiplied by the Fourier transform of the complex passband.

The delay error must be kept much smaller than the inverse of the instantaneous bandwidth to limit
the signal loss to a small level. The delays are usually tracked in steps, multiples of a minimum value. To
limit the loss to 1%, the minimum delay step must be ~ 0.25/Av (0.5 ns for a 500 MHz bandwidth).

7.2.2 Double sideband system

In that case the signals coming from the upper and lower sidebands have similar attenuation in the RF
part and similar conversion loss in the mixers. They will have similar amplitudes in the correlator output.
The result for the cosine correlator is:

V= Ayeilputwr2Ar—(pro1twroime) —(¢roz+wrozma)]

+ ALei[—¢L+wIF2AT+(<ﬂLo1+wL01TG)—(¢L02+wLo2TG)] (7_12)

Assuming the same visibility in both sidebands:
V = Acos (9 — Pror — wroiTe ) (@wzAT—¢Loz-wLoa7e) (7.13)

If the delays are tracked, and the LO phases rotated as above, the exponential term is 1 and only the real
part of the visibility is measured. Some trick is thus needed to separate the signal from the sidebands.

7.3 sideband separation

The sideband separation by mixer rejection is difficult for low IF frequencies, and currently works only at
3mm. The image rejection varies with frequency. There are other methods that cancel the signal in the
unwanted side band by a larger factor. They are based on the fact that the LO1 phase y.o, appears with
a different sign on the USB and LSB signals.

7.3.1 Fringe rate method

One might choose to drop the phase rotation on the second LO and let the fringes drift at their natural
fringe rates. These rates are opposed in sign for the USB and LSB, and they might be separated electron-
ically. However the natural fringe rate sometimes goes to zero (when the angular distance between source
and baseline direction is minimum or maximum), and at least in these cases the method would fail.

It would be more practical to offset the LO1 and LO2 phase rates ¢;o; and ¢io, from their nominal
values by the same amount wopr. If the offsets have the same sign, they will compensate for the USB and
offset the fringe rate by 2wopr in the LSB. If wopr is large enough, the LSB signal will be cancelled. Note
that offsetting ¢ro; by a fixed amount is equivalent to offsetting the LO1 frequency.

This is a simple method to reject the unwanted sideband. Note that the associated noise is not rejected.

7.3.2 Phase switching method

Assume a variable phase offset v, is added to the LO1 phase command appropriate for compensating the
geometrical delay variation:

$Yro1 = —Wro1Te + '1/11 (714)
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11 will be subtracted to the phase of the USB signal, and added to that of the LSB signal. If ¢4 is switched
between 0 and 7/2, the relative phase of the USB and LSB will be switched between 0 and 7, and the
signals may be separated by synchronous demodulation:

Y1 | Signal
0 Vi = Aye™U 4+ Ape "L
7'(/2 ‘/2 = AUei(WUfﬂ-/Q) —+ ALei(7¢L+W/2)

Then one may compute the visibilities in each sideband:

Ayev = (V, +iVy)/2
and Age ™t = (V, —iV})/2 (7.15)

We have assumed here that we have a complex correlator (sine + cosine), or equivalently a spectral
correlator measuring positive and negative delays (see Chapter 6).

One may also switch the phase by 7, in which case the sign of all the correlated voltages is reversed.
This has the advantage of suppressing any offsets in the system. Actually both switching cycles are
combined in a 4-phase cycle:

Y1 | Signal

0 Vi = Ape™V + Ape 'r

7{'/2 ‘/2 = AUei(WU_ﬂ'/Z) + ALei(_WL‘{'ﬂ'/z)
@ Vs=-W

3n/2 | V,=-V,

Ape?v = (V+iV, =V, —iVy) /4

and Are™r = (V, =iV, -V, +iV,)/4 (7.16)

In a N antenna system one needs to switch the relative phases of all antenna pairs. This could be
done by applying the above square-wave switching on antenna 2, then on antenna 3 at twice the switching
frequency, and so on. In practice the switching waveforms are orthogonal Walsh functions.

7.4 The PdB Signal and LO transport system

A block diagram of the Plateau de Bure interferometer system is shown in Fig. 7.3.

7.4.1 Signal path

The signal path is outlined in Fig. 7.3. It shows the signal and LO paths for one antenna and one receiver
band. The high frequency part (receiver) was described in Chapter 5. The amplified first IF output
(1275-1775 MHz) is down-converted to the 100 — 600 MHz band and transported to the central building
in a high-quality cable. Before down-conversion, the band shape is modified by a low-pass filter; since the
LO2 is at a higher frequency than the IF2, the bandpass will be reversed in the conversion, and this by
anticipation compensates for the frequency dependent attenuation in the cable (which is of course higher
at the high-frequency end of the bandpass).

The 100—600 MHz band arriving in the central building is directed to the correlator analog IF processor
inputs (with a division by 6 since there are 6 identical correlator units) and to total power detectors which
are used for the atmospheric calibration and for the radiometric phase correction.
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7.4.2 LO generation

The first local oscillator is a Gunn oscillator (a tripler is used for the 1.3mm receiver). The Gunn is phase-
locked by mixing part of its output with a harmonic of a reference signal (used also as the second LO):
the harmonic mixing produces a 100MHz signal, the phase of which is compared to a reference signal at
frequency €;= 100MHz, coming from the central building. That reference signal is used to carry the phase
commands to be applied to the first LO: a continuously varying phase to compensate for earth motion
and phase switching used to separate the side-bands and suppress offsets.

The LO1 signal at 1,0, may be locked either 100MHz above (“High Lock”) or below (“Low Lock”) the
NP harmonic of the LO2 frequency vio,:

Vo1 = (NHVL02 + GI)NM (717)

The multiplication factor Ny is 1 for the 3mm receiver and 3 for the 1.3mm receiver.

The second local oscillator, at v, o, = 1875+ 25 MHz, is phase locked €,=0.5 MHz below the frequency
sent by the synthesizer in the central building (which is under computer control and common to all
antennas):

Vios = Vsyn — € (7.18)

The e, reference frequency is sent to all antennas from the central building in a low quality cable,
together with the e,= 100MHz reference frequency for the first LO. The vgyy is sent to the antennas via
the same high-Q cable that transports the IF2 signal. No phase rotation is applied on the second local
oscillator. The relation between the RF signal frequencies (in the local rest frame) in the upper and lower
sidebands and the signal frequency in the second IF band is thus (for high lock):

Vy = Vo1 + (VL02 - VIFz) = (NMNH + ]-)VL02 + Nu€ — Vigs (719)
and in the lower sideband:

Vy, = Vo1 — (VL02 - VIFQ) = (NMNH - ]-)VLoz + Nyé€; + Vigs (720)

7.4.3 Further signal processing

In each correlator a variable section of the IF2 band is down-converted to baseband by means of two
frequency changes, with a fixed third LO (LO3) and a tunable fourth LO (LO4). It is on that LO4 that
the phase rotations needed to compensate for residual phase drifts due to the geometrical delay change
are applied (in fact that LO4 plays the role of the second frequency conversion in the above analysis). No
phase rotation is applied on the second and third local oscillators.

The phase rotation applied on the fourth LO’s is:

Proa = (wLO2 + Wros — WL04)TG (7.21)

since the second and third conversions are LSB while the fourth is USB. It is different in the different
correlator units since the wy o, frequencies are different.

7.4.4 Phase stability requirements

Short term phase errors in the local oscillators (jitter) will cause a decorrelation of the signal and reduce
the visibility amplitude by a factor

e = e (40272 — \foma? o = NS (7.22)
where o7 is the rms phase fluctuation of the LO in one of the antennas (o3 in the other). 7, = e’ is
the decorrelation factor for one antenna; typical requirements on oy are:

T | 0.99 0.98 0.95 0.90
o1 (degrees) | 5.75 81 13.0 185

The phase stability required on the LO2 is o1 /(NyNy) ~ 0.1° for a 0.95 efficiency at 1.3mm: very stable
oscillators are needed.
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7.4.5 Cable electrical length control

The €, reference frequency is also used for a continuous control of the electrical length of the High-Q cables
transporting the IF2 signal from the antennas to the correlator room in the central building. A variation
AL in the electrical length of the High-Q cable will affect the signal phase by 360AL/\g.; for a length of
500m and a temperature coefficient of 10~° we have a variation in length of 5mm or 17ps, which translates
into a phase shift of 4 degrees at the high end of the passband: this is a very small effect.

The same length variation induces a phase shift of 360 x 0.017 x 1.875 = 11.5 degrees at the LO2
frequency. This signal being multiplied by (Ny + 1) Ny ~ vy /Vios ~ 120 for the 1.3mm receiver, we have
a totally unacceptable shift of about 4 turns. The cables are buried in the ground for most of their length;
however they also run up the antennas and suffer from varying torsions when the sources are tracked, and
in particular when the antenna is moved from the source to a phase calibrator.

For this reason the electrical length of the cables is under permanent control. The LO2 signal is sent
back to the central building in the High Q cable, and there it is mixed with the v, + €, signal from
the synthesizer. The phasemeter measures every second the phase difference between the beat signal at
0.5 MHz and a reference 0.5 MHz signal.

The measured phase difference is twice the phase offset affecting the LO2, it is used by the computer
to correct the LO1 phase ¢, after multiplication by vyo1/Vios-

7.5 Next generation instruments

Next generation instruments will operate at higher frequencies, and need higher bandwidths, and better
angular resolution. The major changes expected are:

e Use of optical fibers rather than cables. Actually this is already the case in some interferometers.

e Digitize higher in the signal chain. transporting digital signals require more bandwidth but is more
accurate.

e Possibly generate LO signals using infrared lasers rather than by multiplying lower frequency signals.



100 CHAPTER 7. LO SYSTEM AND SIGNAL TRANSPORT



Chapter 8

The Plateau de Bure Interferometer

Roberto Neri

neriQiram.fr

IRAM, 300 rue de la Piscine, F-38406 Saint Martin d’Héres, France

8.1 History

The design of the millimeter wave interferometer started in June 1979, in the year of the foundation
of IRAM, the Institut de Radioastronomie Millimétrique. The construction of the first antenna was
completed in June 1987, and three years later an interferometer consisting of three antennas was opened
to guest observers. First fringes at 230 GHz were obtained in April 1995, the five antenna configuration of
the interferometer was attained one year later, and the six antenna correlator installed end summer 2000.
Work is in progress for the construction of the sixth antenna and is foreseen to extend the north-south track.
Starting with the commissioning period in 1990 up to the end of 1999, the Plateau de Bure interferometer
was able to carry out more than 500 different projects which involved more than 200 investigators from
all around the world.

8.2 Description

The Plateau de Bure interferometer is located in the South of the French Alpes, near St-Etienne en Dévoluy
in the Département of Hautes Alpes. The interferometer’s altitude is 2552 m (2560 m at the intersection of
the azimuth and elevation axes of the telescopes) and its longitude and latitude at the array phase center
are 05:54:28.5 E and 44:38:02.0 N. After the cable-car accident, two means of transport to Plateau de Bure
have been made available: transport by helicopter or on the ground using a four-wheel drive in summer, a
ratrack in winter time, and a final foot-path to get atop the Plateau. A hangar in which the sixth antenna
is currently under construction, is used for antenna maintenance, overhaul periods and, in general, for
antenna repair work which needs to be carried out in between times but under safety conditions. The
hangar houses a few workshops for cryogenics, mechanics, electronics, a power station which provides
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Figure 8.1: PdB interferometer station layout as of March 2001. The interferometer origin is defined as
the center of the circle which goes through the stations N20, E24 and W12, the so-called IRAM phase
center, and thus gives a unique vector definition to each station.

electric autonomy in case of interruptions in the external power supply and finally, the correlator room
and the control room for remote array operation. Almost adjacent to the hall are the living quarters for
the staff who supports the uninterrupted round the clock operation of the interferometer.

Currently, the interferometer consists of five antennas arranged in a T-shaped pattern extending over
a maximum of 408 meters east-west and 232 meters north-south. A sixth antenna is expected to be ready
for 2002, and the extension of the northern track is still under construction.

The antennas are conceptually identical: they all have a fully steerable alt-az mount which incorpo-
rates a self-propelled transporter for moving the antennas (130 tons) along the tracks between stations.
Each antenna is a 15 m diameter Cassegrain telescope with the backstructure and quadrupod legs largely
made of carbon fiber for high thermal stability. The high precision of the reflecting antenna surface (40-
60um) guarantees best performance: all antennas have essentially the same sensitivity (22 Jy. K~! at 3 mm,
35Jy.K~! at 1 mm — see Chapter 12 by A.Dutrey), and very similar pointing and focussing characteristics.

All the antennas are equipped with dual-frequency SIS receivers operating simultaneously in the
82 GHz—115GHz and 205 GHz—245 GHz range. Typical double sideband receiver noise temperatures
are between 25K and 50K at 3mm and between 40 K and 60K at 1 mm. The receivers upper and lower
sidebands are separated by the correlators with a rejection better than 26 dB. The lower to upper sideband
gain ratio depends on the receiver and varies typically between 0.2 and 4.0 under standard operating con-
ditions in the 3 mm band, and yields essentially a double-side band tuning in the 1 mm band. Pure single
sideband tuning (with rejection 15 to 25 dB) is also possible in the 3 mm band, with receiver temperatures
around 60 to 80 K.

Eight totally independent correlators units are available that provide an 87% correlation efficiency
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(for more details see Chapter 6by H.Wiesemeyer). Each correlator unit provides by default 7 choices of
bandwidth/channel configurations down to a nominal velocity resolution of 50m.s~! at 230 GHz. The
correlators can independently be connected either to the 3mm or to the 1mm receiver (100-650 MHz)
IF2.

A central control computer coordinates the entire interferometer (antennas, receivers and correlators
and quite some other equipment) and makes the data acquisition. Raw data corresponding to the individual
dumps of the correlator buffers will not be available as real-time jobs apply automatic calibrations (clipping
correction, apodization, FFT, sideband separation, small delay correction, bandpass correction and other
corrections) and make automatic data quality assessments (marking bad data, shadowing, phase lock, just
to cite a few flags) before data is written to disk. A second workstation provides the software resources
for offline data analysis and for data archiving before transfer to the Grenoble headquarters.

8.3 Array operation

8.3.1 Array calibration

The astronomical setup of the interferometer involves a number of steps that are done under the joint
responsibility of the array operator and of the astronomer on duty (AoD). The goal of the setup is to
maximize the interferometer performance in view of sensitivity and positional precision.

Change of array configuration

A change of configuration is the responsibility of the operators and of the technical staff. Since most
projects, as mapping, mosaicing and snapshot observations, require more uv—coverage than a single con-
figuration can provide, the antennas are moved typically every three weeks or so, to a new configuration.
Every additional configuration increases the mapping sensitivity and the uniformity of the uv—coverage by
adding N (N — 1)/2 baselines to the sampling function (these are 10 baselines during the winter period,
6 baselines during the summer period when the array is operated with only 4 antennas). Configura-
tions are usually selected among six types according to several criteria: antenna availability, project type,
atmospheric seeing, uv—coverage, pressure in local sidereal time, sun avoidance and other factors.

Six primary configurations are needed to cover the desired range of angular resolution at the two
operating frequencies with 5 antennas:

Configuration Stations
D W05 W00 E03 NO5 N09
C1 W05 W01 E10 NO7 N13
C2 W12 W09 E10 N05 N15
B1 W12 E18 E23 N13 N20
B2 W23 W12 E12 N17 N29
A W27 W23 E16 E24 N29

The configurations can be combined to produce five sets of configurations for different angular resolution:

Set  Configurations  Purpose

D D detection / lowest resolution
CD D, C2or C1 3.5" at 100 GHz
CC C1, C2 higher resolution than CD
BC B1, C2 2.0" at 100 GHz
BB B1, B2, C2 higher resolution and sensitivity
AB A, B1, B2 1.0"” at 100 GHz

Special configurations and sets of configurations are used during the annual antenna maintenance period
which is usually between May and October. During this period observations at 1 mm are for most of the
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time not feasible, specially in the two extended B configurations. Observations in the A configuration
whether at 3mm or 1 mm will in general only be scheduled during the winter period. Requested non-
standard configurations are considered only in exceptional cases.

Antenna focus

Sensitivity is one of the most important concerns. As a rule of thumb, an axial displacement of the
secondary by ~ A\/3 results in a 20% loss of sensitivity. To avoid losses larger than 3%, the position of
the secondary needs to be measured to much better than \/10 on regular time intervals. The positional
precision, however, depends on the source strength, the operating wavelength, the sampling of secondary
positions and, finally, on atmosphere stability. In general, the focus is measured at 3 mm on a strong quasar
by displacing the secondary in steps of 1 mm (in steps of 0.45 mm if done at 1 mm). This is systematically
done by the operators at the beginning of every project and is automatically verified by the system every
hour during project execution.

Antenna pointing

A high pointing accuracy is demanded in view of sensitivity and mapping quality. Antenna pointing errors
affect the global sensitivity of the interferometer and may lead to severe errors in the image restoration
process. As a rule, a pointing precision of A8 ~ fppwp /20 is desirable at the highest frequency. The good
pointing accuracy results from an optimized structural design: a good knowledge of the gravitational load,
a good positional stability of the receivers (a good alignment is needed for dual-frequency observations),
a precise control of the secondary, high precision bearings and position encoders, a good servo system, ...
and a good software control for repeatable antenna pointing errors. The quality of a pointing model is
generally limited by wind and thermal load effects. The absolute pointing accuracy achievable with the
IRAM antennas is in general below the 2-3" rms at each axis with a slightly higher uncertainty in elevation.
Such a pointing accuracy leads to very small intensity variations, most of the time with negligible effects
on the image reconstruction. Higher accuracy is obtained by regular relative pointing measurements every
hour.

Each antenna is characterized by a fixed set of pointing parameters. These are measured only in
certain circumstances: when an antenna is going to see first light, when modifications are made which
may affect the pointing of an antenna, or more generally in cases of suspected pointing problems. In
these cases a precise interferometric pointing session, eventually with a preceding less sensitive full-sky
single-dish session, is required to derive the full set of antenna pointing parameters. Such pointing sessions
are reduced with a dedicated non-linear fitting program in use at Plateau de Bure.

The pointing model is actually based on 5 parameters only, all others being negligibly small. These
parameters are: IAZ and IEL (the azimuth and elevation encoder zero point correction), COH (the antenna
horizontal collimation), and IVE and IVN (the antenna East-West and North-South inclination). TAZ,
IEL, IVE and IVN are in station dependent, while COH is in principle an antenna constant. IAZ, IEL and
COH are measured in interferometric mode by pointing on a few low elevation and high elevation sources.
In general, three strong quasars at 3 mm are fully sufficient. The remaining two parameters, IVE and IVN
are measured on every project start with an inclinometer by making an antenna turn through 360°.

Delay measurements

Delay measurements aim at the correction of cable length (electric path) differences between two antennas
after compensation of the geometrical path length. An improper knowledge of the difference in cable
length is visible as a frequency dependent phase slope in the intermediate frequency bands (IF1 and IF2),
and, depending on the amplitude of the slope, may result in a more or less important loss of sensitivity.
The delay is measured by a cross-correlation on a strong radio source at the beginning of every project.

Baseline lengths measurements

The goal is to measure the position of each antenna ¢ relative to a common reference point (distances
Xi;, Y, Z;; between antennas ¢ and j or distances dX;,dY;,dZ; with respect to the theoretical station
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position) in order to subtract the phase term 27w (see Chapter 2 by S.Guilloteau) at any hour angle
and declination from the observed phase. The absence of a good baseline solution is equivalent to having
large uncertainties in the baseline separation between different antennas. As a consequence, the geometrical
delay might improperly be compensated and large time-variable phase errors might affect the observations.

Though the quality of a baseline solution is easily found out — the calibrator’s visibility phase shouldn’t
vary with reference to the phase tracking center as function of hour angle and declination — a good baseline
solution is truly indispensable for the purpose of phase calibration. Phase errors can often be more dele-
terious on compact configurations where source visibilities are stronger than on extended configurations.
As a reference, winter conditions allow baselines in the D configuration to be measured at 3mm with a
5° — 8° phase accuracy and with 5° — 20° in the A configuration. In summer conditions the accuracy is
often 2 — 3 times lower.

Though no high accuracy is needed for antenna positioning (offset position from the target location is
routinely within a wavelength), the actual antenna position has to be known with high precision: within
a small fraction of a wavelength (70-300um). The precision is limited essentially by the atmosphere and
by thermal effects.

The baseline parameters can be obtained to high accuracy from observations of a number k of relatively
strong point sources, well-distributed in hour-angle and declination, for which accurate positions are
available. The analysis of these observations is usually carried out with CLIC, the calibration program,
using a least-square-fit analysis on the geometric phase difference for antenna pairs (4, §):

= %y o= 2w =
o cosH cosd
=5 (Xij,Yij, Zij) - | —sinHcosd | +¢;
%bf—’ sind
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where ¢7; is the assumed geometrical phase between the two stations, H and 4 the hour angle and
declination of the source, and where Aqﬁgj w = Oij cosEly are elevation dependent correction terms for the
non-intersection of the elevation and azimuth axes in the nodal point of the antennas. These terms are
well-known and stand for non-negligible elevation dependent variations of the visibility phase which need
to be removed as accurately as possible before solving for the baselines.

In theory, three sources are sufficient to measure the actual baseline lengths, in practice 10-12 sources
are necessary to obtain an accurate measurement. Since a displacement by 1” at 100 GHz on a baseline
of 100 m translates already to a phase offset of ~ 58.2° (~ 1rad), the positions of the radio sources used
for baseline measurements need to be known with an accuracy Asj, better than 0.02".

The baseline equation implies that positional errors are equivalent to phase errors. Since baseline length
errors scale with the angular separation between calibrator and source, the aim is to have calibrators as
close as possible to minimize the phase errors.

Sometimes, accurate baselines are not required as in the case of self-calibration projects. Sometimes,
however, even if good baselines are required, they simply cannot be determined precisely enough after a
change of configuration. Projects observed in the meantime will then need to wait for a better baseline
model. Such projects will in general not be phase-calibrated by the astronomer on duty, but phase-
calibration has to be done later on by the proposers of the observations.

Gain measurements

Gain measurements (GAIN scans) are cross-correlations on strong radio sources which are essentially used
to measure the image to signal sideband ratios for both the 3mm and 1.3 mm receivers. The required
sideband ratio depends on the project, the achievable sideband ratio depends on the receiver and the
frequency. An accurate measurement of the receiver gain is necessary for a good estimate of the atmospheric
opacity and of the associated thermal noise with which the atmosphere contributes during the observations.
Therefore, results of a gain measurement are followed by an atmospheric calibration (scan CALI).
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Receiver stability

As a rule, a high receiver stability < 3.10~* is never required. Sometimes, however, depending on atmo-
spheric conditions, array configuration and observing frequency, a higher stability may be desirable in view
of a very promising radiometric phase correction. Though such a high stability is not always achievable on
all the receivers, it makes possible an improvement in data quality when the atmospheric phase correction
technique becomes practical (see Chapter 11 by M.Bremer). Experience at Bure from the last three years
shows that the radiometric phase correction is quite efficient under clear sky conditions: from spring to
autumn essentially during the evening and morning hours, in winter almost always when the weather
allows to observe.

Since observations on more compact baselines suffer less from the effects of the atmospheric phase
noise — for reference, an rms of less than 10° rms at 3 mm is routinely obtained on the shortest baselines
— a high receiver stability in compact configurations is only exceptionally required. Typically, under
average observing conditions with a receiver stability of 3.10~* we may already correct atmospheric phase
fluctuations with a precision of 10° at 115 GHz.

8.3.2 Array observations
Setting up a project

Since projects are spread over typically a few months, it is impractical that astronomers actually come to
the interferometer for their observations. In some exceptional case, however, when observations require
rapid decisions, the presence of a visiting astronomer may become necessary. Up to now and after ten years
of operation, only a handful of projects required the presence of a visiting astronomer. Only non-standard
observations like mapping of fast moving objects, coordinated observations may require a member of the
project team to be present on the site. All observations are currently carried out “in absentee”, and a local
contact is assigned to each project.

The observer has to specify all aspects of his/her program in an observing procedure. For routine obser-
vations, this is usually done with the help of the local contact by parameterizing the general observational
procedure. Once the procedure is written, a copy is made available to the operation center at Plateau
de Bure. Before start, further verifications will be made by the scientific coordinator and, to finalize the
procedure, by the astronomer on-duty who makes a last check by looking at the technical details in the
proposal, at the technical report and at the recommendations made by the programme committee.

Quite some time, however, may pass between the preparation of an observational procedure and the
actual observations. Depending on the requirements, between a few hours and a few months may go for
the decision to start the observations. On average 90% of the projects are completed within 6 months
from their acceptance.

Observations

For the observations, the array is operated by an operator with the assistance of an astronomer and under
the supervision of the scientific coordinator. The operator has the full responsibility for conducting all
observations following pre-established observing procedures or with the help of the astronomer in case of
unpredicted events.

The operator will execute the observing procedure according to a pre-established planning which allows
for some flexibility in the scheduling, and to a few criteria (as the maximum amount of precipitable water
in the atmosphere, the required atmospheric phase stability, the requested observing frequencies, the
declination of the targets, the sun avoidance limit and a few other aspects) which will help both the
operator and the astronomer in their final decision-making on which project to carry out as next. As a
rule, excellent atmospheric conditions will be used for high grade projects requesting sensitivity at high
frequencies while the remaining time will in general be devoted to projects which require less stringent
atmospheric conditions.

Once a project is selected, the operator will start the observing procedure which sets up the needed
equipment configuration (essentially sky frequencies, correlator settings and target coordinates according
with the observer’s wishes) and will start preparing the interferometer for the observations: the receivers are
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CALIBRATOR 1

BANDPASS CALIBRATION > IFPB  (2x 5 sec)
TABLE /SKY CALIBRATION - CALl  (1-2x 5 sec)
ANTENNA FOCUS - FOCU (5x 15 sec)
ANTENNA POINTING > POIN  (2x 60 sec)
CORRELATIONS - CORR (3x 45 sec)

(CALIBRATOR 2)

(BANDPASS CALIBRATION - IFPB)

(TABLE /SKY CALIBRATION - CALI)

(CORRELATIONS - CORR)
SOURCE

BANDPASS CALIBRATION - IFPB

TABLE /SKY CALIBRATION - CALI

CORRELATIONS - CORR (20x 60 sec)

Figure 8.2: Standard observations: a cyclic sequence of measurements. IFPB scans aim at calibrating
the IF passband, CALI are auto-correlations on a hot load (290K) and on the sky (on a 15K load only
at the beginning of every project) to adjust the temperature response of the array, FOCU and POIN scans
measure focusing and pointing offsets (done only every 45 minutes) and CORR scans are cross-correlations
(complex visibilities). In projects requesting two calibrators every other calibration is made on the second

calibrator.

tuned, the gains and the zero-delay of the receiving antenna is adjusted and verified, the antenna pointed
and focused, the RF passband is measured and the temperature scale of the interferometer calibrated.
The flux of the primary calibrators are then verified, eventually replaced if their flux density has dropped
too much, and the observations started.

As soon a project is started, the astronomer on-duty will monitor the execution of the project and
the data quality by examining the visibility amplitude and phase of the calibration sources, the antenna
tracking in presence of wind, the antenna pointing corrections, and all time-dependent instrumental and
atmospheric parameters which could have some implications on the observations. Furthermore, to avoid
further observing on a target with wrong coordinates, the astronomer will verify the presence or absence
of line and/or continuum emission according to the expected values quoted in the proposal. Finally,
the astronomer on-duty will provide pre-calibrated data on a best effort basis. Depending on project
complexity and needs, further data analysis is sometimes required on the site to decide on follow-up
observations.

When the observations are running, commands are regularly issued to the antennas and to the periph-
eral equipment (phase rotators, correlators and others) following a well-defined, cyclic sequence as shown
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in Figure 8.2. This sequence may slightly change depending on the number of calibrators and on the num-
ber of phase centers (i.e. the fields of view requested for different sources or for mosaic-type observations)
the observer wishes to track in a single run. Typical observations at Plateau de Bure fall in one of the
following categories:

o Detection: deep integrations aiming at measuring the flux densities of faint targets (continuum
emission and/or line emission/absorption) with the interferometer mostly in compact configurations.

o Snapshot: observations in one or more configurations, aiming at measuring apparent sizes in a small
sample of targets, in some cases even allowing for mapping. The observational procedure sets up
short integrations on individual objects in a cyclic manner.

o Mapping: observations generally in two or more configurations aiming at mapping a single object.

o Mosaic: similar to snapshot observations, except that the array switches between adjacent, half-beam
spaced phase centers to map field of views which are more extended than the primary beam of the
antennas.

Monitoring project execution

Under normal circumstances only a few parameters of interest are regularly verified and corrected (mostly
automatically) during the observations, but instantaneous (every second) and much more detailed informa-
tion can be obtained at any time by connecting to the equipment (receivers, antenna control parameters,
digital correlator units and others). During the operation the array status is continuously monitored so
that the operator can provide fast feedback in response, at any time when necessary. An automatic data
quality assessments (flagging bad data, antenna shadowing, receiver phase lock and others) before writing
data to disk. The astronomer on-duty has the responsibility of periodically monitoring the data acqui-
sition and to write a few notes assessing the data quality during and after the observations. Monitoring
the progress of a project by making intermediate data reductions, however, is the responsibility of the
observer. This is not the responsibility neither of the astronomer on-duty nor of his/her local contact.

8.4 Proposal submission and contact people

Quite some people are required to run such a complex instrument as an interferometer. Sooner or later
you will meet some of these people, but for most of the projects only a few will play an essential role.

At proposal submission time, you will first get in touch with the scientific secretary who will address
you a confirmation of the proposal reception shortly after the deadline. Once a proposal is registered it is
sent to the members of the Programme Committee (eight members: two from each country of the IRAM
partner organizations plus two external) and, at the same time, its feasibility assessed by the scientific
coordinator. Technical considerations as observing strategy, observational risk factors and other issues are
communicated to the Programme Committee, only if necessary and only at the time of the meeting to
avoid any technical remark to influence the scientific evaluation. Shortly after the meeting, during which
the Programme Committee expresses its recommendations, a global proposal evaluation is made by the
IRAM director who takes the final decision. Thereupon, a notification is addressed to you which contains
the final recommendation and a technical report. If the proposal is not rejected from the beginning, a
local contact (a staff astronomer) will be appointed to the project and his name communicated to you.

In the course of the observations, only four persons will play a role for the principal investigator who
proposed the observations: the local contact, the scientific coordinator, the astronomer on-duty and the
array operator. The local contact, who is the direct interlocutor of the observer, is a staff astronomer
whose role is to help the observer in a concerted effort to prepare his/her observations and, later on, in
the Grenoble headquarters to help (if needed) the observer in calibrating the data.

Finally, once the observations are completed and before coming to Grenoble, the principal investigator
or one of his team members will need to get in touch with two persons: the local contact and the coordinator
for the data reduction activities who will finalize the stay of the visiting astronomer at the Grenoble
headquarters.
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Figure 8.3: Source visibility and effective observing time. The scheduling priority is in general inversely
proportional to the declination (observations of low declination sources tend to be more difficult, as they
cannot be carried out at any time — the shaded region is the sky above 15 degree elevation). The total
observing time per track for depends on the declination of the source and is usually limited to 8-12 hrs for
sources of the northern hemisphere. For standard mapping projects, observational overhead counts in by
28% of the time. This is equivalent to an effective on-source integration time of about 6-9 hrs.
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Figure 8.4: Proposal submission and contact persons at IRAM




110 CHAPTER 8. THE PLATEAU DE BURE INTERFEROMETER



Chapter 9

Bandpass and Phase Calibration

Robert Lucas

lucas@iram.fr

IRAM, 300 rue de la Piscine, F-38406 Saint Martin d’Heéres, France

9.1 Definitions and formalism

As has been seen in the previous lectures, each interferometer baseline provides a measurement of the
source visibility at a given point in the u,v plane of spatial frequencies; the source brightness distribution
can then be reconstructed by an appropriate Fourier Transform.

In reality things are not so simple. Interferometers are designed with a lot of care; however many
electronic components will have variable gains both in amplitude and in phase; these variations will affect
the results and have to be taken out. It is generally sometimes more efficient to have a slightly varying
instrument response, and a more sensitive instrument, than a very stable one with less sensitivity, provided
the varying terms in the response are slow and may be easily calibrated out. At millimeter wavelengths
the atmospheric absorption and path length fluctuations will dominate the instrument imperfections in
most cases.

For a given observation, if we interpret the correlator response (amplitude and phase) as the source
visibility, ignoring any imperfections, we have an observed (apparent) visibility 17}]- (t), where i,j are
antenna numbers, v the frequency and ¢ is time. If the true source visibility is V;;(t), we may define :

Vi (t) = Gij (t) Vi (£) + €35 (t) + 135 () (9.1)

where the G;;(v,t) are the complex gains of each baseline. 7;;(t) is a noise term resulting from thermal
fluctuations in the receivers; €;;(t) is an offset term. This assumes that the system is linear. 7 phase
switching applied on the first local oscillators is a very efficient method of suppressing the offsets €;;(t);
they are generally negligible and will not be considered any further.
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9.1.1 Baseline based vs antenna based gains

Since amplitude and phase distortions have different physical origins it is generally useful to write
Gij(t) = gi(1)g} (t) = ai(t)a;(t)e’ ¥ =) (9-2)

Here we have split the gains into antenna based factors. This is generally legitimate since the gains repre-
sent properties of the data acquisition chains which are in the analogue part of the system. The correlator
itself is a digital machine and we assume it is perfectly working (including the clipping correction). This
assumption is certainly valid when considering a single frequency and a single instant. When we start
averaging in time or frequency, the average of the product may not be the product of averages, and we
may have some baseline-based effects.

The baseline-based gains can be determined by observing a point source. This is usually a strong
quasar. In that case the true visibilities V;;(t) should all be equal to the quasar flux density S. Then

i (t)
Gij(t) = =5 (9:3)
The antenna gains g;(t) can also be deduced from the non-linear set of equations:
cpy = Valt
ai(0)g; (1) = 51 (9.4

This is a system with N complex unknowns and N(N — 1)/2 equations. In terms of real quantities there
are N(N — 1) measured values (amplitudes and phases; there are only 2N — 1 unknowns since one may
add a phase factor to all complex gains without affecting the baseline-based complex gains. When N is
larger than 2 the system is over determined and may be solved by a method of least squares.

If we note V;; = A;;e'%i, the equations for phases are simply:

b — ;= Gij (9-5)
It can be shown that the least-squares solutions (when the same weight is given to all baselines, and if we
impose the condition }_,_;  ¢; = 0), is given by:
b=y ¢ ©0)
i=N s Pij .
J#i

For the amplitudes we can define in order to get a linear system:

Vit o o= Gy (9-8)
This time the least square solution is, when the same weight is given to all baselines:
= N (I o 2 99
N-1&"%Y (N-1)(N-2)& &
j#i JF£i k#i,>]

Obviously this antenna gain determination needs at least three antennas. For three antennas it reduces
to the obvious result:

_ A A
Aps

9 (9.10)

These formulas can be generalized to the cases where the baselines have different weights.

It can be seen in the above formulas that the precision to which the antenna phases and amplitudes is
determined is improved by a factor v/ N over the precision of the measurement of the baseline amplitudes
and phases.
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9.1.2 (Gain corrections

The determination of antenna-based gains (amplitudes and phases) has an obvious advantage: the physical
cause of the gain variations are truly antenna-based. One may solve for the gains at the time of the
observations, and correct the occurring problems to improve the quality of the data. One may re-point
or re-focus the antennas to correct for an amplitude loss, correct for an instrumental delay (affecting the
frequency dependence of the phases) ...

9.2 Bandpass calibration

In the previous section we have considered a monochromatic system. We have actually finite bandwidths
and in principle the gain coefficients are functions of both frequency and time. We thus write:

‘71']'(”7 t) = gij(ya t)‘/ij(ya t) = gi(ya t)g;(ll, t)Vvij(Va t) (9'11)

If we make the assumption that the passband shape does not change with time, then we should have for
each complex baseline-based gain:

Gij(v,t) = gBij(V)gcij(t) (9.12)
The same decomposition can also be done for the antenna-based gains:

gi(v,t) = gBi(V)gCi(t) (9.13)

9s;(v) is the antenna complex passband shape, which by convention we normalize so that its integral over
the observed bandpass is unity; then g¢;(¢) describes the time variation of the complex gains.

Frequency dependence of the gains occurs at several stages in the acquisition chain. In the correlator
itself the anti-aliasing filters have to be very steep at the edges of each subband. A consequence is that
the phase slopes can be high there too. Any non-compensated delay offset in the IF can also be seen as a
phase linearly dependent on frequency. The attenuation in the cables strongly depends on IF frequency,
although this is normally compensated for, to first order, in a well-designed system. The receiver itself
has a frequency dependent response both in amplitude and phase, due the IF amplifiers, the frequency
dependence on the mixer conversion loss. Antenna chromatism may also be important. Finally the
atmosphere itself may have some chromatic behavior, if we operate in the vicinity of a strong line (e.g. Os
at 118 GHz) or if a weaker line (e.g. O3) happens to lie in the band.

9.2.1 Bandpass measurement

Bandpass calibration usually relies on observing a very strong source for some time; the bandpass functions
are obtained by normalizing the observed visibility spectra by their integral over frequency. It is a priori
not necessary to observe a point source, as long as its visibility can be assumed to be, on all baselines,
independent on frequency in the useful bandwidth. If there is some dependence on frequency, then one
should take this into account.

9.2.2 IF passband calibration

In many cases the correlator can be split in several independent subbands that are centered to different
intermediate frequencies, and thus observe different frequencies in the sky. In principle they can be treated
as different receivers since they have different anti-aliasing filters and different delay offsets, due to different
lengths of the connecting cables. Thus they need independent bandpass calibrations, which can be done
simultaneously on the same strong source.

At millimeter wavelengths strong sources are scarce, and it is more practical to get a relative calibration
of the subbands by switching the whole IF inputs to a noise source common to all antennas (Fig. 9.1). The
switches are inserted before the IFs are split between subbands so that the delay offsets of the subbands are
also calibrated out. This has several advantages: the signal to noise ratio observed by observing the noise



114 CHAPTER 9. BANDPASS AND PHASE CALIBRATION
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Noise
Source
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1 2 3 4

IF Passband calibration setup

Figure 9.1: IF passband calibration scheme

source is higher than for an astronomical source since it provides fully correlated signals to the correlator;
then such a calibration can be done quite often to suppress any gain drift due to thermal variations in the
analogue part of the correlator. Since the sensitivity is high, this calibration is done by baseline, so that
any closure errors are taken out.

When such an “IF passband calibration” has been applied in real time, only frequency dependent
effects occurring in the signal path before the point where the noise source signal is inserted remain to be
calibrated. Since at this point the signal is not yet split between subbands, the same passband functions
are applicable to all correlator subbands.

At Plateau de Bure an “IF passband calibration” is implemented. Of course when the noise source is
observed the delay and phase tracking in the last local oscillators (the one in the correlator IF part) are
not applied. The precision in phase is 360/vAvAt = 0.5° at 100 kHz resolution which is sufficient for
most projects.

9.2.3 RF bandpass calibration

To actually determine the functions ggp;(v) we observe a strong source, with a frequency-independent
visibility. The visibilities are

Vij(v;1) = gn;(¥) 98 (¥)gci ()9 (1) Vij (1) (9-14)

Then

Vij(yat)

ST (9.15)

9s:(V) s} (V)

since the frequency independent factors cancel out in the right-end side. One then averages the measure-
ments on a time long enough to get a sufficient signal-to-noise ratio. One solves for the antenna-based
coefficients in both amplitude and phase; then polynomial amplitude and phase passband curves are fitted
to the data.
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Applying the passband calibration The passband calibrated visibility data will then be:
Voij () = Vij (v, )/ 90 (v) g8 () (9.16)

the amplitude and phase of which should be flat functions of frequency.

Accuracy The most important here is the phase precision: it sets the uncertainty for relative positions
of spectral features in the map. A rule of thumb is:

AB/6p = Ap/360 (9.17)

where 0p is the synthesized beam, and A# the relative position uncertainty. The signal to noise ratio on
the bandpass calibration should be better than the signal to noise ratio of the spectral features observed;
otherwise the relative positional accuracy will be limited by the accuracy of the passband calibration.

The amplitude accuracy can be very important too, for instance when one wants to measure a weak
line in front of a strong continuum, in particular for a broad line. In that case one needs to measure the
passband with an amplitude accuracy better than that is needed on source to get desired signal to noise
ratio. Example: we want to measure a line which is 10% of the continuum, with a SNR, of 20 on the line
strength; then the SNR on the continuum source should be 200, and the SNR on the passband calibration
should be at least as good.

9.2.4 Sideband calibration

A millimeter-wave interferometer can be used to record separately the signal in both sidebands of the first
LO (see Chapter 7). If the first mixer does not attenuate the image sideband, then it is useful to average
both sidebands for increased continuum sensitivity, both for detecting weaker astronomical sources and
increasing the SNR for calibration.

However the relative phases of the two sidebands can be arbitrary (particularly at Plateau de Bure
where the IF frequency is variable since the LO2 changes in frequency in parallel with the LO1). This
relative phase must be calibrated out. This it is done by measuring the phases of the upper and lower
sidebands on the passband calibrator observation. These values can be used later to correct each sideband
phase to compensate for their phase difference.

During the passband calibration one calculates:

idy _ [ Vijuse (v, t)dv

e — (9.18)
| [Vijuss(v,t)dv|
and
oo = L Vst 015)
| [ Vij.Lsp (v, t)dv]
Then at any time the double sideband visibility is:
Viipss(v,t) = e Vi usp(v,t) + e IV Lsp(v,1) (9-20)

As a result the two terms on the right hand side have zero phase at the time of the pass band calibration
and they keep the same phase during the whole observing session.

At observing time, offsets on the first and second LOs can be introduced so that both ¢y and ¢ are
very close to zero when a project is done. This actually done at Plateau de Bure, at the same time when
the sideband gain ratio is measured (see Chapter 12).

9.3 Phase calibration

We now turn to the more difficult problem of correcting for the time dependence of the complex gains,
contained in the functions gg;(¢). Variations occur in both amplitude and phase. Let us summarize the
various effects to be calibrated:
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o Interferometer geometry:
Small errors in the baseline determination will cause slow phase drifts (period 24 hours); unfortu-
nately these errors are dependent on the source direction so they cannot be properly calibrated out
by phase referencing on a calibrator, only reduced by a factor of the order of the source to calibrator
distance expressed in radians.

e Atmosphere
The atmosphere introduces phase fluctuations on time scales 1s to a few hours, depending on baseline
length and atmospheric conditions (see Chapter 11). The effect of fluctuations on short time scales
is to cause loss of amplitude by decorrelation, while on the long term the phase fluctuations can
be mistaken for structure in the source itself. The critical time there is the time it takes for the
projected baseline vector to move by half the diameter of one antenna:

D 86400 D 450
At = ——F— =224 —— 9.21

te=9%m 15 b (0:21)
This time ranges from 4 minutes to 1 hour for Plateau de Bure, depending on the baseline length.
The phase fluctuations on short time scales may be corrected by applying the radiometric phase

correction method, if it is available.

e Antennas
The antennas may cause variations in amplitude gains due to degradation in the pointing and in
the focusing due to thermal deformations in the antennas. These can be corrected to first order by
amplitude calibration but it is much better to keep the errors low by proper frequent monitoring of
the pointing and focus, since these errors affect differently sources at the center and at the edges
of the field. Focus errors also cause strong phase errors due to the additional path length which is
twice the sub reflector motion in the axial direction.

e Electronics
Phase and amplitude drifts in the electronics are kept low by efficient design (see Chapter 5 and
Chapter 7). The electronics phase drifts are generally slow and of low amplitude, except for hardware
problems.

A detailed analysis can be found in [Lay 1997].

9.3.1 Phase referencing by a nearby point source

This is the standard, traditional way to calibrate the phases with current interferometers. A point source
calibrator is typically observed for T; (a few minutes) every T, (20-30 minutes). One fits a gain curve to
the data observed on the calibrator, this gain curve is an estimate of the actual gain curve gc,;(¢). This
enables removing most long-term phase drifts from the observation of the target source.

Decorrelation It can be shown that the decorrelation factor for a given baseline is approximated by:

frolot / T UPW)d(logy) (9.22)

2 —10g2.5T1

The decorrelation is fundamentally a baseline-based quantity: it cannot generally be expressed as a product
of antenna-based factors. Both the target source and the calibrator are affected, so amplitude referencing
will correct for decorrelation. However, the amount of decorrelation will vary from an integration to the
next, so that the amplitude uncertainty is increased.

Phase referencing The slow component of gq;(t) to be calibrated out is sampled at intervals T, so that
only variations with periods longer than 27, can be followed. However one fits a slow component into the
data points so one is sensitive to errors due to the presence of the fast component: the fast component is
aliased into a slow component. It is essential to fit a curve that does not go through the points.
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Fast phase referencing One may reduce T as much as possible to remove a larger part of the atmo-
spheric fluctuation spectrum. Time scales of the order of 10s may be used, at the expense of:

e the time efficiency is decreased (relatively more time is spent on the calibrator resulting in a larger
overhead)

e caution must be taken that the time 7 may become comparable to the time it takes to water eddies
to drift along the apparent distance between source and calibrator.

Water vapor radiometry A radiometry system may be used to monitor the emission of water vapor
at a suitable frequency in front of all antennas (dedicated instrument or astronomy receiver; water line or
quasi continuum). The fluctuations in the path length can be of a few % of the total path length due to
water vapor.

The fluctuations of the water emission are converted into fluctuations of path length by using an
atmospheric model (see lecture by M. Bremer, Chapter 11). In principle one could hope to correct for all
phase fluctuations this way. However limitations due to receiver stability, to variations in emission from
the ground, and to uncertainty in the determination of the emission to path length conversion factor have
the consequence that it is not yet possible to consistently correct for the variation of path length between
the source and the calibrator.

So far this method at IRAM/Plateau de Bure is used only to correct for on-source fluctuations. Its main
effect is to remove the decorrelation effect due to short-term phase fluctuations, improving the precision
of amplitude determination.

9.3.2 Phase referencing by a point source in the primary beam

We now consider the simple case where the field contains a strong point source: it can be a continuum
source (quasar) or a line source (maser). In that case all phase fluctuations with period longer than
~ 2T} are removed, where T; is the integration time. However statistical errors may be mistaken for true
atmospheric phase fluctuations, causing additional decorrelation.

This method gives good results, but for very specific projects which can be observed in very poor
atmospheric conditions (e.g. observation of radio emitting quasars, of stars with strong maser lines).

9.3.3 Phase referencing using another band or another frequency

It is generally easier to measure the path lengths fluctuations at a lower frequency (even though the phase
scales like frequency), due to both better receiver sensitivity and larger flux of the referencing source.
Moreover, in marginal weather conditions, if the rms phase fluctuations at 100 GHz is ~ 40°, then at 230
GHz they are of ~ 100°, and the phase becomes impossible to track directly due to 27 ambiguities.

If two receivers are available simultaneously, one may subtract to the high frequency phase the phase
measured at the low frequency. The atmospheric fluctuations are cancelled and only a slow instrumental
drift remains. The gain curve at the high frequency is then determined as the sum of two terms: the
low frequency gain curve (including the slow atmospheric terms) plus that slow instrumental drift (which
represents any phase fluctuation affecting one of the signal paths of the two receivers).

This method is currently used at Plateau de Bure.
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This lecture is partially adapted from the IMISS1 course “ Atmospheric Ab-
sorption” By Michel Guélin (sections 10.1 and 10.4.1). It also includes a
description of the phase correction methods (sections 10.5.3 and 10.5.4) by
Martina Wiedner.The author would like also to acknowledge the contributions of the
following people: J. Cernicharo, E. Serabyn and S. Matsushita.

10.1 The physical and chemical structure of the Atmosphere

10.1.1 Constituents of the atmosphere

In order to study the effect of the atmosphere on the outcoming longwave radiation, it is convenient to
subdivide it into a “clean dry” component, water vapor, and aerosols (water droplets, as well as ice crystals,
salt grains & dust particles, which serve as condensation seeds for water).

Abundances Table 10.1 gives the standard composition of the “clean dry” air in the troposphere (i.e at
altitudes < 20 km). Except for CO2, whose abundance at ground level may vary between day and night by
up to a factor of 2, this composition is remarkably homogeneous and constant. Other trace components,
most of which are unstable (SO2, O3, NO, CO, ...) have abundances (in volume) that never exceeds 10~°.

The abundance of water is highly variable, but hardly exceeds 1% in mass, even locally. Most of the
water in the air is in the form of vapor. Even inside the clouds, precipitation and turbulence insure that
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Name Molec. mass Normal abund. | Name Molec. mass Normal abund.
amu (% in volume) amu (% in volume)
N, 28.013 78.084 He 4.003 0.0005
(02 32.000 20.946 Kr 83.8 0.0001
Ar 39.948 0.934 CH,4 16.043 0.0002
COy 44.010 0.033% H, 2.016 0.00005
Ne 20.183 0.0018 N->O 44.013 0.00005

Table 10.1: Main constituents of the dry air in the troposphere.

the mass of water droplets per cm™2 seldom equals that of water vapor. In addition the water vapor
mixing ratios above 15-20 km are under 10 ppmv making it just another trace gas there.

Overall picture of the atmospheric spectrum Despite the above facts, water, which has a large
absorption cross section in the IR and a large specific heat of vaporization, (L,, ~ 600 cal/g), ozone, which
has UV photodisociation bands playing a key role in the stratosphere, and carbon dioxide, which has large
IR absorption cross sections, are the major actors of the thermal balance of the air.

Ozone and to much less extent molecular Oxygen are responsible for most of the absorption of the
solar radiation in the UV, especially between 180 and 290 nm, thanks to these processes: O3 + hv(A <
310 nm) = O2(*Ay) + O( D) (Hartley band), O2(3Z ) + hv(X < 175nm) — O(*P) + O(* D) (Schuman-
Runge band), and O2(*%) 4+ hv(X < 242nm) — O(3qP) + O(®P) (Herzberg band),

In the visible, the air is fairly transparent except for scattering by aerosols, mostly water droplets,
ice crystals and dust particles. In the infrared, HoO, CO> (around 15 pm) and O3 (around 10um) are
very efficient absorbers of the solar and ground radiation, to the extent that they prevent ground-based
observations in large regions of the electromagnetic spectrum.

By clear weather, the atmospheric absorption at millimeter and submillimeter wavelengths is dominated
by rotational and fine structure lines of molecules in their ground electronic and low vibrational states.

The strongest molecular rotational resonances appear in polar molecules (H2O and O3 being the most
important of such molecules in the atmosphere) and are of the type E1 (electric dipole transitions). Intrin-
sically weaker M1 (magnetic dipole) transitions are of considerable practical importance in the atmosphere
due to the high abundance of O,. We will see that collision induced E2 (electric quadrupole) absorption
involving Ny and O, is measurable in the atmosphere. The different atmospheric hydrometeors (water
droplets, snow, graupel, hale, ice cristals,...) scatter and absorb following different patterns across the
longwave (radio to submm) spectral region. All the mechanisms involved in the radiative transfer of
longwave radiation in the atmosphere will be described in this chapter.

10.1.2 Thermodynamics of the air

Gas mixture: Dalton’s law A mixture of ideal gases behaves like an ideal gas:

Partial pressures: p1V = N kT, p2V = NokT, (10.1)

Total pressure: pV = (p1 + p2)V = (N + M2)kT + ... = NEkT (10.2)

Dry air is a mixture of Ny, O, ... molecules. It behaves indeed very much like an ideal gas: R, =
Cp, — Cy, = 8.3143 J/mol-deg (vs 8.3149 for an ideal gas), v,= 1.404 (vs 1.400 for ideal rigid molecules).

Wet air (without clouds) is a mixture of dry air + H2O molecules. It is customary to denote by e
the partial pressure of water vapor, p, that of dry air, and p' the wet air pressure. The specific heats of
water vapor are not that different from those of ideal gases: ¢,, = 25.3 + 21073(T — 273); 7, = 1.37, vs
¢y =3R=249and v = % for a rigid asymmetric top.

Then, Dalton’s law yields:

' £

e e
c=(1- 17)0”“ i = (1+ 0.2p,)cva (10.3)
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The fractional abundance of water vapor and % reaching seldom a few percent, the wet air constants are
within a small correction term equal to the dry air constants. In particular, introducing the volume density
p, it is customary to write:

= Rp'T _ RpT'

10.4
MI Ma ( 0 )
where T' = Aj/\[/llf =T(1- 0.378&)*1, is the virtual temperature.
Then, for the adiabatic expansion of a wet air bubble, one has:
T' = Cst x p™ (10.5)

m' is equal to m, within few per mil, so, in practice, the adiabatic curves of dry air can be used for wet
air (without clouds), provided one replaces T by T' (the difference could reach a few K and could be
important near 0°C). In the following, we drop the ‘prime’ signs, except for the virtual temperature 7".

10.1.3 Hydrostatic equilibrium

At large scales, the air pressure and density depend essentially on the massive and slowly varying dry
component and are well described by hydrostatic equilibrium. The air temperature, as we have seen,
depends significantly on the abundance and distribution of water, CO2 (and Oj for the stratosphere).

At equilibrium:

pRT'
M,

dp/dh=—gp p= (10.6)

where p is the density at an altitude h, p is the pressure, T' ~ T the air “virtual” temperature. M, ~ 29
is the average molecular weight, and g the local gravitational field.

@ — _gMa
p RT"

dh (10.7)

In the “standard atmosphere” model, T', the temperature of the air varies linearly with altitude and is
given throughout the troposphere (i.e. between h=0 and 11 km) by: T’ = T, — b(h — h,), where b
(in Kkm™!) is a constant. Let us first consider a relatively small change in altitude: h — h, < 1 km,
T ~T! .= (T"(h) +T'(h))/2; we find Laplace’s hydrostatic formula:

ave

_ gMgh
LAPNE QPPN e (10.8)
po  Po

where p, is the density at sea level and h, = RT/M,g = 8.4(T/288) km, the scale height. The gas column
densities (expressed in g.cm™2) along the vertical above sea level (N,) and above a point at altitude h (V)
are:

NoM, = /pdh =poho ; N = N,e h/he (10.9)

For larger altitudes, from Eq.10.7 and dh = —dT"/b, then:

dp  gM, dT’ T . 4
2 =y
p bR T T

o

(10.10)

with s = gM,/(bR).

Although the above equations represent fairly well the density and pressure throughout the troposphere,
the temperature distribution can depart significantly from the above linear variation near the ground. This
ground heats up faster than the transparent air during the day, and cools off more rapidly during the night.
The temperature gradient at low altitudes (up to 1-2 km) can be thus steeper or shallower than described
by b (Kkm™1!). Occasionally, it can be inverted, the temperature increasing with altitude. The inversion
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layer usually stops briskly at 1 or 2 km altitude and the normal temperature gradient resumes above.
Inversion layers are common during the night over bare land. They can also be caused by hot winds
blowing from the sea.

The local temperature gradient determines stability of the air to vertical motions. A rising bubble of
wet air expands adiabatically as long as the water vapor it contains does not condense. Expanding, it
cools almost as an ideal gas with:

T x p™ and m = (1 — 0.23¢)m, ~ m, (10.11)

The pressure is set by the surrounding air (Eq.10.8), and the bubble seen to cool down with an “adiabatic”

gradient of
dT M,

= 9.8Kkm™!

dn — 7 C,
If the actual temperature gradient is smaller than the adiabatic gradient, the bubble becomes cooler, hence
denser than the surrounding air and its ascent stops. The air is stable. If the local gradient is larger than
the adiabatic gradient, the bubble becomes less dense than the surrounding air; the air is unstable and a
thick convection layer develops, a situation likely to happen in a hot summer afternoon.

10.1.4 Water

The scale height of water, h,,, which results from a fast evaporation/condensation process, is small (typ-
ically 2 km) compared to the equilibrium scale height h, = 8.4 km. At h = 2.5 km, the altitude of
the Plateau de Bure, the water vapor column density N, (or w, “amount of precipitable water”, when
expressed in g.cm™2, or cm of water) is normally reduced by a factor of 3-4, with respect to sea level.
This factor, as we have seen, is strongly modulated by the local temperature gradient. w is lower in the
presence of a low altitude inversion layer which reduces the vertical turbulence and traps most of the water
well below the observatory.

10.2 Atmospheric radiative transfer in the mm/submm

Due to space constraints in this book we cannot provide a very detailed overview of all aspects involved
in modeling the longwave atmospheric spectrum. The author and co-workers have recently published an
in-depth description of their radiative transfer model ATM (Atmospheric Transmission at Microwaves,
Pardo et al [2001b]) that can serve as a reference for the information that is missing here. That model
has been adopted in this chapter.

10.2.1 Introduction

Accurate modeling of the longwave emission/absorption spectrum of the terrestrial atmosphere is needed
in many scientific applications. In the astrophysical domain, it is needed to predict the atmospheric
attenuation at a given frequency for ground-based and airborne observatories, to calculate system noise
temperatures and to estimate phase delays for interferometry. In remote sensing of the atmosphere and
the Earth’s surface, obtaining useful data for meteorological and environmental studies relies upon an
accurate knowledge of the atmospheric spectrum.

We will see in this chapter how to model the Earth’s atmosphere longwave spectrum. For millimeter
and submillimeter astronomy applications we need to know for a given path through the atmosphere, the
opacity, radiance, phase delay and polarization'.

10.2.2 Unpolarized radiative transfer equation

The unpolarized radiative transfer in non-scattering media is described by a relatively simple differential
scalar equation:

1Polarization can be produced by different mechanisms such as emission of paramagnetic molecules such as O under the
effect of the geomagnetic field, by radiation scattering by hydrometeors, or by reflection on a Fresnel-like (ocean) surface.
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dr, (7,
ds

Sy

= e, — kI (7, 7) (10.12)

where I, is the radiance (in W m~2ster"'cm™1!), €, dwdvdsdo and k,I(7, 7, v)dwdvdods are the amounts
of energy emitted and absorbed at frequency v in a pencil of solid angle dw in the direction 7 through a
cylinder of length ds and cross-section do=dofi. €, and k, are the macroscopic absorption and emission
coefficients. The absorption coefficient gives the fractional loss of intensity (at a given wavelength) per
length through an absorbing medium.

After rearranging equation 10.12 and considering absence of scattering, the radiative transfer problem
is unidimensional in the direction of #. We can formulate it under Local Thermal Equilibrium (LTE)
conditions as follows:

dr,(s")
dr,

— L) + ST (1013)

where s’ is a coordinate along the path, S, = €,/k, is the so-called source function, and dr, = k,ds is the
differential opacity.
The solution of this equation can be given in an integral form:

I,(s) = I,(0)e" (09 +/ S, (s")e ™)k, (s")ds' (10.14)
0

In general, the line-by-line integrated opacity corresponding to a path through the terrestrial atmo-
sphere is calculated in a discrete way as follows:

Tu(s'y8) = Z [ Z ( Z Kuy)jli - As; (10.15)

i(layers) j(molec.) k(resonances)

where As; is the path through the homogeneous i-th layer in the path from s’ to s and no line coupling
between different species is assumed. As pressure increases the calculations have to use thiner layers to
follow the opacity distribution.

The absorption coefficient of an electric dipole (E1) resonance in the atmosphere is given in general by
the following equation:

8 Nv
(ko = e (KT —e P KTy < [ 1S 0 m0) (10.16)

where N is the number density in the relevant vibrational state the molecule, E,, the energy level of the
state and g, its degeneracy, @ is the partition function, p is the dipole operator of the transition and
| w >, |l > are the wavefunctions of the upper and lower states, and, finally, f(v,v;—,,) is the line shape
function. This the basic expression used in the ATM model.

10.2.3 Spectroscopic parameters

Both transition probabilities |[< u | u | I >|* and rotational energy levels (from which both resonance
frequencies and population factors under LTE are determined) can be obtained from the rotational hamil-
tonians. The number of rotational constants depends on the type of molecule. The cases to be considered
in the atmosphere are diatomic or linear molecules (with no magnetic moment), symmetric rotors in 3%
electronic state, and asymmetric rotors.
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Transition probabilities:

The way we parametrize them is the following:

|< 1| pl| J,7" >PP= pirg(J,7,J', 7). J,J' represent rotational quantum numbers, 7,7' are other
quantum numbers, p, is the value of the dipole moment (electric or magnetic), and A\ (J,7,J',7') is a
dimensionless parameter called the oscillator strength of the particular transition.

Partition function:

The case of symmetric linear or diatomic molecules (160, N5O or CO) and the general asymmetric rotors
must be treated individually. In the first case the energy levels are ~hBJ(J+1) where B is the rotational
constant of the molecule in the considered vibrational state. There are corrections to this simple rigid rotor
expression but for CO, for example, the associated parameter D is five orders of magnitude smaller than
B and for other important atmospheric molecules the ratio B/D is even larger. In the case of asymmetric
rotors (Os, SOa,...) there are three main rotational constants (A, B, C) in the Hamiltonian related with
the three principal axes. There are also corrections due to centrifugal and other effects.

Analytical expressions (see Pardo et al [2001b]) can be used in the atmosphere for both types of
molecules within an error not larger than 0.4%.

Spectroscopy of H>O, Oz, O3

Of the major molecular constituents of the atmosphere (see Table 10.1) only water vapor and ozone, owing
to their bent structure, have a non-zero electric dipole moment. Molecular nitrogen, an homonuclear
species, and CQOa, a linear symmetric species, have no permanent electric or magnetic dipole moment in
their lowest energy states. These latter molecules, as is the case for most of gaseous molecules, are singlet
states, with electrons arranged two-by-two with opposite spins. O has a permanent magnetic dipole owing
to two parallel electron spins. It thus presents magnetic dipole transitions of noticeably intensity due to
the large abundance of this molecule in the atmosphere.

We present here the details about the spectroscopy of H,O, O3 and O3 because these molecules domi-
nate the longwave atmospheric spectrum as seen from the ground.

Water vapor Water vapor is a Ca, molecule (degree of symmetry: 0=2) with a relatively high electric
dipole moment: p=1.88-10""%esu-cm. The first vibrational modes of Hi®O are at 3693.8 cm™! (1,0,0),
1614.5 cm™! (0,1,0) and 3801.7 cm~! (0,0,1). The nuclear spins (1/2 for H, 0 for 0 and 180, 1/2 for
170, and 0 for D) lead to two spectroscopically separated species of water: I=1 (statistical weight g=3)
[orto-16:18H, 0], and 1=0 (g=1) [para-H;>'*0]. HDO and HL7O have a hyperfine structure.

For 16:18H,0 each level is denoted, as usual for asymmetric top molecules by three number s Jx_, k., -
J, which is a “good” quantum number, represents the total angular momentum of the molecule; by analogy
with symmetric tops, K_; and K, stand for the rotational angular momenta around the axis of least
and greatest inertia. Allowed radiative transitions obey the selection rules AJ = +1,AK = +£1,3, with
K_1,K 4, :odd,odd < even,even or o,e <> e,0. The levels with K_; and K1 of the same parity belong
to the para species, those of opposite parity belong to orto water.

Molecular oxygen Molecular oxygen, although homonuclear, hence with zero electric dipole moment,
has a triplet electronic ground state, with two electrons paired with parallel spins. The resulting electronic
spin couples efficiently with the magnetic fields caused by the end-over-end rotation of the molecule, yield-
ing a magnetic dipole moment of two Béhr magnetons, fmqe,=2pp5sn,—=1.854-10"2Debyes. The magnetic
dipole transitions of O, have intrinsic strengths ~ 10272 times weaker than the water transitions. Oo,
however, is 102~3 times more abundant than H,O, so that the atmospheric lines of the two species have
comparable intensities.

The spin of 1 makes of the ground electronic state of O a triplet state (3¥). N, the rotational angular
momentum couples with S, the electronic spin, to give J the total angular momentum: N +S = J. The N-S
interaction (and the electronic angular momentum—electronic spin interaction L-S) split each rotational
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level of rotational quantum number N > 1 into three sublevels with total quantum numbers
J=N+1,J=N and J=N-1

the J = N+1 and J = N —1 sublevels lying below the J = N sublevel by approximately 119(N +1)/(2N +
3) GHz and 119/(2N — 1) GHz, respectively. Note that the two identical 10 nuclei have spins equal to
zero and obey the Bose-Einstein statistics; there are only odd N rotational levels in such a molecule.

The magnetic dipole transitions obey the rules AN = 0,£2 and AJ = 0, +1. Transitions within the
fine structure sublevels of a rotational level (i.e. AN = 0) are thus allowed. The first such transition is
the (J,N) = 1,1 « 0,1 transition, which has a frequency of 118.75 GHz. The second, the 1,1 « 2,1
transition, has a frequency of 56.26 GHz. It is surrounded by a forest of other fine structure transitions
with frequencies ranging from 53 GHz to 66 GHz. The first "true" rotational transition, the N =3 «+ 1
transitions, have frequencies above 368 GHz (368.5, 424.8, and 487.3 GHz). In addition, the permanent
magnetic dipole of this molecule can interact with an external magnetic field, leading to a Zeeman splitting
of the energy levels. In our atmosphere this splitting is of the order of 1-2 MHz.

The rare isotopomer 060 is not homonuclear, hence has odd N levels and a non-zero electric dipole
moment. This latter, however, is vanishingly small (10~5D).

Ozone The quantum numbers are as in other asymmetric top molecules, such as H>O. As noted above,
ozone is mostly concentrated between 11 and 40 km altitude; it shows large seasonal and, mostly, latitude
variation. Because of its high altitude location, its lines are narrow: at 25 km, p,, hence Awv, is reduced by
a factor of 20 with respect to see level; moreover, the dipole moment of ozone (u= 0.53 Debyes), 3.5 times
smaller than that of HoO, further reduces the ozone line widths. Because of their small widths and despite
the small ozone abundance, ozone lines have significant peak opacities, especially as frequency increases.
This fact can be seen in the high resolution FTS measurements presented in this chapter.

10.2.4 Line shapes
Absorption

In the lower atmospheric layers (up to ~ 50 km, depending on the molecule and the criteria) the collisional
broadening mechanism (also called pressure-broadening) dominates the line shape. One approximation
to the problem considers that the time between collisions, 7., (ox p~!), is much shorter than the time
for spontaneous emission, 7,4, which is, in the case of a two level system, 1/A,_,; where A,_,; is the
Einstein’s coefficient for spontaneous emission. This approximation leads to the so-called Van Vleck &
Weisskopf profile, normalized as follows to be included in equation 10.16:

vAv 1 n 1
TVu (AV2 + (U —v5u)?2  (AV)2 + (V 4+ vi50)?

fvvw v, vis) = (10.17)

where Av is the collision broadening parameter.

This lineshape describes quite well the resonant absorption in the lower atmospheric layers except for
very large shifts from the line centers. For example, all the mm/submm resonances of HoO and other
molecules up to 1.2 THz are well reproduced using this approximation within that frequency range. Some
properties of the collision broadening parameters in the atmosphere are:

Av(p, T) = Av(po, To) Z (22 (10.18)
po T
Av(M —dry air) = Xn,Av(M — N3) + Xo,Av(M — O3) (10.19)

where X are the volume mixing ratios. Laboratory measurements for individual lines are the only source
of precise information about the parameters v and Av(M — N», Os) for the different atmospheric trace
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gases M. The exponent v has been found in most cases to be in the range 0.6 and 1.0. For O3 and H50
self-collisions have to be considered.

When the pressure gets very low the Doppler effect due to the random thermal molecular motion
dominates the line broadening;:

1 In2 V— Vi
Aom (7)1/2ewp[—(T;)2 In 2] (10.20)

Fo(v, Vi) =

where the halfwidth parameter is given by:

w [2In2kT - T
Avp = 22 ,/nik =3.58-10 v/ — (10.21)
c m M

M being the molecular weight of the species in g/mol.
If the collisional and thermal broadening mechanisms are comparable the resulting line-shape is the
convolution of a Lorentzian (collisional line shape at low pressures) with a Gaussian: a Voigt profile.

Phase delay

Besides absorption, the propagation through the atmosphere also introduces a phase delay. This phase
delay increases as the wavelength approaches a molecular resonance, with a sign change across the res-
onance. The process can be understood as a forward scattering by the molecular medium in which the
phase of the radiation changes.

Both the absorption coefficient and the phase delay can be treated in a unified way for any system
since both parameters are derived from a more fundamental property, the complex dielectric constant, by
means of the Kramers-Kronig relations. A generalized (complex) expression of the VVW profile, which
accounts for both the Kramers-Kronig dispersion theory as well as line overlapping effects (parameter §)
is the following (v = vy ):

v 1—146 1446
_ 10.22
fVVW(V,Vlu) WVlu[Vlu_V_iAV+VIU+V+7:AV] ( ’ )

the imaginary part of which reduces to equation 10.17 when §=0.

10.2.5 Non-resonant absorption
H,0 pseudocontinuum

Lines with resonant frequencies up to a given frequency (10 THz in our case) are included in line-by-line
calculations. Since the true lineshape is not known accurately beyond a few times the halfwidth from the
line centers (this may be due to the finite collision time, the complexity of the calculations and the lack of
precise laboratory data), a broadband “continuum’-like absorption term needs to be included for accurate
results in the longwave domain.

Dry continuum-like absorption

The non resonant absorption of the dry atmosphere is made up of two components: collision induced
absorption due to transient electric dipole moments generated in binary interactions of symmetric molecules
with electric quadrupole moments such as No and O, and the relaxation (Debye) absorption of Os.

Pseudocontinua in ATM

In the ATM model model, we introduce collisionally-induced dry absorption and longwave (foreign) pseu-
docontinuum water vapor absorption derived from our previous FTS measurements performed on top of
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Mauna Kea, Hawaii. For both terms we use v? frequency power laws, with the coefficients as determined
by Pardo et al [2001a)].

Ko 1,0 = 0.031- (%)2 [ﬁ : 1;0_1;] : (?)3 m~! (10.23)
Kewdry = 0.0114(20_1;)2(2)3'5 (2—’;5)2 m=! (10.24)

The validity of these expressions is restricted to frequencies <1.1 THz (the upper limit of our current data),
although there are indications that they can be extended to 2 THz with no important loss of accuracy.

10.2.6 Radiative transfer through atmospheric hydrometeors

The equation describing the transfer of radiation through an atmosphere that contains scatterers is as
follows:

1
W) — Ko 1Geu) 20 [ Moo )G )i = (e, BTG (10.23)
where:
e I=(I,Q,U,V)7T is the Stokes vector describing the propagating electromagnetic field.
e K is the extinction matrix.
e M is the zeroth Fourier component of the phase matrix.
e ¢ is the emission vector.
e B(T) is the blackbody spectrum at temperature T.
e p=cos(f) (f=zenith angle, 0=>downwards). The frequency dependence in several of these quantities is
implicit. Finally, z is the vertical coordinate in a plane-parallel atmosphere.
K, M and o are related according to:

+1
K(p) =2m Mz, p, w)dw + o(p) (10.26)

-1

which is a consequence of the detailed energy balance.

The frequency independent (excluding Raman effect or fluorescence) far-field scattering by single non-
spherical particles has been incorporated to the ATM model. It is computed using state-of-the-art T-Matrix
routines developed by Mishchenko [2000]. For the integration over all possible orientations to be possible,
it is necessary to be in the single scattering regime. Then, each particle is in the far-field zone of the
others. This implies that the average distance between particle centers is larger than 4 times their radii.
This requirement is usually satisfied by cloud and precipitation particles. The scattered fields are then
incoherent and their Stokes parameters can simply be added.

For estimates concerning the effect of clouds to ground-based observations a plane parallel geometry is
assumed, as a first approach, with thermal emission as the only source of radiation. The hydrometeors can
be either totally randomly-oriented or at least azimuthally randomly oriented. In both cases, the radiation
field is azimuthally symmetric leading the Stokes parameters U and V to vanish so that the dimension of
tensorial equation (10.25) reduces to be 2. This radiative transfer equation can then be integrated using
the quite standard method called doubling and adding, introduced in the ATM model according to Evans
& Stephens [1991].

To illustrate the effect of two different types of clouds, we have performed first a simulation where we
add to a clear atmosphere containing 1 mm of water vapor a layer between 6 and 6.5 km that contains
spherical water droplets with a radius of 40 ym and a liquid water path of 0.1 km/m?. The second
simulation replaces the water droplets for spherical ice particles with a radius of 100 ym. The effect of
liquid water is quite large since it is a quite effective absorber. The effect of ice is much more related with
its scattering properties and becomes more important at shorter wavelengths.
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Figure 10.1: Simulations of the effect of clouds in the brightness temperature of the atmosphere at zenith.
The liquid water and ice layers have been placed between 6.0 and 6.5 km, the equivalent water path is 0.1
km/m? for both but the size of the spherical particles is 40 pm for liquid water and 100 ym for ice. The
considered atmosphere contains 1 mm of water vapor column.

10.3 Fourier Transform Spectroscopy for site testing

10.3.1 FTS measurements at Mauna Kea

Broadband submillimeter atmospheric measurements with a Fourier-transform spectrometer have been
performed in recent years at the Caltech Submillimeter Observatory (CSO) with the primary goal of
accurately measuring the atmospheric transmission in the submillimeter-wave domain and using the data
to build a state-of-the-art transmission model.

The instrument used for this work has been described in Serabyn & Weisstein [1995]. Recently, new
1.1 THz and 1.6 THz low-pass filters have been installed in front of the 3He cooled bolometer detector in
order to efficiently cover both the full subTHz domain and the supraterahertz windows that are predicted
by theory. The first successful measurements on Mauna Kea using the 1.1 THz filter were obtained on the
night of 1998 April 1% under extremely dry “El Nifio” conditions. It was estimated that the HoO column
was under 0.2 mm, so it is clear that these data offered the best opportunity for a determination of the dry
and wet longwave nonresonant terms [Ke,ary(V), Ke,my0(v)]. However, to separate one from the other, an
independent measurement under the same P/T conditions was needed. This occurred in a second run in
July 1999, greatly simplifying our analysis (see Figure 10.2). From these 2 datasets, our goals have been
to:

I) Extract the dry continuum from our measurements and determine its origin.

IT) Determine the HyO excess absorption in the submillimeter domain in low humidity conditions (when
only foreign-gas collisions have to be taken into account), and compare it to proposed formulations.

The separation of these two terms using the data from the upper panel of Figure 10.2 is described in
detail in Pardo et al [2001a] and leads to the formulation given in section 10.2.5. This is the first time
that such a separation is done successfully in the submillimeter.

Our results indicate that the HoO and dry continuum-like terms of existing models are not accurate
in the submillimeter range and that the models should be updated accordingly. This has been done in
Pardo et al [2001b]. The lower panel of Figure 10.5 shows the April 98 data and the separate opacity
contributions that add up to fit the observed opacity.
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Figure 10.2: Upper panel: High resolution fully calibrated FTS atmospheric zenith spectra (Av=199
MHz) obtained with the FTS experiment at Mauna Kea (Hawaii). Bottom Panel: Fit of the above April
98 zenith spectrum, shown in terms of opacity on a logarithmic scale. The opacity contributions from the
different species and the continua leading to the final fit are plotted separately (assuming a VVW line
shape for water). The middle panel shows the fit residual when using a VVW lineshape. The bottom panel
is the difference between the fit considering VVW lineshapes and the one considering Zhevakin-Naumov
(ZN) profiles.
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Figure 10.3: Atmospheric transmission spectrum obtained at Pampa La Bola on 1998 June 17 (courtesy of
Satoki Matsushita). The absorption line and continuum components from the ATM fit of the data, along
with the fit residual are also shown.

10.3.2 FTS measurements at Atacama (future ALMA site)

Two other FTS experiments are reported at sites in the Atacama desert, undergoing site testing measure-
ments in areas selected for the Atacama Large Millimeter Array (ALMA) construction.

The first of such experiments has been operated by Nobeyama Observatory at Pampa la Bola, 4800 m
above sea level in northern Chile on September 1997 and June 1998. The instrument is a Martin-Puplett
type FTS with an InSb bolometer as detector. The frequency range covered is 150 — 1600 GHz (or 2 mm
to slightly under 200 ym wavelength). Further details on the instrument can be found in Matsushita et al
[1999].

On the morning of 1998 June 17, the best atmospheric transmission spectrum of the experiment was
recorded. (Fig. 10.3, top). However, due to the limited sensitivity around 1500 GHz and offset errors in the
phase correction of the Fourier-transformed spectra, there are some systematic errors in the transmission
spectra around the 1450 — 1600 GHz window (it could be up to 10% in transmission). During the observing
run, side-by-side measurements with the second FTS experiment in the area (at Chajnantor [Paine et al
2000]) were performed. The measured transmission spectra showed very good correspondence to each
other within an accuracy of < 1% in the 650 GHz and 850 GHz windows.

Again, radiative-transfer calculations using the model ATM were performed to fit the data. The best fit
of the June 17t* spectrum is shown in Fig. 10.3. The model, that took advantage of what we learned from
the Mauna Kea data, fits very well the observed spectrum with only one free parameter (the precipitable
water vapor column [Ng,o] above the site) except for frequencies higher than 1350 GHz, where the
measurement, suffers from systematic errors. The fit results in a water vapor column of 0.284 mm.
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10.4 Atmospheric absorption evaluation

Calculations of zenith atmosphere opacity at 2.5 and 2.9 km, the altitude of the IRAM sites, can be
performed with the updated ATM model [Pardo et al. 2001b] (see Figure 10.4). In fact, the model itself
has been installed on-line on the IRAM telescopes of Pico Veleta and Plateau de Bure; it is activated
at each calibration or skydip and allows to interpret the observed sky emissivity in terms of water and
oxygen contributions and of upper and lower sideband opacities. Note that the opacities derived from sky
emissivity observations do not always agree with those calculated from the measurement of P, T, and the
relative humidity on the site, as water vapor is not at hydrostatic equilibrium.

The typical zenith atmospheric opacities, in the dips of the 1.3 mm and 0.8 mm windows (e.g. at
the frequencies of the J = 2 — 1 and 3 — 2 rotational transitions of CO, 230.54 and 345.80 GHz ), are
respectively 0.15-0.2 and 0.5-0.7 in winter at the IRAM sites. The astronomical signals at these frequencies
are attenuated by factors of respectively ~ 1.2 and 2 at zenith, 1.3 and 2.8 at 45 degree elevation, and
1.7 and 6 at 20 degree elevation. Larger attenuations are the rule in summer and in winter by less
favorable conditions. The J =1 — 0 line of CO, at 115.27 GHz, is close to the 118.75 GHz oxygen line.
Although this latter is relatively narrow, it raises by ~0.3 the atmosphere opacity (which is 0.35-0.4). The
atmosphere attenuation is then intermediate between those at 230 and 345 GHz (by dry weather, however,
it is more stable than the latter, since the water contribution is small). The measurement of accurate
CO line intensity ratios (even not considering the problems linked to differences in beam size and receiver
sideband gain ratios) requires therefore good weather, a high source elevation, and a careful monitoring
of the atmosphere.

During the past few years, new ground-based astronomical observatories have been built to allow
access to the submillimeter range of the electromagnetic spectrum. Potential sites are now being tested
for more ambitious instruments such as the Atacama Large Millimeter Array (ALMA). All of these are
remote, high altitude sites. For our simulations we have selected three sites of interest for submillimeter
astronomy: Mauna Kea, HI, USA (LAT=19:46:36, LONG=-155:28:18; home of the Caltech Submillimeter
Observatory, James Clerk Maxwell Telescope and Submillimeter Array), Chajnantor, Chile (LAT=-23:06,
LONG=-6T7:27; site selected for ALMA) and the Geographic South Pole (site of the Antarctic Submillimeter
Telescope and Remote Observatory). The results of this comparison are also shown on Figure 10.4.

10.4.1 Correction for atmospheric absorption, 77

By analogy with the Rayleigh-Jeans approximation, I = 2kT/A\%, which strictly applies to long wave-
lengths, the mm-wave radio astronomers have introduced the concept of “radiation” or “effective” temper-
atures, which scale linearly with the detected power.

The noise power detected by the telescope is the sum of the power received by the antenna, Wy, and
of the noise generated by the receiver and transmission lines, W;.c..

Using Nyquist’s relation W = kT Av, W4 and W, can be expressed in terms of the temperatures Ty
and T... of two resistors, located at the end of the transmission line, which would yield noise powers equal
to Wa and Wi, respectively: Wa + Wiee = kTAAV + kTrec Av = k(T4 + Trec) Av.

T4 is called the “antenna temperature” and T... the “receiver temperature”. T4 becomes Tj,,q4 When
the receiver horn sees a load, instead of the antenna, and T}, when it sees the ground. It should be noted
that Tjoqq and Ty, are not stricto sensus equal to the load and ground physical temperatures, but are
only “Rayleigh-Jeans” equivalent of these temperatures (they are proportional to the radiated power). For
ambient loads, they approach closely the physical temperature, since hv/k ~ 11 K at A = 1.3 mm.

When observing with the antenna a source and an adjacent emission-free reference field, one sees a
change AT4 = Ta(sou) — Ta(ref) in antenna temperature. Because of the calibration method explained
below, it is customary, in mm-wave astronomy, to replace ATy, the source antenna temperature, by AT},
the source antenna temperature corrected for atmosphere absorption and spillover losses. Both are related
through: T4 = (1 — 9f)Tyr + 15 (Tsky + AT4e™7), where 7 is the line-of-sight atmosphere opacity. 71y is
the forward efficiency factor, which denotes the fraction of the power radiated by the antenna on the sky
(typically of the order of 0.9, see also Chapter 1).

The source equivalent “radiation temperature” Tg (often improperly called “brightness temperature”
and therefore denoted Thp when it is averaged over the main beam) and AT} are related through
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Figure 10.4: Calculated zenith atmospheric transmissions and continuum-like opacities for Mauna Kea,
Chajnantor and the South Pole corresponding to the 15 quartile of the cumulative water column statistics
for winter time in the three sites. The HoO cumulative distributions used here were derived from different
methods leading probably to a comparative optimistic result for the South Pole. For comparison we have
added the expected transmission in the millimeter range for Pico Veleta in winter for 1.5, 3.0 and 5.0 mm
of water vapor.

AT, = / TrA(z,y)dzdy

where A(z,y) is the antenna power pattern. For a source smaller than the main beam, AT} = ny/nsTms
(where 7 is the beam efficiency factor, see also Chapter 1).

When observing a small astronomical source with temperature ATg >> Tpg = 2.7 K, located at an
elevation el, one detects a signal Vg, (of scale: G volt or counts per Kelvin):

V -7
% = Mour = Trec + (1 — ’l]f)TgT -+ nfTsk:y + anMB X e (10.27)

This signal can be compared with the signals observed on the blank sky (T,t), close to the source,
and to that observed on a hot load (Tjoqeq):

Matm = Trec + (]- - nf)Tgr + nfTsky; Tsky = (1 - e_T)Tatm; Mioaq = Trec + Tioaa (1028)

here, we have neglected the cosmic background and assume, in a first step, that the receiver is tuned single
sideband.
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Simplest case

(e.g. [Penzias & Burrus 1973])
Let’s assume that Tjoaq = Tgr =~ Tyotm; then:

Migaa — Mot = nngr67T
Msour_ atm — ATZG_T
M - M
ATy = wr  —amy (10.29)

Mload - Matm !

Note that in Eq.10.29, the measurement of the antenna temperature includes the atmospheric opacity
correction, but does not depend explicitly on an assumption on the atmospheric opacity. We can write:

Msour - Matm
AT = ————"T 10.30
A Mload - Matm cal ( )

where we define T,o; as Teqi = N5 Tgr = N Tatm-

More realistic case

Typically, the mean atmosphere temperature is lower than the ambient temperature near the ground by
about 40 K: Ty ~ Ty — 40 K; then, the formula above still holds if we replace T¢q; by:

Tcal = (Tload - Temi)eT (10'31)
with Ters = TSkC’/nf + (1 - nf)Tgr
_ (Thoad + Trec) X Matm T (10.32)
Mload
Tsky = (1 —e 7)(Tyr —40)

T,ec, the receiver effective temperature is usually calculated by the Y factor method using a cold load
(usually cooled in liquid nitrogen, i.e. at 77 K) and an ambient load (e.g. at 290 K).

Mhot_load Thot_load - YTcold_load
Trec =

Y=—""""=—" =
Mcoldiload Y-1

(10.33)

General case

The receiver is not purely single-sideband. Let us denote by G! and G* the normalized gains in the receiver
lower and upper sidebands, G + G* = 1. The atmosphere opacity per km varies with altitude as does the
air temperature.

Then, the above expressions of Tk, and Tep; should be explicited for each sideband (j = u or I):

Tsjky = (]‘ - e77—1)1—‘11‘7‘tm (1034)
Temi = TlhynsG' + Th,nsG" + (1= np)Tyr (10.35)

The atmospheric transmission model ATM allows to calculate iteratively 7, from a load+ sky measurement.
The values of 7!, 7% are calculated for the Standard US atmosphere (parameters are: Winter-, Spring-,
or Summer-temperature T', altitude, latitude, water vapor w) by summing up the contributions of O,
H>0 and O3 (including rare isotopes and vibrationally excited states). A first guess of the amount of
precipitable water is made from the ambient temperature, pressure and humidity. Then, the expected
Tsry and T,p; are calculated from the two expressions above and Tey,; is compared to its value measured
from the the observation of the atmosphere and the load (Eq.10.32). The value of w is changed and the
calculation of 77, T, v and T¢,,; restarted. Normally, the process converges after 2 to 4 iterations. Once w
and T,,,,; are known, the calibration factor T,,; can be derived

T, = (Tioad — Temi)e™ (10.36)

ca

and the data calibrated in the T} scale using Eq.10.30.
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10.5 Phase fluctuation evaluation

10.5.1 Cause of Phase Fluctuations

The phase measured by an interferometer is the difference in the arrival times of the signals at the different
antennas. The phase difference contains useful information about the location and structure of the source,
but is also affected by atmospheric inhomogeneities. The complex dielectric constant fluctuates in time
and in space as the distributions of water droplets, ice particles, and atmospheric gases suffer variations.
In the case of clear atmosphere (no scatterers present) the main source of phase delay is water vapor.
When there is more water vapor along the optical path of one of the telescopes, the incoming radiation
will experience an additional delay and the measured phase will increase by A¢. With wind the amount of
water vapor in the beam of each telescope will change over time and so will the detected phase. This phase
delay has a resonant behavior as seen in section 10.2.4. As a result, the source appears to move around
in the sky and, if the signals are integrated over a period of time which is long compared to the time
scale of the fluctuations (few to tens of seconds), resolution as well as signal strength will be degraded.
Fluctuations in the dry component of the atmosphere can also originate phase delays but these are in
general less important.

10.5.2 Simulations of phase fluctuations

Present day radio interferometers are mostly limited to frequencies below 350 GHz. Phase delay increases
in importance as the frequency increases into the submillimeter domain because of the strength of the
atmospheric lines involved in both absorption and dispersion. Using the complex line shape of equation

10.22 we have calculated the derivative of the phase delay respect to the water vapor column 1\(?520 (this

derivative will be called the differential phase and is provided in deg/pm here). The differential phase as a
function of frequency has been plotted for the Chajnantor site in Figure 10.5 (where the curve is restricted
to those frequencies where the transmission is above 10% when the precipitable water vapor column is
0.3 mm, i.e. very good conditions for single-dish submillimeter observations). Another useful quantity
plotted in the same figure is the derivate of the phase delay with respect to the sky brightness temperature
(TB,sky), since this function relates the phase correction between two antennas to a measurable physical
parameter (Tp 44y). Note however that whereas the differential phase described above depends only on
ANg,0, this new quantity depends on Ng,o as well. The curve plotted here corresponds to g—%(v) at
Ni,0=0.3mm.

As seen in Figure 10.5, the differential phase becomes much more important in the submillimeter
domain than it is at millimeter wavelengths, so its correct estimation and the selection of the best means
of monitoring water vapor column differences between different antennas are essential for the success of
ground-based submillimeter interferometry. For example, the differential phase is 0.0339 deg/um at 230
GHz whereas it is -0.4665 and 0.2597 deg/um at 650 and 850 GHz respectively, roughly an order of
magnitude larger.

10.5.3 Phase Correction Methods

There are basically two different phase correction methods:

A) The phase offset due to the atmosphere can be measured directly by observing a calibrator, i.e., a
strong point source whose position and hence theoretical phase are well known. Assuming instrumental
errors are small the difference between the measured and the theoretical phase gives the phase offset
introduced by the atmosphere. The phase offsets, which are interpolated between measurements on the
calibrator, are subtracted from the measured phase of an astronomical source.

B) The correction can be determined indirectly by detecting the emission from water molecules and
calculating the phase error from the differences in the amounts of water along the paths to the individual
antennas using a model as presented on Figure 10.5. There are two different approaches to determine the
amount of water vapor: (i) Total Power Method, where the astronomical receivers measure the continuum
emission; and (ii) Radiometric Phase Correction, where the emission from water lines is measured by
dedicated instruments. So far, radiometers monitoring the 22 GHz and the 183 GHz lines have been built
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Figure 10.5: Upper panel: Derivative of the phase delay respect to the water vapor column (differential
phase in text; this derivative is independent of the water vapor column) as a function of frequency,
superposed on the Chajnantor atmospheric transmission curve for 0.3 mm of water vapor. Lower panel:
Derivative of the phase delay respect to the sky brightness temperature for 0.3 mm HyO column.

and tested. Receivers at 22 GHz typically have lower noise temperatures than those at 183 GHz, but on
(very) dry sites, such as Chajnantor, the 183 GHz monitors will be ideal to measure the optical path with
higher accuracy due to the much higher conversion factors from sky brightness temperature in K to optical
path length in mm.

10.5.4 Example of phase correction

Fig. 10.6 shows typical phase correction results in normal night time weather for Mauna Kea (2.2 mm
Nn,0): The CSO-JCMT interferometer observed bright hydrogen recombination line maser emission
towards the source MWC349 at 354 GHz. The solid curve in the top plot displays the measured phase
after Doppler correction, it represents the atmospheric phase fluctuations and some electronic phase noise.
The dashed line shows the phase predicted by the water vapor monitors. The measured and the predicted
phase agree well and their difference is plotted in the lower graph. Phase correction reduces the rms phase
fluctuations from 60° (140 pm) to 26° (60 pum) over 30 minutes. If one would integrate on source for 30
minutes 42% of the astronomical flux would be lost due to decorrelation, but with phase correction the
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Figure 10.6: Phase correction results for the CSO-JCMT interferometer using 183.31 GHz 3-channel water
vapor monitors (courtesy of Martina Wiedner).
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loss would amount to only 10%.
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Chapter 11

Atmospheric Fluctuations

Michael Bremer

bremer@iram.fr

IRAM, 300 rue de la Piscine, F-38406 Saint Martin d’Héres, France

11.1 Introduction

We have already encountered the effects of atmospheric absorption in the lecture by Michel Guélin (Chapter
10). Even under low opacity conditions, observations can be difficult or impossible due to atmospheric
phase fluctuations. In principle, integration of an interferometric signal is like the adding up of vectors.
The amplitude is the length of a vector, and its orientation is given by the phase. Errors in the phase will
cause part of the amplitudes to cancel each other out according to Eq. 11.1

VI = Vi exp (=03 /2) (11.1)

where Vj; are the ideal visibilities, V7 the integrated ones, and o4 the phase noise in radian (assuming a
Gaussian noise distribution).

If our eyes were sensitive in the millimeter range with a resolving power of some arc seconds, we
would not only see a luminous sky where sources are difficult to make out on the background: we would
notice refracting bubbles of sizes between some centimeters to several kilometers drifting with the wind,
merging, separating and distorting the view behind them. It is water vapor which has not attained the
concentrations necessary for cloud formation, and mixes badly with dry air. Even in the case of low opacity
and a sky clear for human perception, these distortions - which are shifts and tilts in the incoming phase
front - can be so important that they make observations impossible.

In this lecture we will study the physics behind this effect and possible ways to correct for it which
have become available in recent years.

The phases of a wave front that reaches ground-based observatories have been modified by their journey
through refractive index variations in the Earth’s atmosphere. The instrument itself has no way to tell

139
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)

Figure 11.1: Two single dish radio telescopes and one synthesis array observing a source. Angular resolution
and the effects of atmospheric turbulence increase with the diameter of an instrument. An interferometer’s
synthesized beam has the same problems that a single dish with a projected baseline’s diameter would
experience.

which part of the phases are due to valuable structure in the astronomical source and which part was
caused during the last kilometers in front of the telescope.

As a result, the apparent position of a point source keeps moving, so that details of an extended
source become blurred (“seeing”). The perturbations become progressively decorrelated with increasing
separation between two lines of sight.

Depending on turbulence scale, wavelength and telescope size, a ground-based observer will be con-
fronted with different effects. To some extent, one can reduce unwanted perturbations by choosing an
observatory’s site carefully. But there are always some days which are better than others.

e If the telescope diameter is much larger than a typical turbulence cell and if phase shifts over a
turbulent cell are less than 1 radian, one works in the diffractive regime: some power is scattered into
an error beam, but the diffraction limited resolution of the instrument is conserved. These conditions
can be found for very long baseline interferometry at cm wavelengths under good conditions.

e In the refractive regime, the turbulence cells are much larger than the telescope so that the whole
image seems to move around. Phase shifts can be several radians. This is the case we have to cope
with at the Plateau de Bure interferometer.

¢ In the intermediate case, one gets speckles on short integration times which average into an image
convolved with a seeing disk (an effect well-known to optical and near infrared observers).

For a small radio telescope, the phase noise passes unnoticed (Fig.11.1). Its beam size is bigger than
the apparent position shifts induced by seeing, and the ray paths leading to the opposing outer edges of
the reflector will not differ much. For a big single dish, the effect can become noticeable: under unstable
conditions, a source may wander in and out of the beam, disturbing not only the observations of the
target of interest but also pointing and focus. An interferometer suffers even more from seeing because
the distances between individual antennas are large. This has the double effect of making the synthesized
beam smaller and of increasing the differences in the atmospheric turbulence pattern between the optical
paths. In the optical and near infrared, it is the dry atmosphere which causes the phase shifts. In the
centimeter radio range, it is the tropospheric water vapor and the ionospheric plasma irregularities, and
mainly water vapor in the millimeter radio range.

The interest of interferometric phase correction is to determine and remove the atmo-
spheric phase noise. Each individual antenna has to correct a time variable “piston” in the
incoming wave front, which is the equivalent of adaptive optics for the synthesized dish.
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Figure 11.2: Atmospheric phase noise as a function of baseline length. The position of the break and the
maximum phase noise are weather dependent.

Most of the water vapor is confined to the troposphere (<10 km) with an exponential scale height of
2 km. Tts molecular weight is 18.2 g/mol so that it has the tendency to rise above dry air (28.96 g/mol).
Our planet retains the water vapor due to the negative vertical temperature gradient in the troposphere,
and the fact that H2O is close to the transition points to liquid and solid under terrestrial pressure and
temperature conditions. Venus is an example for a planet with a hot troposphere (extreme CO2 and H,O
greenhouse effect) who lost most of its water long ago.

Under Earth’s environmental conditions, water vapor mixes badly with dry air and tends to form
bubbles with sizes up to several kilometers, which are broken up by turbulent motions. When choosing
high and dry sites for millimeter astronomy, one must keep in mind that high phase noise can be induced
even by low amounts of precipitable water.

Parameters that influence interferometric phase noise strongly are:

e wind speed,
e projected baseline length,

e the time of the day (nights are typically more stable due to the missing solar energy input to
turbulence),

e topographic effects, e.g. the turbulent wakes of mountains.

The leveling off of the phase noise on a high, constant value corresponds to the outer scale size of the
turbulence, where the fluctuations along two lines of sight become totally decorrelated, i.e. as bad as they
can possibly get (Fig. 11.2). Increasing the baselines will not increase the phase noise any more, and this
is why very long baseline interferometry can work.

In the following, some fundamentals about turbulence will be explained, and how one can analyze
the properties of a turbulent atmosphere. Possible methods to monitor the phase fluctuations will be
discussed, with emphasis on the phase monitoring system on the Plateau de Bure. Some examples with
observational data will be presented, demonstrating its benefits and current limitations.

11.2 Hydrodynamical basics of turbulent motion

Turbulence has its origin in the non-linearities of the hydrodynamical equations of motion. These equations
are not derived from first principles, but present the easiest consistent way of describing the motion of
compressible (gases) or incompressible (liquids) media. Given the complexity of observed hydrodynamical
phenomena (white water rivers, curling smoke, ...) it was doubted for more than a century if the equations
could really be as simple as given below.
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Scepticism was nourished by the fact that some stationary (i.e. time invariant) solutions were mathe-
matically valid but not observed experimentally, which can be understood today by checking the solutions
for their stability. It is an interesting fact that stationary solutions are not always the most stable ones —
this assumption might appear “natural”, but is in fact quite misleading. To find out under which conditions
one has to expect turbulence, we must have a closer look into the equations of hydrodynamics.

In a free flow (i.e. no outer confinements like tubes) and under sub-sonic conditions, one can treat
air as an incompressible medium. This allows to use the Navier-Stokes equations which describe such a
medium with viscosity (Eq. 11.2).

dv dP .
d—‘t/ + 9190 4 gradU-"AV =0 (11.2)
- 2. 4.

The respective terms describe:

1. This part is the complete derivative in time, containing non-linear terms:

av _ov
dt 6t

(Pgrad) ¥ = % L grad (7. 7) =7 x (¥ x7) (11.3)

~ / ~ S
~~

kin. Energy Vortices

2. The pressure term describes the reaction to external forces, and is related to density and temperature
through the equation of state.

3. External forces, described by the gradient of a Potential U. This form makes it easier to include this
term into the others. We are interested here in cases where U is constant in good approximation, so
we can leave this term out in the following.

4. Energy dissipation. Viscous terms, with the Laplacian operator A = V2 = div grad . The material
constant 7 is the viscosity coefficient for incompressive media (there is a term with a second coefficient
for compressive media, but it can be neglected here).

To solve Equation 11.2, one needs:
e the equation of state for the gas,
e the conservation of mass and energy,
e the boundary conditions.

We will not have to deal with these equations directly. If you have to solve them for some reason: There
is a whole class of numerical methods and library codes in the literature, which avoid non-evident pitfalls
concerning different coordinate systems and numerical stability. For the current discussion, we are only
interested in the question of similarity.

Flow problems resemble each other for certain combinations of flow velocity, spatial dimension and
viscosity. This allows to predict the general properties of a hydrodynamic system (and if it is turbulent
or not) from small models or other well-studied cases where the geometries are the same. It is convenient
to change to dimensionless equations by expressing lengths and velocities in units of the system’s typical
length scale [y (e.g. the size of an obstacle) and the unperturbated flow velocity V5.

One obtains not only V' = V/V; and I’ = [ /1y, but must change all other units which are combinations
of the two: #' = t-vg/ly, p' = p-1§ and P' = P -13/v3. As a result, we get the dimensionless equation
Eq.11.4:

av'!  gradP' 1
dt' o Re

AV' =0 (11.4)
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Medium | 7 [g/cms] v =1n/p [cm?/s]
Water 0.010 0.010

Air 0.00018 0.150

Alcohol | 0.018 0.022

Glycerin | 8.5 6.8

Mercury | 0.0156 0.0012

Table 11.1: Examples for viscosity and the kinetic viscosity n/p various media at 20°C (adapted from
[Landau & Lifshitz 1959]). The viscosity changes little with altitude, so that the density dependency of v
dominates and satellites above & 300 km altitude experience a non-turbulent, laminar flow.

which contains Reynold’s number Re = ly- V- p/n. It determines the relative influence of the energy
dissipating term relative to the non-linear turbulent term. A high Reynold’s number will reduce the effect
of AV’  so that turbulence will develop. Each problem has its specific Critical Reynold’s number Re.,
which lies typically between 10 and 100. For a given geometry and a Re > Re., no stable solution exists
(e.g. Figure 41-6 from [Feynman et al. 1964]).

With Eq.11.4 and the viscosities from Tab.11.1, we find that for ambient conditions, wind moving
faster than 1 cm/s hitting an obstacle bigger than 1 cm generates a turbulent flow. A house (10 m) in a
10 m/s wind has Re ~ 6 - 105, mountains Re ~ 1 - 10°.

This means that turbulence is something quite common in our environment. In our daily life, we
encounter many turbulent systems which defy detailed prediction: leaves of wind-moved trees, eddies in
flowing water, the structure of clouds, to name only a few. All these effects are non-linear and will never
repeat themselves exactly, although their parameters stay within certain limits.

It may be surprising that these phenomena have been neglected by classical physics for centuries, to
become finally popular in the wake of chaos theory and the development of powerful computers. One
reason for this was surely the problem of repeating an experiment with inherent chaos exactly, and the
sheer bulk of work for doing the calculations. Linear physics were favored not because they are more
abundant in nature, but because they were easier to understand and reproduce.

Even chaos theory has a hard time with the atmosphere. The famous “strange attractors” which
describe non-repetitive curves in solution spaces are not very useful for turbulence, because one is not sure
if the number of solution space dimensions is finite or not in this case.

Meteorology is a well-known (and sometimes notorious) example for predictions of a non-linear system.
In spite of a network of measurement stations and satellite data, boundary conditions are not known
precisely enough for long term forecasts. This is the famous “butterfly effect”: A butterfly moving its
wings in South America may change the weather in Europe six months later.

But don’t start hunting butterflys to prevent storms right now: this example only illustrates that
non-linear systems do not obey the “small cause - small effect” rule of linear physics but a rather imprecise
“small cause at the right place may have a big effect” rule. So it could be a butterfly, a spoken word, a
thought, or a tree falling in a forest, or all of them together that may tip a balance.

For all practical applications, the interactions are too complex to backtrack the cause — but nevertheless,
the history that makes a leaf move right now in a unique way outside your window contains somewhere the
gravitational pull of faraway galaxies, and your mere presence will leave traces in the turbulent structures
all over the universe (no liabilities implied, fortunately).

A small perturbation may set off a non-linear cause-and-effect chain, but this is only because a turbulent
system can have multiple macroscopically different states without violating the conservation of energy.
Using a statistical approach, we will now discuss turbulence’s energy distribution on different scale sizes.
This is an important step to understand how atmospheric parameters (including phase noise) change with
time and distance.

11.3 Statistical properties of turbulence

We start with a simple model of turbulence. It must explain why the scale size of the finest turbulence
structures becomes smaller and smaller with increasing Re, and should allow to treat the finest details in
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a homogeneous way. It cannot explain why certain structures form and not others, but it describes the
average flow of energy across the scale sizes of turbulence.

e Kinetic energy enters the medium on large scales, in the form of convection or friction on an obstacle
(energy range).

e The energy is transferred towards smaller scale sizes over eddy fragmentation, while the Reynolds
number decreases (inertia range).

e The smallest eddies have sub-critical Re’s, dissipate heat, and are stable (viscous range).

[Kolmogorov 1941] advanced a hypothesis for high (Re > 10® — 107) Reynold’s numbers, postulating that
turbulence in the inertia range was determined only by one parameter e (kinetic energy converted to heat
by viscous friction per unit time and unit mass). In the viscous range, it would only depend on € and the
already discussed viscosity 5. This model treats cases like the seemingly amorph eddies-within-eddies part
in the Fig.41-6 (d),(e) (from [Feynman et al. 1964]). As we have derived in the previous section, (d) and
(e) are indeed the cases to be expected in the troposphere.

The inertia range is interesting for us because it corresponds to spatial dimensions of
some meters to 2-3 kilometers, i.e. the baselines of the PdBI fall into this range.

For the mathematical treatment of highly developed turbulence, one can use a formalism based on
random variations.

Most “classical” statistics represent a given distribution of probability (binomial, Poisson, Gaussian,

..) around a most likely measurement value. For atmospheric parameters like e.g. temperature and wind

velocity, we must make a more general approach: the most likely measurement values vary with time and
space, which means they can be represented by non-stationary random processes. The classical average
and its variation are not very useful to describe these systems.

An instrument for the characterization of non-stationary random variables are structure functions,
which were first introduced by [Kolmogorov 1941]. A scalar structure function has the form given in
Eq.11.5,

Dy (i, ;) = (f(z:) — f(x;))” (11.5)

i.e. a function f(z) is measured at the positions z; and z;, squared and averaged over many samples to
obtain a D¢ (z;,2;). When the average level of f changes, the average differences between f(z;) and f(z;)
stay constant.

The structure function formalism can even be used to describe vector parameters like the turbulent
wind velocity, in this case one simply needs 3 x 3 tensors of structure functions for their description. We
won’t need tensors in the following discussion, however. The detailed mathematical formalism of random
fields would be too much for this course (see [Tatarski 1971] for details). We will only discuss the basic
concepts and their application to phase shifts.

Real atmospheric parameters are functions of time and space. For time dependency, Taylor’s hypothesis
of frozen turbulence has been quite successful (Eq.11.6). It states that the pattern of refractive index
variations stays fixed while it is moving with the wind.

fla,t+t)=f(z = Vau-t',1) (11.6)

This means that for the structure functions, one can either measure at two different sites simultaneously
or measure in one place and compare different times. Time-like structure functions are often easier to
determine because the sampling is continuous and instrumental effects are reduced by averaging. The
velocity V,; is also called “Velocity aloft” and can differ notably from measurements of a ground-based
meteorological station: wind speeds increase with altitude and change direction due to the diminishing
effect of ground friction.

For two measurement points which are a distance r apart from each other, one finds that the structure
functions of many atmospheric parameters (temperature, refractive index, absolute wind velocity, ...)
obey a r?/3 power law. This law can be derived from the theory of random fields, but the easiest way is
as follows:

Consider a velocity fluctuation 6V, (where §V,. may be large) which occurs on a scale size r and a time
t=r/0V,:
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e its energy per mass unit is oc (6V;.)?

The energy per mass and time: € oc §V,2/t = §V,2 /r

Stationary transport of this energy from large to small scale sizes, where it is finally dissipated

e Approximately, Dy, (r) = (V(r; + 1) — V(r;))? is dominated by eddies of size 7, i.e. Dyn(r) = (6V;)2

Therefore, the formula for intermediate scale sizes is:
Dy(r) o (e-7)*/? (11.7)

For a thin layer, refractive index fluctuations and phase fluctuations are identical. This is the thin screen
approzrimation.

Dy(r) = C-(e-r)*/? (1L.8)

In a thick turbulent layer, the phase front encounters multiple refractive index fluctuations and the
power law index changes. This problem can be solved by analyzing the irregular refracting medium over
its Fourier transform. After [Tatarski 1961], the spectral density of the function

D(r)y=r? (11.9)

with 0 < p < 2 is in the three dimensional case

r 2
F'(k) = %sm(wp/mm*@”) (11.10)
m
An important condition is that the fluctuations must have an outer limit, i.e. that the power law does not
increase indefinitely. To get the phase fluctuations from the refractive index spectrum, we take

D, (r) = 4r /000[1 — Jo(kr)]F (k) kds (11.11)

with the Bessel function Jy and finally obtain the power law for thick screen turbulence:
Dy(r) o (e 7)°/® (11.12)

For the phase noise (Agp(r) = /Dy (1)), one has therefore to expect power laws with exponents between
1/3 and 5/6. The absolute scaling factor for the power law and the position of the break where the phase
noise levels off depend on the observing site, and of course on the weather.

Due to the quasi-random nature of phase fluctuations, forecasts and inter/extrapolations can be con-
sidered inadequate for a phase correction system. Direct measurements of the water vapor column along
the line of sight are therefore the most reliable approach.

11.4 Remote sounding techniques

These methods were originally developed for meteorology and control of industrial emissions.

1. LIDAR: compares laser back scattering or transmission. DIAL: differential absorption LIDAR,
works at two frequencies (on and off the atmospheric line of interest), detects 0.01 g/m® water
vapor. Disadvantage: works best from aircraft, expensive equipment.

2. SODAR: Remote sounding with sound waves. Detects turbulence, but gives little quantitative
results.

3. IR window: H,O line absorption in front of a strong continuum source (Sun, Moon, Jupiter).
Disadvantage: Directions of observing and monitoring beam differ. The phase correction degrades
as a function of the separation angle and the distance of the dominant turbulent layer.
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Gradient ATsky/Apath (K/mm)
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Figure 11.3: Gradient ATy, /Apath (K/mm) as a function of frequency and total precipitable water
under clear sky conditions. The atmospheric model assumed an ambient temperature of 275 K, pressure
780 mbar, elevation 45°, an observing frequency of 90 GHz and various amounts of water vapor. Light
grey: 3mm water, middle grey: 5mm water, dark grey: 8 mm water. Dash-dotted lines indicate the
receiver tuning ranges of the PdBI.

4. Radiometric: Uses the atmospheric emission. Dedicated monitors operate mostly near the 22 GHz
or 183 GHz lines (several spectral channels). The inter-line regions of the Imm and 3mm windows
are also sensitive enough, but make it difficult to remove cloud emission.

For the radiometric approach, it is useful to study the sensitivity as a function of frequency, i.e. by how
much the sky emission changes for a fixed fluctuation of water vapor, which corresponds to a fixed wet path
fluctuation. Fig.11.3 shows what change in T, one must measure under conditions of various humidity.

There are two reasons to use the 22.2 GHz line: Clouds are easier corrected at this frequency, and
receiver components are less expensive.

One notices that the 84-116 GHz window is 1-2 times as sensitive as the 22.2 GHz line, and the 210-
248 GHz window 4.5-8.3 times. A dedicated receiver near the 183 GHz water line would have the highest
sensitivity, but can suffer from temperature dependent saturation effects. It is better adapted for sites
where the total amount of water above the instrument is typically less than 3 mm.

11.5 Current phase correction at IRAM

Remote sounding is done with the astronomical 1mm receivers in the inter-line region at the chosen
observing frequency. One uses the total power channel (bandwidth 500 MHz). Advantages of this approach
are the close coincidence of observed and monitored line of sight, and the fact that no additional monitoring
equipment is needed.

First success was on April 18, 1995, with the installation of the present receiver generation on the
PdBI [Bremer 1995]. Critical advantages were the improved total power stability of the receivers and the
capability to observe in the 1mm window. The necessary stability for a 30° phase rms at 230 GHz is
about AM/M =2-10~%.

Steps of the method:

1. Calibration of the total power counts My, to Ty as given in the lecture on amplitude and flux
calibration.

2. Iterate the amount of precipitable water vapor in an atmospheric model to reproduce Ts,. There
is no “learning phase” of the algorithm on a quasar, just the model prediction.
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Figure 11.4: Antenna based total power at 228.3 GHz, the reference value to calculate the differential
correction, and the model-based phase shift per antenna at 86.2 GHz.

3. The amount of water vapor along the line of sight is proportional to the wet path length.
path =~ 6.7 - water(Zenith) - airmass(Elevation) (11.13)

However, wet path length and opacity have different dependencies on frequency, atmospheric pressure
and temperature which should be taken into account. The main increase of the refractive index n of
water vapor relative to dry air happens in the infrared, which makes it difficult to use the Cramers-
Kronig relations linking it to opacity (integration over many transitions). For simplicity, we use the
calculations by [Hill & Cliffort 1981] for the frequency dependency and the temperature and pressure
dependencies by [Thayer 1974] instead. These references use not n but the refractivity N, which is
defined over the excess path length L relative to vacuum propagation over the line of sight s:

L= 10*6/Ny(s)ds (11.14)

_ Patm pbv pbv
N(P, T) = 77.493 T 12.8 T + 3.776 x T3 (11.15)

Hill and Cliffort calculate N (v) for T = 300K, P = 1013.3 mbar, 80% humidity

2
N(p,T,v) = 77.493”‘;"1 - 12.8% + N(y)% (%) (11.16)

4. Subtract the average over a time interval (default: the duration of a scan) to remove residual offsets
due to receiver drift and ground pickup, which can be different for each antenna (see Fig.11.4).
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5. Convert the antenna specific path shifts into phase at the observed wavelength, A¢;

6. Calculate the baseline specific phase shifts A¢;; = A¢; — Ap;. A corrected and an uncorrected
version are calculated and stored during the real time reduction which compresses the spectra over
one scan. The precision of the correction in relative pathlength is about 65um per antenna (hence
90um per baseline, i.e. /2 larger).

7. During the off-line data reduction, the user can choose freely between the corrected and uncorrected
sets. The phase correction can fail under the following conditions:

e Clouds: the model only works for clear sky conditions, and will over-estimate the phase shifts
seriously in the presence of clouds.

e Very stable winter conditions: The phase noise of the observations can be below 25° at 230
GHz, which is the intrinsic noise of the correction method.

e Total power instabilities: For some frequencies, the receivers are difficult to tune. One can get a
nice gain in the interferometric amplitude, but an unstable total power signal with an intrinsic
noise well above 25° at 230 GHz.

Even for the cases above, the observer has lost nothing because the uncorrected scans are still there.
Software tools are available which help to decide when to apply the correction.
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Figure 11.5: Baseline based amplitudes, uncorrected phase and monitor corrected phase at 86.2 GHz
with a time resolution of 1 s. The data correspond to the antenna based section in Fig.11.4. The phase
calibration applied in columns 2 and 3 was obtained using STORE PHASE /SELF on a one minute time
scale, thereby setting the mean phases to zero.



11.6. PHASE CORRECTION DURING OFF-LINE DATA REDUCTION 149

RF:  Tr.(A) CLIC — 07—MAY—1999 16:01:03 — i——1 NO9WO1E03 No Avg.
Am: Rel.(A) 295 9621 1038 B0749+5400 P CORR CONT3 4D2-W10 22—MAY—1998 14:56 —.6 Vect Avg.
Ph: Rel.(A) Atm. 3% 9666 [038 BO749+5400 P CORR CONT3 4D2-W10 22— MAY— 1998 15:28 .0

cloudy weather

Bas. 12 CO1 CO2 CO3 C04 LSB Bas. 12 CO1 CO2 CO3 C04 LSB Bas. 12 C01 C02 CO3 C04 LSB
2.5E L e é 1807 L B I 1807%@ T %&5‘ gg T gf:ﬁ: R
R E = L ] [ gf E ]
E E 90 — — 90 ¥ o —
- E : ] il %‘E ¥ % g
LR LN R N R R
o ﬁ E ; LR ? % iR ?:
05 E = —90 = ] —90 ¥, % R % ¥
oE 1 Ll - BV L Ll ] gl | B M E @ L3
15 15.2 15.4 15 15.2 15.4 15 15.2 15.4
Amplitude (Jy) vs. Time Unc. Phase vs. Time Corr.Phase vs. Time
25 Bas. 13 CO1 CO2 CO3 C04 LSB 180 Bas. 13 CO1 COR CO3 C04 LSB 180 Bas. 13 C01 CO2 CO3 C04 LSB
S e L s B B s 5 s s s s s By B | 7 3 5 Y'—y—r 0
FE E 90 [ . 90 % @ ‘% iy .
15 3 [ ] % ;%f f% ]
E E 0 1 * — 0 I B ag? —
Sl | N N B o3en g
05 4 ~°°F 1 ds b § ]
oE [ T B T _180 L [ P P R —180 | BEF | gt | E%ﬂ P E% | \H i
15 15.2 15.4 15 15.2 15.4 15 15.2 15.4
Amplitude (Jy) vs. Time Unc. Phase vs. Time Corr.Phase vs. Time
Bas. 23 CO1 C02 CO3 C04 LSB Bas. 23 C01 C02 CO3 C04 LSB Bas. 23 C01 C02 CO3 C04 LSB
25 F T ‘ T T T ‘ T T T ‘ T I 180 T ‘ T T T ‘ T T T ‘ T T 180 FF 5% 3 - P " )
E E F B Q%OO“ b
2 E = r B 36 E LS B
j i 90 — £ —
15 ;g 3 r # i Eﬁs ]
C 3 0 — —
1E H Q g i iE t L] i 5 LE "5%% F:
E B —90 |- ] = ]
0.5 E = L i o i
ok | T T R _180 | | T T g!“ L]
15 15.2 15.4 15 15.2 15.4 15 15.2 15.4
Amplitude (Jy) vs. Time Unc. Phase vs. Time Corr.Phase vs. Time

Figure 11.6: Baseline based amplitudes, uncorrected phase and monitor corrected phase at 86.2 GHz for
a cloudy data section. The clear sky model over-estimates the correction and would result in serious
amplitude loss. The off-line data reduction software will identify those parts and disable the correction
there.

11.6 Phase correction during off-line data reduction

In a typical data reduction session, the atmospheric phase correction hides behind two unobtrusive buttons
(Fig.11.7). The default of the PHCOR button will calculate the phase correction on a scan basis, i.e. only
the corrected amplitudes will be used and not the phases. There are two reasons to be cautious about the
corrected phases:

e As we have learned from turbulence theory, averages are not good in describing data which obey a
structure function. Adjusting the monitored phases to zero average can introduce random-like offsets
due to slow (large-scale) components of the atmospheric fluctuations. You can only rely on averages
if the outer scale of turbulence have passed several times over the instrument. This can be true on
your source (typically 20 min integration time), but is doubtful on the calibrators (integrations of
typically 3 min). It may work for compact configurations depending on wind speed, i.e. it depends
on the weather. There may be an improvement, but it cannot be guaranteed.

e Nearly linear changes in total power can be due to a big water vapor bubble in the atmosphere or a
gain drift in the receivers. The first will produce a phase shift, the second will not, and the software
cannot tell them apart. In most cases, gain drifts happen when the antenna has just moved a large
distance in elevation, as pump friction and liquid helium distribution change with the receiver cabin
tilt. Such drifts are invisible in the interferometric amplitude (opacity correction), but the phase
correction is more sensitive to them.
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The part of related header variables is accessible over
CLIC> VARIABLES MONITOR
Some items are scan-based in time resolution, others can be expanded to a time scale of one second over
the total power signal. One can plot the following quantities related to the phase correction:

e ATM_POWER: total power counts of the monitoring receiver

e ATM_REFERENCE: the offsets which are subtracted from ATM_POWER

e ATM_EMISSION: the calibrated sky emission in Kelvin

e ATM_PHASE: the modeled atmospheric phase

e ATM_UNCORRPH: the astronomical phase uncorrected from atmosphere
e ATM_CORRPH: the astronomical phase corrected with the model

e ATM_VALIDITY: O or 1 whether the phase correction has been declared valid or not. This flag is
antenna specific.

In order to check the validity of the phase correction, the standard reduction runs the command
CLIC> STORE CORRECTION AUTO 15
i.e. Cric will test the phase calibrator observations (type P) if the application of the phase correction
improves or degrades the amplitudes, and will declare the correction on source observations (type O) in a
415 minutes time window for good.

Apart from AUTO, one can use GOOD and BAD for a manual override of the diagnostics, and SELF to check
the amplitude for each scan (indifferent to type O or P) for strong sources.

= calibration package for 2-receiver data (R.Lucas) -

GO ABORT HELP
GELECT | PHCOR RF PHASE EFF. AMPL . PRINT

Use previous settings ? «| Yes
Use R1 phases for R2 ? | Yes

Self cal. phases R1->R2 ? «]Yes
I Use Phase correction ? «| Yes

Receiver numbers 12
File name i
First and last scan 0 10000

Min. Data quality ? AVERAGE Choices
Rl Fluxes ... FLUX Help
R2 Fluxes ... FLUX Help

Figure 11.7: The CLIC calibration package menu, with phase correction related items marked.

11.7 Frequently asked questions

e How often is the phase correction applied? Statistics have been calculated for all receiver 1
CORR scans in the preliminary data reduction files between September 1997 and March 1999 (a
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total of 3120 hours). Over this period, the phase correction was diagnosed “good” during 78.8% of
the observing time.

e Does one gain something on a self calibrated source? Yes, the monitor corrected spectra are
improved on a sub-scan scale, i.e. on one second. An example for this case can be found in Fig. 11.5.

e How fast can the phase change? Phases at 3mm can turn by more than 360° over 30 seconds.
Even under calm conditions, it was found that a time resolution of one second for the correction
gave better results than an average correction over four seconds.

e Is dry weather the same as low phase noise weather? Unfortunately not. Even with 3mm
precipitable water, one can have very bad phases if the wind is high (about 10 m/s).

¢ Why is the phase correction sometimes disabled under clear sky conditions? Each cor-
rection system has its intrinsic noise. If the atmospheric phase noise is below 10° at 3 mm or 30° at
230 GHz (which happens under stable winter conditions), the added noise will undo the benefits, and
the diagnostics will switch the correction off. The same can happen under less favorable conditions
if a receiver has an unstable total power signal (this can happen at some frequencies).

e How does the corrected phase depend on baseline length? Basically, it becomes independent.
Over time scales longer than the monitor time interval, the structure function dependence stays.

e Are there still changes / improvements in the system? Yes, we are working on it.
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Chapter 12

Amplitude and Flux Calibration

Anne Dutrey'?
Anne.Dutrey@obs.ujf-grenoble.fr

LTIRAM, 300 rue de la Piscine, F-38406 Saint Martin d’Héres, France

2 LAOG, BP53, F-38041 Grenoble Cedex 9, France

Calibration compensates for imperfections and unknowns in the instrument use, including antenna defects
(surface quality, focus), pointing errors, atmospheric transmission and fluctuations, receiver and backend
gain and instabilities, etc...All of them are varying in time. In addition, calibrated data are also expressed
in a reliable physical unit.

This lecture is then cut in three parts, of equal importance:

1. The single-dish calibration of the amplitude: its errors and biases
2. The flux density calibration which gives the absolute scale of the data

3. The temporal amplitude calibration of interferometric data

12.1 Definition and Formalism

From Lucas lecture (Chapter 9), Eq. 9.1, the baseline-based observed visibility IN/ij(t) is linked to the true
visibility V;; of the source by:

Vij(t) = Gij Vi + €35 (£) + i () (12.1)
In antenna-based calibration, G;; can also be written as:
Gij = 9i(t)g} (t) = as(t)a;(t)e’(@ =4 (1) (12.2)

153



154 CHAPTER 12. AMPLITUDE AND FLUX CALIBRATION

Hence, for antenna i, the antenna-based amplitude correction for the lower sideband a’ is given by

ap () = Thoy, ()GT (v, D)T(2) (12.3)
and for the upper sideband:

af (t) = Teq, )G (v, )T (2) (12.4)

cal;

where Tc[{lli and TcIEli are the corrections for the atmospheric absorption (see Chapter 10), in the upper and
lower sidebands respectively. T'; the antenna gain (affected by pointing errors, defocusing, surface status
and systematic elevation effects). Note that Eqs.12.3-12.4 do not include the decorrelation factor f (see
Chapter 9 by R.Lucas) because this parameter is baseline-based. We assume here decorrelation is small
enough, i.e. f = 1; if not, a baseline-based amplitude calibration may be required.

GE(v,t) and GY (v,t) are the electronics gains (IF chain+receiver) in the lower and upper sidebands,
respectively. The receiver sideband gain ratio is defined as GYL (v,t) = GY (v,t)/GF(v,t). The sideband
gain ratio is to first order independent of the frequency v within the IF bandwidth. The derivation of the
receiver gains is given in Chapter 9. At Bure, the receivers and the IF chain are very stable and these
values are constant with time (and equal to GYL, GV and G¥, respectively, since we also neglected their
frequency dependence within the IF bandwidth). They are measured at the beginning of each project on
a strong astronomical source. Moreover in Eq.12.3-12.4, we use the fact that for a given tuning, only the
receiver gains and the atmospheric absorption have a significant dependence as a function of frequency.

Section 12.2 will focus on the corrections for the atmospheric absorption (T, (t),T%,.(t)) and the
possible biases they can introduce in the amplitude.

In the equations above, the amplitudes can be expressed either in Kelvin (antenna temperature scale,
T%, ny = mp) or in Jy (flux density unit, 1 Jy= 10726 Wm~=2Hz'). The derivation of the conversion
factor between Jy and K, in Jy/K, Jis (single-dish mode) and J;; (interferometric mode) and its biases
will be detailed in section 12.3 which is devoted to the flux density calibration.

Finally Section 12.4 will deal with the understanding of the terms T';(t) and f, the amplitude calibration
of interferometric data.

12.2 Single-dish Calibration of the Amplitude

The goal of this part of the calibration is to measure the atmospheric transparency above each antenna.

This calibration is done automatically and in real-time but it can be redone a posteriori if one or
several parameters are wrong using the CLIC command ATMOSPHERE. However, for 99 % of the projects,
the single-dish calibration is correct. Moreover, we will see in this section that in most cases, even with
erroneous calibration parameters, it is almost impossible to do an error larger than ~ 5%.

For details about the properties of the atmosphere, the reader has to refer to Chapter 11 while the
transmission of the atmosphere at mm wavelengths is described in Chapter 10. Most of this lecture is
extracted from the documentation “Amplitude Calibration” by [Guilloteau 1990] for single-dish telescope
and from [Guilloteau et al. 1993].

Since all this part of the calibration is purely antenna dependent and in order to simplify the equations,
the subscript ; will be systematically ignored. In the same spirit, the equations will be expressed in T}
scale taking 1y = ny (see [Guilloteau 1990]).

The atmospheric absorption (e.g. for the lower side-band T'%,) can be expressed by

_ (Thoaa(1 + GULy —TL . _ QULTY

TL emi) (12.5)

cal — nfeiTL/ sin(Elevation)

where Tj,qq is the hot load and TL . and T . are the noise temperature received from the sky in the
lower an upper sidebands respectively (for the IRAM interferometer, the difference in frequency between
the upper and lower sidebands is ~ 3 GHz).

The system temperature T}, is given by:

Matm

TL — TL X
l
Mioad — Meotd

sYs ca

(12.6)



12.2. SINGLE-DISH CALIBRATION OF THE AMPLITUDE 155

The main goal of the single-dish calibration is to measure T,q; (hence Tj,s) as accurately as possible.
At Bure, during a standard atmospheric calibration, the measured quantities are:

e Phase 1, Mytn,: the power received from the sky
e Phase 2, M;,,4: the power received from the hot load
o (Phase 3), M,y4: the power received from the cold load

T:ec, the noise temperature of the receiver, is deduced from the measurements on the hot and cold loads
at the beginning of each project and regularly checked. The phase 2 (hot load) is also not systematically
done (this remains valid because temperature drifts on the hot load are on timescales of several hours).
The receiver sideband ratio GUL is also measured at the beginning of each project (see Chapter 9). T,ni,
the effective temperature seen by the antenna, is given by

(Tload + Trec) X Matm

Tomi =
e Mload

- Trec (12'7)

Moreover, T,,,; which is measured on the bandwidth of the receiver, can be expressed as the sum of TZ .

and TY . (a similar expression exists for Ty, ):

TeLmi + Tel{ni X GUL

Toni = T (12.8)
Temi is directly linked to the sky temperature emissivity (or brightness temperature) Ty, by:
Temi — (1 — X Teq
Typy = Lemi = (1 =11p) X Teat (12.9)

Nr

were Trqp is the physical temperature inside the cabin and 7y, the forward efficiency, which are both known
(or measurable) quantities.

Our calibration system provides then a direct measurement of T,,; and hence of Ty, which is de-
duced from quantities accurately measured. Hence, in Eq.12.5 the only unknown parameter remains 7%,
the opacity of the atmosphere at zenith, which is iteratively computed together with T4, the physi-
cal atmospheric temperature of the absorbing layers. This calculation is performed by the atmospheric
transmission model ATM (see Chapter 10) and the documentation “Amplitude Calibration”).

The opacity 7% (or more generally 7,,) comes from two terms:
1, =A,+ B, xw (12.10)

A, and B, are the respective contributions to Oz and H2O, the water vapor content w is then adjusted with
Totm by the model ATM to match the measured Tsg,y. The ATM model works as long as the hypothesis
done on the structure of the atmosphere in plane-parallel layers is justified, as it is usually the case for
standard weather conditions.

12.2.1 Low opacity approximation and implication for 7,

When the opacity of the atmosphere is weak (7, < 0.2) and equal in both image and signal bands, T,4; is
mostly dependent of T4, and both of them can be considered as independent of 7,, and hence w.
In the conditions mentioned above, 7,, can be eliminated from Eq.12.5. The equation becomes:

1 UL T 1 UL Toim
My X A+ G77) X Tum (A +G7) x Tut (12.11)
cab a.tm)

TL _
m x (1 —mn5 x T T LearToum )

cal —

(1 X Tcab*TeLmi
(details about the derivation of Eq.12.11 are given in the documentation “Amplitude Calibration” by
S.Guilloteau). In Eq.12.11, the unknown is T,4,,, the physical temperature of the absorbing layers. T,
is mostly dependent on the outside temperature, pressure and site altitude and weakly on 7,. For this
reason, Ty and Ty, remain correct even if w and hence 7, are not properly constrained.
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Ttem Teap Trec ng
Typical Error 2K | 10K | 0.01
Induced variation (in %) | 0.7 | 0.3 | 1.3

Table 12.1: Percentage error on amplitude scale introduced by erroneous input parameters.

Figures 12.1 and 12.2 illustrate this point. Thick lines correspond to the exact equation (Eq.12.5) and
dashed lines to the approximation (Eq.12.11). The comparison between Eq.12.11 and 12.5 was done for
three common cases 1) at 87 GHz, with GUF = 1072, 2) at 115 GHz, with GV = 0.5 and at 230 GHz,
with GUL = 0.5. For the 15-m dishes, the forward efficiencies used are n; = 0.93 at 3mm and n; = 0.89
at 1.3mm. Fig.12.1 is done for a source at elevation = 20° and Fig.12.2 for a source at elevation = 60°.

The following points can be deduced from these figures:

1. As long as Tsty = Tgcy,

for w > 5 mm.

the equation 12.11 remains valid even at high frequencies > 200 GHz and

2. This comes from the fact the T4, is mostly independent of the atmospheric water vapor content.

3. Assoon as Tsfjw # TSI{W, the equation 12.11is not valid. Note also that the error is about constant with
the opacity because Ty, is mostly independent of the atmospheric water vapor content. Moreover
at 115 GHz, the atmospheric opacity is dominated by the 118 GHz Oxygen line and cannot be below
0.2 and the amount of opacity added by the water vapor is small. Ti,; remains mostly constant with

w.

At mm wavelengths, the derivation of the Ty (or Tsys) using an atmospheric model is then quite
safe.

12.2.2 Absolute errors on T, due to instrumental parameters

The equations above show that Tt is also dependent of the instrumental parameters T}¢., 7y and Tjoqq-
These parameters can also lead to errors on T,,;. Derivatives of the appropriate equations are given in the
TRAM report “Amplitude Calibration”. Applying these equations and taking Ty, = 240 K, Tj0eq = 290 K
and T,,,,; = 50 K, the possible resulting errors are given in the table 12.1.

As a consequence, the most critical parameter of the calibration is the Forward Efficiency n;. This
parameter is a function of frequency, because of optics surface accuracy, but also of the receiver illumina-
tion. If ny is underestimated, Ty is underestimated and you may obtain anomalously low water vapor
content, and vice-versa.

The sideband gain ratio GUZ is also a critical parameter. GU” is not only a scaling factor (see Eq.12.5),
but is also involved in the derivation of the atmospheric model since the contributions from the atmosphere
in image and signal bands are considered. This effect is important only if the opacities in both bands are
significantly different, as for the J=1-0 line of CO.

Eq.12.5 shows that as soon as the receivers are tuned in single side band (GUL < 102 or rejection
> 20dB), the effect on TZ, is insignificant. Errors can be significant when the tuning is double-side band
with values of GUT around ~ 0.8 — 0.2. For example, when the emissivity of the sky is the same in
both bands (T}, = T, ), the derivative of Eq.12.8 shows that an error of 0.1 on GY* = 0.5 leads to

sky

AT,y ~, dGYE
Tt = 1rgur ~ 6.5%.

However, this problem is only relevant to single-dish observations and should not happen in interfer-
ometry because as soon as three antennas are working, GUZ can be accurately measured (see Chapter 9).
At Bure the accuracy on GUT is better than about 1 % and the system is stable on scale of several hours.

12.2.3 Relative errors or errors on 7%, /TY,
Following Eq.12.5, the side band ratio will be affected by the following term:

e(A(F=7)

== 12.12
sin(Elevation) ( )
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Figure 12.1: Calibration temperature as function of water vapor (or opacity) at 87, 115 and 230 GHz for
a source at 20 degrees elevation. Parameters are taken for the Bure interferometer (see text). Thick lines
correspond to the exact equation (Eq.12.5) and dashed lines to the approximation (Eq.12.11).
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Figure 12.2: Calibration temperature as function of water vapor (or opacity) at 87, 115 and 230 GHz for
a source at 60 degrees elevation. Parameters are taken for the Bure interferometer (see text). Thick lines
correspond to the exact equation (Eq.12.5) and dashed lines to the approximation (Eq.12.11).
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Figure 12.3: Phase error resulting from limited S/N ratio. o4 = 1/(S/N).

where A(7% — 7Y) is the error on the sideband zenith opacity difference. This difference is maximum at
frequencies corresponding to a wing of an atmospheric line, for example when observing around 115 GHz,
near the O line at 118 GHz. As example, taking the frequencies of 112 and 115 GHz for a source at 20°
in elevation and a zenith opacity difference (7% —7Y) = 0.150, an error of 0.030 on this difference (coming
from A,) will give an error of less than 1% on the gain GYX. Moreover errors on Oxygen lines are very
unlikely because the content in Oxygen in the atmosphere is relatively well known and only varying with
the altitude of the site.

At the same frequencies, an error of 5mm (which would be enormous) on the water vapor content will
only induce an error of 1% on the gain. Around such low frequency and for small frequency offsets, the
water absorption is essentially achromatic. Improper calibration of the water vapor fluctuations will then
result in even smaller errors since this is a random effect.

12.2.4 Estimate of the thermal noise

The resulting thermal noise is given by

2kTys
nAVAv x t

where k is the Boltzmann’s constant, A is the geometric collecting area of the telescope, 1 the global
efficiency factor (including decorrelation, quantization, etc...), Av the bandwidth in use and ¢ the integra-
tion time. The resulting error on the phase determination is inversely proportional to the signal to noise
ratio, as shown in Fig.12.3.

(K) (12.13)

lo =

12.3 Flux Calibration (visitor’s nightmare)

More details are found in the documentation “Flux measurement with the TRAM Plateau de Bure
Interferometer”! by A.Dutrey & S.Guilloteau.

12.3.1 Introduction

Because of the focus and pointing errors, and possible drifts in receiver gains, amplitude calibration
has always been difficult at mm wavelengths. In addition to these basic single-dish effects, the variable
amount of decorrelation introduced by phase noise (atmospheric and/or instrumental) make it difficult, if
not impossible, for an interferometer to measure absolute flux densities.

All measurements need to be relative to some source of known flux. In practice, planets are used because
they are among the few astronomical objects sufficiently strong at millimeter wavelengths for which flux
density predictions are possible and sufficiently accurate. They are then used as primary calibrators to

lhttp://iram.fr/PDBI/flux/flux.html
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Antenna | 3mm efficiency | 1.3 mm efficiency
number (Jy/K) (Jy/K)

1 22 37

2 21 27

3 21 36

4 21 29

5 22 34

Table 12.2: Conversion factor from K to Jy for the 15-m antennas of Plateau de Bure

bootstrap the flux of the stronger quasars which are point sources. Since the quasars are highly variable, a
regular monitoring (each month) is needed. These observations require a very good weather with a small
amount of precipitable water vapor (< 4 mm) and a stable atmospheric phase. If not properly taken into
account, the quasar variability can produce an error in the flux scale during one configuration which does
not result in a simple scale factor in the final image, but introduces artifacts.

12.3.2 Calibration procedure at Bure

Some basic points Because of the physics of quasars, the spectral index may be variable with time as
the source intensity. Simultaneous measurements at 2 frequencies are thus needed to estimate it accurately,
TRAM instruments (30-m and PdBI) use the frequencies of 86.7 GHz and 228 GHz. At the 30-m, flux
density measurements are done during the pointing sessions while they are performed in special sessions
at Bure, usually after baseline measurements.

The results of the flux sessions are regularly reduced and published in an internal report (usually each
4 months). These reports are currently available on the web, in the local IRAM page ( see?).

How we proceed at Bure In practice, it is impossible (and not necessary) to follow all the quasars
used as amplitude calibrator at the IRAM interferometer. Monitoring of the RF bandpass calibrators
which are strong quasars with flux density > 2 Jy (no more than 4-8 sources) is enough. In the meantime,
planets are observed as primary calibrators. These sessions require to calibrate the atmosphere (Tys) on
each source and to check regularly the focus.

At the Bure interferometer, the flux density measurements on quasars are done by pointings in inter-
ferometric mode. Pointings on planets are actually done in total power mode because they are resolved
by interferometry and strong enough. Total power intensity is not affected by the possible decorrelation
due to atmospheric phase noise. However, it is then necessary to accurately determine the efficiencies of
the individual antennas (conversion factor in Jy/K) in interferometric mode (Jr) and in single-dish mode

(Ts)-

Determining the antenna efficiencies (Jy/K) For each flux session, Jg is measured on planets by
comparison with the models (see GILDAS programs ASTRO or FLUX).

For a given antenna, the interferometric efficiency J; is always > Js. Pointing measurements in inter-
ferometric mode are not limited by the atmospheric decorrelation because the timescale of the atmospheric
decorrelation is usually significantly larger than the time duration of the basic pointing integration time (<
a few sec). On the contrary, all instrumental phase noise on very short timescale can introduce a significant
decorrelation and degrades J;. This is what may happen from time to time at a peculiar frequency due
to a bad optimization of the receiver tuning.

For example, in the initial 1.3 mm observations, strong decorrelation was introduced by the harmonic
mixer of the local oscillator system which degraded J; by a factor of 2 — 4 depending of the antennas.
This problem has been solved recently. Now at 3 mm, it is reasonable to neglect the instrumental noises
and take J; = Js. At 1.3mm, the new harmonic mixers have been installed only recently and statistics
on the site are rare but laboratory measurements show that the loss in efficiency should be small. The
Table 12.2 gives the antenna efficiencies Jg, as measured in flux sessions or by holography. These values

?http://iram.fr/LI/astro.html
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are the current efficiencies (as of November 1997); older values are given in flux reports. They assume
that the focus is optimum and do not include any instrumental phase noise. Jr agrees usually within 10
% at 3mm and 15 % at 1.3mm with Jg, note that J; must be > Js.

Being able to cancel out most of the instrumental phase noise even at 1.3mm makes the IRAM
interferometer a very reliable instrument. It is reasonable to think that, in the near future, the flux
calibration will be systematically performed at Bure at the beginning of each project by reference to
the antenna efficiencies. This is indeed already the case: after pointing and focusing, we systematically
measure the flux of calibrators when starting a new project (data labeled FLUX in files). Up to now, for
typical weather conditions, most (more than 90 %) of the flux measured at 3 mm are correct within 10 %
and more than 60 % at 1.3 mm are within 15 %.

CRL 618 and MWC 349 as secondary flux calibrators Finally, for each project, a complementary
flux check is systematically done using the continuum sources CRL 618 or MWC 349 (pointing + cross-
correlations). However these sources must be used with some caution. CRL 618 is partially resolved in A
and B configurations at 3mm and in A,B,C at 1.3 mm. Moreover it has strong spectral lines which may
dominate the average continuum flux; this must be checked before using it for flux estimates. MWC 349
is unresolved and remains a reliable reference in all antenna configurations. The only strong lines for
MWC 349 are the Hydrogen recombination lines. The adopted flux densities are:

For CRL618 (see flux reports 13 and 15):

e CRL618 F(87 GHz) = 1.55 Jy (+/ —0.15)
At 87 GHz, the flux density of CRL 618 (free-free emission from the HII region) has increased since
1990 (where it was ~ 1.1 Jy instead of 1.55 Jy).

e CRL618 F(231.9 GHz) = 2.0 Jy (+/ — 0.3),
from [Martin-Pintado et al. 1988]. Since the flux density has increased at 87 GHz, this value needs
to be observationally confirmed. Beware of the line contamination which can be high in CRL618.

For MW(C349:

e Spectrum of MWC349 F(v) = 1.69(v/227 GHz)?-¢

e MWC349 F(87 GHz) = 0.95 Jy

e MWC349 F(227 GHz) = 1.69 Jy

These values agree within 1 ¢ with the measurement performed at 87 GHz [Altenoff et al. 1994], (0.87

+0.09 Jy).

12.3.3 Determining the absolute flux scale on a project

The method Fig.12.4 is a printout of the “standard calibration procedure” used in CrLIC. This procedure
uses the CLIC command SOLVE FLUX which works on cross-correlation only as follows:

1. The flux of the reference source is fixed to F(Ref)

2. F(Ref) is used to measure the antenna efficiency by dividing it by antenna temperature of the
reference (T} (Ref)): Jr = F(Ref)/T%(Ref)

3. Jr is used to compute the flux of all other sources in the index: F(source) = Jr x T} (source)

The flux density of the amplitude calibrators will be used in the final step of the amplitude calibration to
fix the flux of the source of astronomical interest.
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The practice In the automatic procedure, the reference sources are the calibrators where Fixed flux
is set to YES and the reference values are in the variable Input Flux. Flux in file corresponds to the
value stored with the data (by using the observational command FLUX, see Chapter 8 for details). The
calculation is performed by clicking on SOLVE and the results are displayed inside the variable Solved
Flux.

If you want to iterate using one of these values as reference, you need to write it in the variable
Input Flux and set Fixed flux to YES. Like in the CLIC command SOLVE FLUZX, the individual antenna
efficiencies (J1) are computed; these values are only averaged values on the time interval using all sources.
They are then affected by many small biases like pointing or focus errors and atmospheric decorrelation
and they are usually worse than the canonical values given in table 12.2 (for biases, see end of this section).

When you are satisfied by the flux calibration, you need to click on the following sequence of buttons:
1) Get Results in order to update the internal variables of the CLIC procedure, 2) Store to save the flux
values inside the header file (hpb file) and 3) Plot to display the result of your calibration. The plot shows
the inverse of the antenna efficiencies (1/Jr) versus time for all selected sources. If the flux calibration
is correct, all sources must have the same value e.g. 1/J;. This plot is systematically done in mode
amplitude scaled (written on the top left corner). In this mode, the antenna temperature of each source
T% (source) in K is divided by its assumed (variable Input flux) flux density F(source) in Jy (the value
you have just stored), the result is then T (source)/F (source) = 1/ Ji(source) which must be the same
for all sources and equal to 1/J;. If it is not the case, for example if one source appears systematically
lower or higher than the others, this means that its flux is wrong and you need to iterate.

Note that the scan range, applied on all calibrators, which is by default the scan range of the “standard
calibration procedure” can be changed. This option is useful when there is some shadowing on one
calibrator because the shadowing can strongly affect the result of a SOLVE FLUX. If you change the scan
range, do not forget to click on UPDATE.

12.3.4 Possible biases and remedies

Flux densities are more important than efficiencies In the final amplitude calibration performed
on the source (see next section), the flux of the source is determined by reference to the flux of the
amplitude calibrator which is usually also the phase calibrator. This means that the averaged efficiencies
Jr computed by SOLVE FLUX and the automatic procedure are not directly used and in many case variations
of Jr does not affect the accuracy of the final amplitude calibration because they are corrected. It is then
fundamental to have a good estimate of the flux of the amplitude calibrator but not necessarily to know
precisely the averaged J;.

Possible biases Using the automatic procedure, the following biases may occur:

1. There is some shadowing on the reference source. The estimate of the J; can then be wrong: use
another reference.

2. One or several antennas are off focus: J; is larger than Jg but flux densities can still be correct if
there is no significant focus drift during the time interval used to measure the fluxes. If the data
are affected by a significant focus drift, this also affects the accuracy of the flux measurements.
Depending of the observation time of the reference and of the sources, the estimated flux densities
can be either too low (reference taken at the beginning when the focus is correct, sources at the end
when the focus is off) or too high (opposite situation). In both cases, it is necessary to check the
focus (or have a look at the show.ps file). If no drift occurs, the measured fluxes are correct. If a
drift occurs, the flux calibration must be done on a smaller interval of time where the focus drift
remains negligible.

3. The pointing on the reference is bad. Jj is then overestimated implying that the flux of all other
sources (with good pointing) is also overestimated. Check the pointing on the possible reference
sources (or see the show.ps file) and select a better reference.

4. There is a strong atmospheric decorrelation because flux measurements are performed on cross-
correlations of about 4 minutes when the atmospheric phase fluctuations are high (check them on
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Figure 12.4: User interface of the “standard calibration procedure” of CLIC corresponding to the flux
calibration.
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an individual cross-correlation taken on a strong quasar e.g. the RF calibrator). There are two
possibilities: i) when the atmospheric correction works well (as it is usually the case), just apply it
to measure the fluxes; ii) if not, the data may be usable at 3mm by selecting the best scans on a
small interval of time but at 1.3 mm data are useless.

5. The interferometric efficiencies J; are really very different to Js because there is a wonderful mixing
of the points mentioned above... Ask to an expert (e.g. your local contact...).

Note that the biases 3) and 4) do not affect flux estimates when they are performed on pointing data
(as in sessions of flux measurements).

12.3.5 The program FLUX

This program is not used by the external users of the PABI but IRAM astronomers to provide reliable
flux density of quasars to visitors (see flux reports). A description of the program is given in “Flux
measurement with the IRAM Plateau de Bure Interferometer”® by A.Dutrey & S.Guilloteau

12.4 Interferometric Calibration of the Amplitude
For antenna i, the antenna-based amplitude correction is given by (Eq.12.3 and 12.4).
ai (t) = Thoy, ()GF (v, 1)Ti(t) (12.14)
where K = U or L. The decorrelation factor f (see Chapter 9) is not taken into account here because it is
fundamentally a baseline-based parameter.
In a baseline-based decomposition, the complex gain of baseline ij, G;; is given by:

G (1) = £ x as(t)a ()¢’ #(0=0:) (1215)

and the amplitude of the baseline 45 is A;;

= £/TE,TE, (OGK v, HGK (v, (T (1) (12.16)

We will discuss first the term I'; and estimate then the decorrelation factor f, before giving a global scheme
of the amplitude calibration.

12.4.1 Correction for the antenna gain I';(¢)

The antenna gain I';(t) corresponds to losses due to the antenna, mainly focus (F;) and pointing (P;)
errors coming from thermal variations of the antenna structure and surface.

Li(t) = Pi(t) x Fi(t) (12.17)

At Bure, we now check and correct automatically the pointing and the focus each hour. This correction
is then done mainly in real time. This has improved a lot the quality of the data at 1.3 mm. However, it
is necessary in some cases to add a break in the amplitude (but not in the phase) fitting in order to take
into account a focus error or a loss of amplitude due to pointing errors.

Note that an error on the focus of 0.1 mm at 1.3 mm will introduce a phase error of 47” 180 x 0.1 ~ 55°
and a loss in amplitude of ~ 3 — 5%.

3http://iram.fr/PDBI/flux/flux.html



12.4. INTERFEROMETRIC CALIBRATION OF THE AMPLITUDE

Atmospheric Timescales

Amplitude coherence

Phase correction

Comments

partially corrected

Radio Seeing

At > 1 — 2 hours No loss Corrected Large scales
by temporal phase are
fitting corrected
1 min< At <1 — 2 hours No correction rms (= Ag) of Loss of flux
1 min = scan duration temporal phase fit
can be f= e(—29%/2) a-posteriori correction by

comparison with some

165

reference sources: images
of calibrators of known flux

At <1 min “MONITOR 0’ =
mean value of

the phase in 1 min

Usually corrected
Radiometric phase
correction

works usually well
except for
bad weather conditions

Table 12.3: Useful decomposition of the atmospheric phase fluctuations above the Plateau de Bure inter-
ferometer. This qualitative scheme is done to show which timescales are corrected by the calibration of
the Bure data and the radiometric phase correction working at Bure.

12.4.2 Estimate of the atmospheric decorrelation factor f

Details about the origin of f are given in Chapter 11. T will discuss here the practical implementation
of the atmospheric phase correction done in real-time and in Cric. More details are given in the TRAM
report “Practical implementation of the atmospheric phase correction for the PdBI” by R.Lucas.

The atmospheric phase fluctuations are due to different time varying water vapor content in the line-of-
sight of each antenna through the atmosphere. Between antennas ¢ and j, this introduces a decorrelation
factor f ~ e~ A9%/2 on the visibility V;;. This term, non-linear, cannot be factorized by antenna. Moreover
due to the physical properties of the atmosphere, there are several timescales. One can correct partially
some, but not all, of them.

At Bure the basic integration time is 1 second and the scan duration is usually 60 seconds. The
radiometric correction works then on timescales of a few seconds to one minute. It corrects only the
amplitude: the phase is never changed because phase jumps between individual scans are dominated by
instrumental limitations (mainly the receiver stability on a few minutes + ground pickup variations). The
implications on the image quality are developed in Chapter 18. Longer atmospheric timescales of about
2 — 8 hours are removed by the spline functions fitted inside the phase and the amplitude.

Intermediate timescales fluctuations from about one minute (the scan duration) to 1 hour are not
removed. The resulting rms phase are measured by the fit of the splines in the phase. These timescales
are not suppressed by the radiometric correction, and they contribute to the decorrelation factor f (see
Eq.12.16), as the main component.

The decomposition of the atmospheric timescales for the PABI observing method is given in table 12.3.

The method The differences in water vapor content are measurable by monitoring the variations of the
sky emissivity Tsxy. A monitoring of the total power in front of each antenna will then lead to a monitoring
of the phase fluctuations. At Bure, we monitor the total power My, with the 1.3 mm receivers. The
variation of Ty, ATk, (equal to AT,p,;) is linked to the total power by

AMatm — (ATemi + ATloss) (12 18)

Matm Tsys




166 CHAPTER 12. AMPLITUDE AND FLUX CALIBRATION

The monitoring of the atmospheric phase fluctuation works only when AT}, due to the instrumentation
is negligible on the timescales at which the phase correction is calculated and applied (typically a few
seconds to one minute). Slow drifts on scale of hours have no effects.

With standard atmospheric conditions and following [Thompson et al. 1986] (their Eq.13.20), the vari-
ation of the path length through the atmosphere at zenith can be approximated by:

AL = 6.36w (12.19)

were dw is the variation of water vapor content. AL is related to the phase fluctuation v; above the
antenna i by

Dit) = ?AL(t) (12.20)
For example, under standard conditions (see fig.12.1 or 12.2), a variation dw = 0.1 mm corresponds to
AL ~ 630 pm, ATy, ~ 1.5 K and ¢; ~ 250° at 1.3mm. This value is enormous and would not allow to
produce images of good quality.

To reduce the phase fluctuation to a reasonable value having a negligible impact on the image quality
e.g. ¥; ~ 25°, one needs to get ATj,55 + ATy, ~ 0.15 K corresponding to a global path length variation
of ~ 60um. For a typical Ty,s ~ 150 K (DSB in the antenna plane, not SSB outside the atmosphere as for
astronomical use), the instrumental stability required (ATj,s5/Tsys) must then be of order of ~ 5- 1074,

At Bure, on timescales of a few minutes, ATj,ss is dominated by the stability of the receivers which
must be carefully tuned to get the best stability. The 1.3 mm receivers are systematically tuned to get a
stability of a few 10~*; the stability is checked by doing autocorrelations of 60 seconds on the hot load.
Achieving the required stability may prove impossible at some frequencies.

Practical implementation Ideally one would like to use T,,; measured each second on each antenna
to compute 1;(t) and correct the measured baseline phases. Practically, it is not so simple because ;(t)
can do many turns and instrumental effects affect the measured Tep;.

Instead we use a differential procedure: once the antenna tracks a given source, one calibrates the
atmosphere to calculate Tsy;(to), AL(ty) and AL/dTy,(to). Phase corrections are then referenced to to.

o1 dAL Tyys(to)
Agy; = =X Lsysilo)
w A dTemi Matm(tO)

(Matm(t) - Matm(Ref)) (12.21)

where Myim (Ref) is chosen in order to minimize as much as possible all the slow effects contributing
to ATjess- A long term atmospheric effect can also be included in Mgy, (Ref) because these effects are
not removed by the radiometric phase correction but by the traditional phase referencing on a nearby
calibrator. The main steps are the following;:

1. The total power My, is continuously monitored on calibrators and on sources (every second).

2. Using the standard calibration method (see first part of the lecture) Myt and Te,p,; (measured each
second) are used to compute Ty, and w.

3. The atmospheric model has also been upgraded to compute the path length AL and its derivative
dAL/dTepm;. AL is computed by integrating the refractive index of the wet air along the line of sight
across the atmosphere.

4. Within the 60 seconds scan, the new phase (Eq.12.21) is computed and the correction applied to the
amplitude.

Quasi-real Time Calibration For the quasi-real time correction,

e the default value for M, (Ref) is the measured atmospheric emission at the time of the last cali-
bration, i.e. Mytm(Ref) = Maim (to)-
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Figure 12.5: The amplitude and phase versus time on baselines B12 and B13 with (histogram) and without
(points) the radiometric phase correction. The phase remains unchanged but the amplitude is significantly
improved.

Calibrating using CLIC The CLIC command “MONITOR [delta — time]” allows to re-compute all
the parameters. This command is useful when you want to select a better value for M., (Ref).

e This command is used to prepare the atmospheric radiometric phase correction. It processes the
calibration scans to compute the correction factors (i.e. the change of path length for a given change
in emission temperature of the atmosphere at the atmospheric monitor frequency (normally 1.3 mm)).

e The scans in the current index are grouped in intervals of maximum duration [delta — time] (in
seconds); source changes will also be used to separate intervals. In each interval a straight line is
fitted in the variation of atmospheric emission as a function of time; this line will be the reference
value for the atmospheric correction, i.e. the correction at time ¢ is proportional to the difference
between the atmospheric emission at time ¢ and the reference at time ¢. This scheme is used to avoid
contaminating the correction with total power drifts of non-atmospheric origin (changes in receiver
noise and gain, and changes in ground noise).

e MONITOR O will use for each scan the average of the atmospheric emission as the reference value (i.e.
Mosm (Ref) =< My (t) >scan)- This will cause the correction to average to zero in one scan: the
average phase is not changed, only the coherence is restored leading to an improved amplitude.

The automatic calibration procedure uses the command MONITOR O.
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Figure 12.6: Example of calibrated amplitude (Jy) versus time on a short (B13) and a long (B15) baseline.
The amplitudes are similar.

12.4.3 Fitting Splines: the last step

In the real-time processing, only the receiver gain and bandpass, the atmospheric transmission and the
radiometric correction have been calibrated.

Fitting of the temporal variations of the global antenna gain (the so-called amplitude calibration) is
performed in CLIC by fitting splines functions with time steps of 3-6 hours (SOLVE AMPLITUDE [/WEIGHT]
[/POL degree]l [/BREAK time]) and can be done either in baseline-based or in antenna-based mode. Note
that in the latter case, the averaged amplitude closures are computed, as well as their standard deviations.
The amplitude closures should be close to 100%. Strong deviations of amplitude closures from 100% are
an indication of amplitude loss on long baselines, due to phase decorrelation during the time averaging.
The fit then shows systematic errors; if this occurs, baseline based calibration of the amplitudes might be
preferred.

The amplitude calibration involves interpolating the time variations of the antenna gains measured
with the amplitude calibrator, assuming the its flux is known. The fitted splines must be as smoothed as
possible in order to minimize the errors introduced on the source which is observed in between calibrators.

12.4.4 A few final checks

Once the amplitude calibration curve is stored, one can perform some simple checks on the calibrated data
of the calibrator. These checks must be done in Jy (mode “AMPLITUDE ABSOLUTE RELATIVE” to the flux
density of the calibrator).
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RF: Fr.(A) CLIC — 03-AUG—2001 15:53:09 — alma W23E23W27E16N29 Scan Avg.
Am: Rel.(A) 84 4798 G067 0415+379 P CORR HCO+(10) 5A—E24+F23 10—-FEB—1997 18:13 —0.3 Vect.Avg.
Ph:  Rel.(A) 335 5026 G067 0415+379 P CORR HCO+(10) 5A—E24+E23 10—FEB—1997 21:53 3.4

Sas. 15 LOT L 5B

Points: Base 15, Phase error 21°
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Figure 12.7: Example of calibrated amplitude versus IF frequency on a short (B13) and a long (B15)
baseline. There is a significant loss of amplitude on the long baseline. The decorrelation factor is not
calibrated out, and varies from short to long baselines. In this case, for the short baseline (B13), the
decorrelation is completely negligible (see fig. 12.6).

Amplitude versus time On each baseline, the amplitude curves should be flat and equal to assume
the flux density of the calibrator.

Amplitude versus IF frequency On each baseline, the amplitude curves should be flat, but they are
not necessarily equal to flux of the calibrator because the decorrelation factor f is not taken into account
here. To retrieve the flux density of the calibrator, they must be multiplied by the corresponding e—(80)°/ 2,
where A¢ is baseline rms phase noise determined during the phase calibration.
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Chapter 13

Calibration of data in Practice

Anne Dutrey!? & Roberto Neri!

Anne.Dutrey@obs.ujf-grenoble.fr & neri@iram.fr

LTRAM, 300 rue de la Piscine, F-38406 Saint Martin d’Héres, France

2 LAOG, BP53, F-38041 Grenoble Cedex 9, France

13.1 Introduction

13.1.1 Contents of the account

At the first login on a new project account, you should find five directories:

1. reports: It contains all the pre-calibration performed by the Astronomer on Duty (AoD) on the site.
This subdirectory is in read access only. For a given observing date, you should find the following
compressed files: 28-feb-2001-x007 . hpb.gz, the header file containing the calibration curves of the
data; 28-feb-2001-x007.ps.gz, the PostScript file containing the result of this calibration. This
file should be carefully read before starting a new calibration. show-28-feb-2001-x007.ps.gz is
the PostScript file corresponding to a first look of the data. It includes meteo conditions (wind,
mm of water, system temperature) but also pointing and focus errors. In many cases, this file can
help to interpret dubious data. This file should also be read carefully before starting calibration.
The file x007 .note are notes written by the AoD on the site. This file is updated at each period of
observations. It gives important information about the data quality and possible problems.

2. headers: It initially contains a copy of reports. Files should be uncompressed and data calibration
should be performed in this subdirectory. This is the default directory of CLIC. However before
activating CLIC, it is better to move to this subdirectory using the shell command: ‘‘cd /headers”’.

3. maps: This subdirectory, empty at the beginning, should contain at the end all the uv tables and
the maps produced. Using the CLIC procedure “Write A UV Table’’, the uv tables are created by
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default in this directory which is also the default directory for GRAPHIC and MAPPING.

4. tmp/DATA: This subdirectory contains the raw data files (IPB) and their corresponding log files.
In the example presented above, it would contain: H228X007.IPB, H228X007.0BS, H228X007.RDI.
Access to this directory and to the raw data files is automatically handled by CLic.

5. DATA: Most of the time this directory is empty. However, it can contain some IPB files and their
corresponding log files. Like in the case of tmp/DATA, its use is transparent. The reducer does not
need to know the exact location of the raw data files on her /his account. CL1C handles it for him /her.

Note that only the directories reports, headers and maps are saved on CDroms by the automatic
procedure savproj.
13.1.2 Before starting the data reduction
The compressed PostScript files in headers containing the calibration curves performed by the AoD
must be gunzipped and printed. Then, they must be carefully studied in order to determine the general
quality of the data and find possible problems which are usually mentioned in the project.note file (e.g.
x007 .note) written by the AoD during the pre-data reduction process.
13.1.3 Activating the CLIC environment
CLiC is available by typing in the directory headers
$ CLIC
Under CLIC, there are several procedures available:

1. File: To open a new header (hpb) or data (IPB) file

2. Raw Data File: To open a raw data file (IPB)

Raw Data File Directories: To define the location of raw data file directories

- w

First Look: Instrumental and meteorological conditions during the observations (see §2)
Standard Calibration (2 receivers): To calibrate raw data (see §3)

Self-Cal on a point source: To self calibrate the phase

Simple Check: To do simple checks on the data

Holography Reduction: To reduce holographic data

© % N o o

Write A UV Table: To produce the visibility table

Useful procedures to calibrate data are 1) “First Look”, 2) ‘““‘Standard Calibration (2 receivers) ”’
and 3) ‘“Write A UV Table”.

13.2 The “First Look” procedure

The procedure “First Look’’ provides information about the weather conditions and a few instrumental
parameters at the time of the observations. This information is very important as it helps you to make
a first data quality assessment even before you may start with the interactive data calibration procedure.
The panel of the procedure is shown on Fig.13.1.

Monitoring information is provided on:

o Meteorology: the average and maximum wind velocity, the ambient pressure and temperature.
Gusty conditions and observations with wind velocities above 10 m /s may show up with high pointing
corrections. Take care to tag visibilities which may be affected by such difficult observing conditions.
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Figure 13.1: “First Look” panel

o Pointing and Focus: the applied corrections are shown for all the antennas in the array. Only
differential variations in the corrections play a role, not the absolute amount. Sudden pointing
corrections by more than 10" can considerably spoil the visibilities, especially at the highest observing
frequencies. A similar consideration applies for antenna focus corrections, although visibilities are
automatically corrected for phase offsets which are generated by focus corrections.

o Tracking Errors: The tracking errors in azimuth and in elevation are given for all antennas.

o Total Power: a trace of the total incident atmospheric power recorded by the continuum detectors
(one for each receiver, each one second), helps in further evaluating the data quality. As a rule,
strong and rapid variations in the total power trace the presence of clouds in the line of sight while
a sudden up- or down-stepping on one antenna and on one receiver is a sign of a renewed receiver
tuning. The total power increases in general with the air mass.

o Cable Phase: variations in the electrical length of the cables show up in phase variations (referenced
to the LO2 phases). These are measured by a phasemeter. Appropriate corrections for the phases of
the LO1 rotators are computed taking ntimes the corrections measured by the phasemeters of the
3mm receivers and 3n times the corrections measured by the phasemeters of the 1 mm receivers,
where n is the harmonic number of the tuned frequency. Strong and rapid variations while a source
is tracked may indicate a fault in a cable (these data should perhaps be flagged), whereas a sudden
but steady change is mostly related to a shift in the antenna pointing.

o System Temperature: dependent on the observing conditions and on the frequency. As for the total
power detectors, strong and rapid variations in the system temperature trace atmospheric instability,
whereas a sudden but steady change on one receiver is a sign of a renewed receiver tuning.

o Water vapor: the content of precipitable water vapor in the atmosphere is a critical parameter on
which the quality of most of the high frequency observations depend. Should the measured water
vapor content not be consistent (or roughly) on all the high frequency receivers, please check the
receiver gain.

Finally, the “First look” procedure produces a short list of all the scans recorded at the time of the execution
of a project. Such a listing allows you to trace back the sequence of operations during an observing run.
Note that the range of scan validity for the calibration procedure sets up with the last GAIN scan in the
short list.

Looking at the results of the procedure (called in the example above show-28-feb-2001-x007.ps.gz)
should be done simultaneously with the reading of the project.note file (here x007.note).

13.3 The “Standard Calibration (2-receivers)” procedure

We describe here, step by step the inputs and actions (or outputs) of the procedure “‘Standard Calibration
(2 receivers) *. The associated panel is given in Fig.13.2.
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Figure 13.2: “Standard Calibration (2 receivers)” panel

13.3.1 Inputs

On the panel, the reducer should select with the mouse the ‘File name’’ of the header file. Other
parameters are automatically selected by the procedure if the flag ‘““Use previous settings”’ is set to
YES which is the default. Never change it if your data are correct (no editing). The parameters “First
and last scan” are selected automatically when ““Use previous settings’ is set to YES. The default
value for the flag Min.Data quality is AVERAGE. The flag ‘‘Use Phase correction’ must also be set to
the default: YES. The current procedure uses by default the phase calibration of the receiver 1 to calibrate
the instrumental phase of the receiver 2 because the experience has shown that it is the most efficient way
to proceed (see R.Lucas lecture on phase calibration). Therefore, the calibration of the receiver 2 (1.3 mm)
cannot be dissociated from the calibration of the receiver 1 (3mm) and the flag “Receivers numbers’’
must be set to 1 2, except when observations were done at 3 mm only.
Finally, the inputs “R1 Fluxes” and ‘“R2 fluxes’’ are associated (when needed) to the action EFF)

13.3.2 Actions or Outputs
To calibrate your data, you need to do the following actions leading to the output calibration, in order:
1. SELECT: Select the calibration parameters
2. PHCOR: Radiometric phase correction, equivalent to a ‘“Monitor 07, see A.Dutrey lecture.
3. RF: Radio Frequency calibration
4. PHASE: Instrumental phase calibration versus time
5

. EFF: Efficiency (Jy/K) calibration, to determine the flux densities of the amplitude calibrator. The
inputs ¢“R1 Fluxes’’ and ‘R2 Fluxes’’ should be used here.

6. AMP: Amplitude calibration versus time

7. PRINT: To produce the LaTeX and PostScript files containing the calibration curves (e.g.
28-feb-2001-x007 .ps).

By typing GO, all the actions listed above are done sequentially. The reducer has just to type continue
under CLIC (or use the “Continue” button in the top left menu) at each step of the calibration process.
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13.3.3 Results of the calibration

After a few general comments about quality of the data, including the measurement of the seeing (deduced
from the rms of the fit of the temporal phase), the pages 1 and 2 summarize the calibration as follows:

e §1.1 The estimated flux densities of the calibrators at the observed frequencies.

§1.2 The efficiencies of the antennas for receivers 1 and 2 (which are deduced by fixing the flux of
one or several calibrators).

§1.3 The hour angle observed on the source

e §1.4 The table of the rms obtained on the RF calibration for receivers 1 and 2 in both upper and
lower sidebands

§1.5 The table of the rms obtained the temporal fit for the phase and the amplitude per baselines.
Note that for receiver 2, the rms given in Col.1 is exactly the product of frequency ratio (rece 2/rece
1) times the rms obtained on receiver 1 because the phase on the receiver 1 is used to calibrate
the phase on the receiver 2. After applying this phase correction, a second fit is performed on the
residuals, its rms is displayed on Col.2. Col.3 gives the rms obtained on the amplitude (in %).
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Chapter 14

UV Plane Analysis

Robert Lucas

lucas@iram.fr

IRAM, 300 rue de la Piscine, F-38406 Saint Martin d’Héres, France

14.1 wwv tables

After calibration with CLIc, the calibrated data may be stored in a particular file called a ‘uv table’. This
is useful because much of the data in the CLIC data file are not needed any more: atmospheric parameters,
total powers, image sideband visibilities, data from other receivers may be discarded at this stage. All that
counts is: the data that are needed to describe the source itself, the sky frequency that was observed, ...
One may for instance create a uv table for the continuum and one for each line that was observed.

These uv tables are just special GILDAS tables suited for uv data handling that are created by CLIC.
Mapping consists of transforming these tables into something more meaningful for the astronomer, either
images or numbers like positions, flux densities, sizes, etc. However a good part of the data evaluation and
analysis can be directly performed on the uv data itself, before performing any of the complex operations
involved in creating an image (Fourier transform and deconvolution). Direct analysis of the uv data is the
subject of this Lecture.

14.1.1 wuw table contents

A ww table is a file in the Gildas Data Format, of dimensions [3N¢+7,Ny], for N spectral channels and
Ny, visibilities. The 3N¢ + 7 lines contain:

1. u in meters
2. v in meters

3. Scan number
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=~

Observation date (integer CLASS day number)
Time in seconds since above date

Number of start antenna of baseline

Number of end antenna of baseline

First frequency point (real part)

© ® N o ou

First frequency point (imaginary part)
10. First frequency point (weight)
11. Same for second frequency point, and so on

Thus for a given scan with N, antennas, N, (N, — 1)/2 visibilities are recorded.
The table header has the standard form of a GiLDAS Image. The header is available (for instance) by
declaring:

GRAPHIC> SIC\DEFINE HEADER T col(Q.uvt READ
GRAPHIC> EXAMINE T

For a table named co10.uvt. Some keywords convey a more precise meaning for uv tables:
T/%NDIM should be 2
T%DIM contains 3N,+7 and Ny
T%RA, T%4DEC coordinates (radians) of the pointing center (the center of the primary beam).

T%A0,T%DO coordinates (radians) of the phase tracking center (a point source at this point should have
zero phase); they are identical to RA and DEC when a table is first produced.

T%EPOCH The epoch of those coordinates. Should be 2000.0

TAVELOFF, T/VELRES The velocity of the reference channel, and the channel separation in velocity units

(km/s)
T%RESTFRE, T/FREQRES The rest frequency, and the channel separation in frequency units (MHz)
T%CONVERT[1, 1] the reference channel

T%CONVERT[1,2] the actual observing frequency at the reference channel (MHz); the one used to scale
angular displacements from wu,v coordinates in meters.

One may also examine directly the header by typing simply :

GRAPHIC> HEADER col10.uvt

14.1.2 How to create a uv Table

uv Tables are created by CLIC using the command TABLE.
A set of commands to create a uv table may look like:

! Reset the default optioms:
SET DEFAULT

! find the useful scans:
FILE IN 21-JAN-1998-H126
SET SOURCE IRC+10216
SET RECEIVER 1
SET PROCEDURE CORRELATION
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SET QUALITY AVERAGE
FIND
! calibration optiomns:
SET AMPLITUDE ANTENNA RELATIVE
SET PHASE ANTENNA RELATIVE INTERNAL ATMOSPHERE
SET RF ANTENNA ON
! table creation:
SET SELECTION LINE LSB LO1
TABLE HCN NEW /FREQUENCY HCN 88631.85 /RESAMPLE 19 10 -27 2.12 V

All but the last two commands should be familiar at this point.

e The first new command, SET SELECTION, prepares the last one TABLE. It selects that the next table
to be created will be a line table (i.e. with more than one spectral channel). The lower sideband
data will be used, and only the first subband of the correlator: LO1.

e The last command TABLE, actually creates the table named hcn.uvt. The rest frequency, 88631.85
MHz, is set to be the reference used for the velocity scale. The data will be resampled to a velocity
grid of 19 channels; the reference channel 10 will correspond to the LSR velocity -27 km/s; the
channel spacing will be 2.12 km/s. Without /RESAMPLE, one would have got all the channels in
the subband LO1 with their original velocity separation. Without /FREQUENCY, the rest frequency
present in the data (in the observing procedure) would have been used.

Using /RESAMPLE, one may avoid creating tables with too many channels (by discarding unused parts of
correlator subbands) and choose the resolution that is actually needed.

If the data is spread on several files, one may go on by opening the other files, finding the data scans,
and appending to the table:

FILE IN 12-FEB-1998-H126
FIND

TABLE

FILE IN 21-FEB-1998-H126
FIND

TABLE

(the arguments to TABLE need not to be repeated).

For continuum tables one may use:

SET SELECTION CONTINUUM DSB LO1 TO LO5 -
/WINDOW 214405 214726 217476 217796 217837 217875
TABLE CONT-1MM NEW

Here we are using data from all the line subbands, but only in the three frequency windows: 214405 to
214726 MHz, 217476 to 217796MHz, and 217837 to 217875. This is of course to avoid the line emission of
some molecules.

A standard menu is available under the CLIC main menu (“Create a UV Table”). After execution,
a specific procedure is created to keep track of the options and parameters used. This procedure can
subsequently be edited to add new data files (data files can also be added from the menu).

14.2 wuv data plots

A procedure is available to do various plots from a continuum or line table. Its name is UVALL and it is
called by clicking on “Interferometric UV operations” in the GRAPHIC standard menu. One has to select
the first and last channel to be plotted (0 0 to get all channels) and the name of the parameters to be
plotted in abscissa and ordinate. The following examples are the most useful plots:
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Figure 14.1: “Create a UV Table” menu in CLIC

uv coverage: to get an idea of the imaging quality that may be obtained, to check if one configuration
has been forgotten, ...

weight vs. number: check if some data got strange weights (e.g., zero) for any reason

Amplitude vs. antenna spacing: quite useful if a source is strong to see if it looks resolved. Also check
for spurious high amplitude points.

Amplitude vs. weight: another useful check: spurious high-amplitude points with non-negligible weight
can cause a lot of harm in a map.

These plotting facilities are also implemented in the MAPPING program as a command (SHOW UV).

14.3 Data editing

Editing the interferometer data is not very flexible when done in the uv tables. If a problem occurs, is is
not easily diagnosed since many of the parameters associated with the data acquisition are not present:
atmospheric data, total powers, ... It is however useful when something strange occurs in the mapping
process to do wv plots of the input table to look for the faulty data. Using time or scan number as X
coordinate is recommended. One then may go back to the CLIC program and flag the faulty data, tag the
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Figure 14.2: Example of a uv coverage plot

corresponding scans, and keep a log of these problems so that they are not encountered again when the
uv tables are reconstructed for any reason.
Two tasks have been written that may directly edit the data in uv tables:

UV_CLIP flags all visibilities larger than a given flux: this deletes visibility points with totally wrong
numbers, if any.

UV_FLAG deletes visibility points in a given time interval for a given baseline.

Both tasks work by setting the corresponding weight to zero: their action is irreversible (you will have to
reconstruct the uv table to go back).

The MAPPING program provides a more efficient, simpler and reversible interactive tool to flag parts
of a uv data set (command UV_FLAG).

14.4 Position shift

For the purpose of further data reduction it may be necessary to change the phase center of the uv data.
This is done by a simple rotation of the phases (multiplication by a complex factor). One uses the task
UV_SHIFT for this purpose.

14.5 Averaging

14.5.1 Data compression

One may simply wish to average several channels to increase the signal to noise ratio (use tasks UV_COMPRESS
and UV_AVERAGE).
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Figure 14.3: Weight versus visibility number plot

14.5.2 Circular averaging

For sources with circular symmetry it may be necessary to obtain the variation of amplitude with antenna
spacing, in order to compare the amplitude data with models. For this purpose, with task UV_CIRCLE one
takes the mean of all the visibilities in concentric rings in the wv plane. The output has the format of a
uv table (except that all v’s are zero), and may be plotted with UVALL (fig. 14.5).

Use this sort of averaging with caution: the phase center must accurately coincide with the source
position or the amplitude of the visibility average will decrease on long spacings (use UV_FIT and UV_SHIFT).
One may also do this kind of averaging in separate sectors in the uv plane, to check for asymmetries,
provided the uv plane is well sampled (task UV_CUTS).

14.6 Model fitting

Model fitting is the oldest way of analyzing interferometer data. It was effectively used in the times where
the coverage of the wv plane was too scarce to even think of creating an image by Fourier transform. One
assumes a simple source model depending of a few parameters (source position, flux, size) and fits the
visibility function of that model to the visibility data. Of course one may use a linear combination of several
source models since the Fourier transform is linear. This is performed using the GILDAS task UV_FIT. The
result may be displayed with the procedure PLOTFIT. Both are available in the panel “Interferometric UV
operations” from the GRAPHIC standard menu.

Table 14.1 gives examples of a few models and their visibility functions. For source models with a
circular symmetry, the visibility function is split into a radial dependent amplitude and a phase factor
which depends only on the source position.

Some sources are actually so simple that this method may be used to a good accuracy (fig. 14.6).

Quite often this method is used for sources that are unresolved or not well resolved at a given frequencys;
for instance a SiO maser may consist of several point-source components at different velocities. Fitting a
point source in each channel one derives a “spot map” (figs 14.7,14.8).
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Parameters: Variables:

2o RA position z,y sky position

yo DEC position r V(@ —20)2 + (y — y0)?

S Source flux u,v projected spacing

b  HP size q VuZ + o2
Name Model Visibility
Point source | S §(x — o,y — Yo) S e~ 2im(uzotuvyo)

r2 2 2 o

Gaussian 7rb241f)g2 674108272 S e~ 7 /4/10g2 (bg)® —2im(uzo+vyo)
Disk 25 where |r[ <D S.Jy(mbq) e~ 2im(uzotvyo)

Table 14.1: A few simple source models and their visibility functions

14.6.1 Position measurement

For a source with central symmetry the task UV_CENTER determines the source position by using only the
phases. Alternatively the task UV_FIT may be used to fit the amplitudes and phases at the same time, or
e.g. to simultaneously fit a pair of sources.

14.7 Continuum source subtraction

It is straightforward to subtract a point source at the phase center in the uv data: one simply subtract a
real number (the source flux) from all the visibilities.

The task UV_SUBTRACT subtracts a time-averaged continuum wv table from a spectral line table (this
assumes that the continuum and the line have been observed simultaneously), providing a new table with
the line emission. Note that if the source is too complex, the time averaging (needed to avoid increasing
the noise level in the resulting table), may affect the structure of the subtracted continuum image.

If the continuum data was not observed in the same session, or is known only from other sources, one
may build a uv table of the continuum using the task UV_MODEL. This tasks computes that table from
a model image or data cube; it computes the corresponding visibilities at uv coordinates taken from a
reference uv table (e.g. the table out of which one wants to subtract the continuum model).

14.8 Self calibration by a point source

In some cases the continuum is a point source, and is strong enough to be used to reference the phases and
amplitudes of the line data. The phase and amplitude referencing can be done in CrIC command STORE
PHASE /SELF or in the uv tables using task UV_ASCAL.

For this one creates separately a line table and a continuum table. Naturally both must have been
observed simultaneously. It is strongly advised to self-calibrate the phase first, then the amplitude using
a longer smoothing time. UV_ASCAL allows in addition to subtract (part of) the input reference source,
typically to provide continuum-free spectral line maps.

Note that this operation will work also if the source is somewhat extended, but with central symmetry;
in that case only the phases can be self-calibrated.
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Figure 14.5: Example of a circular average plot (same data as fig. 14.4)
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Figure 14.6: uv-plane fit to the disk around GG Tau at 1.3mm (from [Guilloteau et al. 1999]).
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Assuming identical antennas, we have shown in previous lectures that an interferometer measures the
visibility function

V(u,v) z//B(:U,y)I(:c,y) e 2im(uatvy) do dy (15.1)

over an ensemble of points (u;,v;),4 = 1,n, where B(z,y) is the power pattern of the antennas and I(x,y)
the sky brightness distribution.

The imaging process consists in determining as best as possible the sky brightness I(z,y). Since Eq.15.1
is a convolution, the imaging process will involve deconvolution techniques.

Let S(u,v) be the sampling (or spectral sensitivity) function

S(u,v) #0 <= 3i € 1,n (u;,v;) = (u,v)
S(u,v) =0 <= Vi€ 1,n (u;,v;) # (u,v) (15.2)

The spectral sensitivity function S contains information on the relative weights of each visibility, usu-
ally derived from noise predicted from the system temperature, antenna efficiency, integration time and
bandwidth.

Let us define

ILy(z,y) = // S(u, v) W (u,v) V (u,v) 2“9 gy dy (15.3)

where W (u, v) is an arbitrary weighting function. Since the Fourier Transform of a product of two functions
is the convolution of the Fourier Transforms of the functions, I, (z,y) can be identified with

Ly(z,y) = (B(z,y)I(z,y)) **(Dw(z,y)) (15.4)
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where
Dy(z,y) = // S(u,v) W (u, v) €2 +vw) gy dy = SW (15.5)

D, (z,y) is called the dirty beam, and is directly dependent on the choice of the weighting function W, as
well as on the spectral sensitivity function S. I, (z,y) is usually called the dirty image.

Fourier Transform, which allows to directly derive I,, from the measured visibilities V' and spectral
sensitivity function S, and Deconvolution, which allows to derive the sky brightness I from I,,, are thus
two key issues in imaging (see Eq.15.4).

15.1 Fourier Transform

The first step in imaging is to evaluate the dirty image, using Fourier Transform. Several techniques are
available.

15.1.1 Direct Fourier Transform

The simplest approach would be to directly compute sin and cos functions in Eq.15.4 for all combinations
of visibilities and pixels in the image. This is straightforward, but slow. For typical data set from the
VLA, which contain up to 10° visibilities per hour and usually require large images (1024 x 1024 pixels),
the computation time can be prohibitive. On the other hand, the IRAM Plateau de Bure interferometer
produces about 10* visibilities per synthesis, and only require small images (128 x 128). The Direct Fourier
Transform approach could actually be efficient on vector computers for spectral line data from Plateau de
Bure interferometer, because the sin and cos functions needs to be evaluated only once for all channels.
Moreover, the method is well suited to real-time display, since the dirty image can be easily updated for
each new visibility.

15.1.2 Fast Fourier Transform

In practice, everybody uses the Fast Fourier Transform because of its definite speed advantage. The
drawback of the methods is the need to regrid the visibilities (which are measured at arbitrary points in
the (u,v) plane) on a regular grid to be able to perform a 2-D FFT. This gridding process will introduce
some distortion in the dirty image and dirty beams, which should be corrected afterwards. Moreover, the
gridded visibilities are sampled on a finite ensemble. As discussed in more details below, this sampling
introduces aliasing of the dirty image (and beam) in the map plane.

15.1.3 Gridding Process

The goal of gridding is to resample the visibilities on a regular grid for subsequent use of the FFT. At
each grid point, gridding involves some sort of interpolation from the values of the nearest visibilities.
The visibilities being affected by noise, the interpolating function needs not fit exactly the original data
points. Although any interpolation scheme could a priori be used, such as smoothing spline functions, it
is customary to use a convolution technique to perform the gridding. e

Using a convolution is justified by several arguments. First, from Eq.15.1, V = BI = B xxI. Hence
V is already a convolution of a (nearly Gaussian) function B with the Fourier Transform of I. Nearby
visibilities are not independent. Second, as mentioned above, exact interpolation is not desirable, since
original data points are noisy samples of a smooth function. Third, if the width of the convolution
kernel used in gridding is small compared to B, the convolution added in the gridding process will not
significantly degrade the information. Last, but not least, it is actually possible to correct for the effects
of the convolution gridding.

To demonstrate that, let G be the gridding convolution kernel. Eq.15.3 becomes

I = G*x(Sx W x V) (15.6)
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We thus have for the image I the following relations

I =G x (SW *xV) = G x I, (15.7)
and for the dirty beams

DY = Gxx(Sx W) DY =G x SW (15.8)
from which we derive the relation

19 DY
X = ¥ 4x(BI 15.9
&= @ (BI) (15.9)

Thus the dirty image and dirty beams are obtained by dividing the Fourier Transform of the gridded
data by the Fourier Transform of the gridding function.

15.2 Sampling & Aliasing

Sampling on a regular grid is equivalent to multiplying by a series of periodically spaced delta functions,
i.e. the so-called shah function III:

T = 3 S kaw) (15.10)

k=—o0

The Fourier Transform of the shah function above is the shah function

MEaw) = — 3 8@ -2 (15.11)
Au = Au

Hence, sampling the visibilities V' results in convolving its Fourier Transform 1% by a periodic shah
function. This convolution reproduces in a periodic way the Fourier Transform of the visibilities V.

If the Fourier Transform of the visibilities V, i.e. the brightness distribution BI, has finite support
AX, the replication poses no problem provided the support is smaller than the periodicity of the shah

function, i.e.
(Au)~! > (AX) Au < (AX) ! (15.12)

If not, data outside (Au)~! are aliased in the imaged area (Au)~1.

In aperture synthesis, finite support is ensured to first order by the finite width of the antenna primary
beam B. However, strong sources in the antenna sidelobes may be aliased if the imaged area is too small.
Moreover, the noise does not have finite support. White noise in the uv plane would result in white noise
in the map plane. In practice, the noise in the uv plane is not completely white. However, it is support
limited (since only a finite region of the wv plane is sampled in any experiment). Accordingly, its Fourier
Transform in the map plane is not support limited. Noise aliasing thus occurs, and produces an increased
noise level at the map edges.

15.3 Convolution and Aliasing

The combination of Gridding and Sampling produces the uv data set

Vi = ﬁx (5 1) % (G (S X W x V) (u,0) (15.13)
= IIIx (G *x(Sx W x V))/(Aulv) (15.14)

which analogous with Eq.15.6
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The Fourier Transform of this uv data set is

o~

Vin

Iz Au, yAv) xx(G x (SW xxV)) (15.15)
IIT (G x (SW xx(BI))) (15.16)

Vi, is thus the sky brightness multiplied by the primary beam (BI), convolved by the the dirty beam SW ,
then multiplied by the Fourier transform of the gridding function G and periodically replicated (by the
convolution with the Shah function).

Accordingly, aliasing of G in the map domain will thus occur. Note at this stage that, providing aliasing
of G remains negligible, an exact convolution equation is preserved

‘2’ = SW %+BI (15.17)

The gridding function will thus have to be selected to minimize aliasing of G. This criterion will depend
on the image fidelity required. Obviously, if the data is very noisy, aliasing of the G can be completely
negligible.

Furthermore, the weighting function W is usually smooth, while the gridding function G is a relatively
sharp function (since it ensures the re-gridding by convolution from nearby data points). Thus, to first
order G xxW = W, and we could rewrite Eq.15.14 as

Vim =IIxW x (G*x(S x V))/(AuAv) (15.18)

Hence, the weighting can be performed after the gridding. The choice of weighting before or after gridding
is essentially based on computational speed or algorithmic simplicity.

Let us focus on the choice of the gridding function. The gridding function will be selected according
to the following principles:

1. small support, typically one or two cells wide (Au).

2. small aliasing.

3. fast computation.

Points 1 and 2 are contradictory, since a small support for G implies a large extent of G. Some compromise
is required. For simplicity, gridding functions are usually selected among those with separable variables:

G(u,v) = G1(u)G1(v)

although this could break the rotation invariance.
The simplest gridding function is the Rectangular function

G) = F-T() (15.19)
Gz) = w (15.20)

where II is the unit rectangle function. Obviously, aliasing will be important, since the sinc function falls
off very slowly.

A better choice could be the Gaussian function
1 2
= —(u/ahu) 15.21
G(u) aAu/T € (15.21)

G(z) = e (maeaw? (15.22)

By proper selection of a (not too small, not too large), a compromise between computation speed (better

for small «) and aliasing (better for large a) can be found. a = 24/In(4) ~ 0.750 is a standard choice.
However, a Gaussian still has fairly significant wings. G should ideally be a rectangular function (1

inside the map, 0 outside). G would be a sinc function, but this falls off too slowly, and would require a
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lot of computations in the gridding. Moreover, the (unavoidable) truncation of G would destroy the sharp
edges of G anyhow. Hence the idea to use an apodized version of the sinc function, the Gaussian-Sinc
function

Gu) = 51n7ru/1iaAu)e_(u/(ﬁAu))z (15.23)
e
G(z) = I(azAu) * (vVaBAue (TBrdw)?) (15.24)

It provides good performance for a = 1.55 and 8 = 2.52.

The empirical approaches mentioned above do not guarantee any optimal choice of the gridding func-
tion. A completely different approach is based on the desired properties of the gridding function. We
actually want G to fall off as quickly as possible, but G to be support limited. Mathematically, this defines
a class of functions known as Spheroidal functions. Spheroidal functions are solutions of differential
equations, and cannot be expressed analytically. In practice, this is not a severe limitation since numerical
representations can be obtained by tabulating the gridding function values. Given the limited numerical
accuracy of the computations, the tabulation does not require a prohibitively fine sampling of the gridding
function, and is quite practical both in term of memory usage and computation speed. Tabulated values
are used in the task UV_MAP.

Note that the finite accuracy of the computation may ultimately limit the image dynamic range.

15.4 Error Analysis

We thus succeeded to preserve a convolution equation, with the slight restrictions due to the aliasing and
gridding correction. Let us explore now what errors or systematic effects may appear in the image plane.
First, consider the noise. Aliasing increases the noise level at the map edges (by noise aliasing and then
by the gridding correction since this amounts to divide by the Fourier Transform of the gridding function,
which is unity at the map center, but smaller at the map edges). For example, the noise increases by a
factor (m/2)? at map corners for the Gaussian-Sinc function. Near the map center, the effect is negligible.
Note that for a given field of view, the noise increase can be arbitrarily limited by making a sufficiently
large image, but this has a high computational price.
Concerning errors, it is important to separate two main classes of errors.
Additive errors
The Fourier transform being linear, additive errors result in artificial structure added to the true map, e.g.
- A single spurious visibility will produce fringes in the map
- An additive real term (correlator offset), will produce a point source at the phase tracking center.
Multiplicative errors
A multiplicative term on the visibility distorts the image, since

V(u,v) x e(u,v) «— V(z,y) %% &z, y)

i.e. the map is convolved by the Fourier transform of the error. Calibration errors (in phase or amplitude)
are of this type. Among these, the seeing should not be neglected.
Phase calibration errors result in antisymmetric patterns.

15.5 Weighing and Tapering

There is still a free parameter in the image construction process: the weighting function. At wv table
creation, the sampling function is defined as

1
o2 (u,v)

S(u,v) = (15.25)
where the noise o is computed from system temperature, bandwidth, integration time, and system efficiency
(including quantization and decorrelation).

jITsys
NV 2Avtin,

o(u,v) = (15.26)
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Jr being the antenna temperature to flux density conversion factor:
2k
naA

The weights W (u,v) can be freely chosen. The selecting of weights is usually decomposed in two
slightly different processes, called Weighting and Tapering.

‘Weighting deals with the local variations of weights for each grid cell after the gridding process. Since
the original uv coverage is an ensemble of ellipses, the gridding may leave a weight distribution with very
large dispersion. Weighting can be applied to uniformize this distribution.

On the other hand, Tapering consists in apodizing the uv coverage by T'(u,v) = exp(—(u? + v?)/t?))
where ¢ is a tapering distance. This corresponds to smoothing the data in the map plane (by convolution
with a gaussian).

The simplest possibility, called Natural Weighting, without taper is to keep the original spectral
sensitivity function by setting W (u,v) = 1. This can be demonstrated to maximize sensitivity to point
sources (i.e. sources smaller than the synthesized beam). Proper design (and use) of the array can ensure
that the resulting synthesized beam is appropriate, in terms of size (angular resolution matched to the
scientific goal) and shape (lowest possible sidelobes).

If the sources of interest are somewhat extended, tapering can be used to increase brightness sensi-
tivity. Tapering may also have the advantage of lowering the sidelobes. This is usually true for limited
tapering, which reduces the effect of the discontinuity at the outer edge of the uv plane, but is not the case
for strong tapering, where the result becomes critically dependent on the actual sampling of the inner part
of the uv plane. However, tapering is always throwing out some information, namely the long baselines
part of the data set. Hence, it should be used either with moderate tapers, or as a complementary view
on a data set. To increase brightness sensitivity, one should use preferentially compact arrays rather than
tapering.

Uniform Weighting consists in selecting the weights W (u,v) so that the sum of weights > W x S
over a uv cell is a constant function (or zero if no uv data exists in that cell). The size (radius) of the uv
cell is an arbitrary parameter. It can be the cell size resulting from the gridding process, i.e. the inverse
of the field of view, but any other choice is possible. Using half of the dish diameter is well justified, since
the visibilities are convolution of Fourier transform of the sky brightness by the Fourier transform of the
primary beam. Uniform Weighting gives more weight to long baselines than natural weighting (because
you spend less time per uv cell on long baselines than on short baselines for earth synthesis). Uniform
Weighting produces smaller beam. Because it fills the uv plane more regularly, Uniform weighting could
be thought also to produce lower sidelobes. However, because of the discontinuity of the weights at the
edge of the sampled portion of the uwv plane, the inner sidelobes tend to be increased, unless some tapering
is combined with Uniform weighting.

Robust Weighting is a variant of uniform weighting which avoids to give too much weight to a uwv
cell with low natural weight. There are several ways to implement such a scheme. Roughly speaking, if
the sum of natural weights in a cell is less than a threshold, the weighting is unchanged, if it is more, the
weight is set to this threshold. Let S,, be the natural weight of a cell, and S; a threshold for such weight.
Robust weighting could be implemented by selecting the weight W as

Sp<Si=W=1

Jr (15.27)

or a more continuous formula like
1
W=—"°— (15.29)

V1+ 52/S?

Robust weighting combines the advantages of Natural and Uniform weighting, by increasing the res-
olution and lowering the sidelobes without degrading too much the sensitivity. By adjusting the threshold,
it approaches either case (large threshold «+— Natural, small threshold «— Uniform).

Weighting and Tapering reduce point source sensitivity by

VO TW? /(Y TW) (15.30)
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15.6 The GILDAS implementation

We have now introduced the basic parameters of the imaging process: gridding, weighting and tapering.
The main imaging task in the GILDAS software is UV_MAP. Before using UV_MAP, it is also recommended to
use the associated task UV_STAT which evaluates the beam sizes, point source and brightness sensitivity
as function of taper or robust weighting parameter.

Although the choice of configurations for the Plateau de Bure interferometer has been performed in
order to optimize the uv coverage for most observing conditions, robust weighting can often offer a better
compromise, unless signal to noise is insufficient. Task UV_STAT also suggests appropriate pixel sizes for
UV_MAP

The imaging task UV_MAP is controlled by the following parameters:

e MAP_SIZE
The number of pixels in each direction. This should be powers of 2.

e MAP_CELL
The pixel size, in arcsecond, in each direction. It should respect proper sampling compared to the
synthesized beam width. In practice, 3 — 4 pixels per beam width are required. Task UV_STAT can
compute the optimum value for this parameter. Note that the imaged area is MAP_SIZE x MAP_CELL

e MCOL
For spectral line data, the first and last channel to be imaged. (0,0) means all data.

e WCOL
The channel from which the natural weights S are taken. UV_MAP produces only one beam for all
channels (by default, there is an alternate option for experts). WCOL = 0 is equivalent to WCOL =
(MCOL[1]+MCOL[2]) /2.

e WEIGHT_MODE
UN for Uniform or NA for Natural weighting. UNiform weighting is actually a Robust weighting in
UV_MAP.

e UV_CELL
When UNiform weighting is used, UV_CELL[1] is the UV cell diameter (in meters), and UV_CELL[2] is
the threshold for robust weighting: 1 corresponds to the mean natural weight of all cells. UV_CELL[1]
should normally be 7.5 m for Plateau de Bure data.

e CONVOLUTION
This is the convolution type for gridding. Choices are offered for test purposes, but CONVOLUTION =
5 (Spheroidal) gives best results.

The other parameters are used to re-center the map (by phase shifting the uv data before imaging)
when needed. This is convenient for Mosaics. UV_MAP performs all the imaging steps presented before:
gridding, weighting, tapering, correction for gridding function, and computes the dirty beam and dirty
image.

Both UV_STAT and UV_MAP are implemented as commands in the MAPPING program, or as tasks avail-
able from the GRAPHIC program. Using one or the other is a matter of personal preference.

15.7 Deconvolution

The first imaging step presented before leads to a convolution equation whose solution is the convolution
product of the sky brightness distribution (apodized by the interferometer primary beam) by the dirty
beam.

To derive the astronomically meaningful result, i.e. ideally the sky brightness, a deconvolution is
required. Deconvolution is always a non linear process, and requires (in one way or another) to impose
some constraints on the solution, or in other words to add some information, to better select plausible
solutions. Such additional constraints can be explicit (e.g. positivity, or user specified finite support) or
qualitative.
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15.7.1 The CLEAN method

The standard deconvolution technique, CLEAN relies on such a qualitative constraint: it assumes that the
sky brightness is essentially a ensemble of point sources (the sky is dark, but full of stars). The algorithm
which derives from such an assumption is straightforward. It is a simple “matching pursuit”

1. Initialize a Residual map to the Dirty map
2. Initialize a Clean component list to zero.
3. Assume strongest feature in Residual map originates from a point source

4. Add a fraction 7y (the Loop Gain) of this point source to the Clean component list, remove the same
fraction, convolved with the dirty beam, from the Residual map.

5. If the strongest feature in the Residual map is larger than some threshold, go back to point 3 (each
such step is called an iteration).

6. If the strongest feature is below threshold, of if the number of iterations N, is too large, go to
point 7.

7. Convolve the Clean component list by a properly chosen Clean Beam (this is called the restoration
step).

8. add to the result the Residual map to obtain the Clean Map.

The CLEAN algorithm as a number of free parameters. The loop gain controls the convergence of the
method. In theory, 0 < v < 2, but in practice one should use v ~ 0.1 — 0.2, depending on sidelobe levels,
source structure and dynamic range. While high values of v would in principle give faster convergence,
since the remaining flux is oc (1 —)Niter if the object is made of a single point source, deviations from an
ideal convolution equation force to use significantly lower values in order to avoid non linear amplifications
of errors. Such deviations from the ideal convolution equation are unavoidable because of thermal noise,
and also of phase and amplitude errors which distort the dirty beam.

The threshold for convergence and number of iterations define to which accuracy the deconvolution
proceeds. It is common practice to CLEAN down to about the noise level or slightly below. However, in
case of strong sources, the residuals may be dominated by dynamic range limitations rather than by noise.

The clean beam used in the restoration step plays an important role. It is usually selected as a 2-D
Gaussian, which allows the convolution to be computed by a simple Fourier transform, although other
choices could be possible. The size of the clean beam is a key parameter. It should be selected to match
the (inner part of) the dirty beam, otherwise the flux density estimates may be incorrect. To understand
this problem, let us note first that the units of the dirty image are undefined. Simply, a 1 Jy isolated
point source appears with a peak value of 1 in the dirty map. This is no longer true (because of sidelobes)
if there is more than one point source, or a fortiori, an extended source. The unit of the clean image is
well defined: it is Jy per beam, which can easily be converted to brightness temperature from the effective
clean beam solid angle and the observing wavelength. Now, assume the source being observed is just
composed of 2 separate point sources of equal flux, and that the dirty beam is essentially a Gaussian. Let
us clean the dirty image in such a way that only 1 of the 2 point sources is actually included in the clean
component list. If we restore the clean image with a clean beam which is, e.g. twice smaller than the
original dirty beam, the final result will undoubtedly be odd. The second source would appear extended
and have a larger flux than the first one. No such problem appears if the clean beam matches the dirty
beam. Admittedly, the above example shows a problem which results from a combination of two effects: an
inappropriate choice for the clean beam, and an insufficient deconvolution. However, the second problem
always exists to some extent, because of noise in the original data set. Hence, to minimize errors, it is
important to match the clean and dirty beams.

Note that in some circumstances, there may be no proper choice. An example is a dirty beam with
narrow central peak on top of a broad “shoulder”. Small scale structures will be properly reconstructed,
but larger ones not.
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The last step in the CLEAN method plays a double role. On one hand, it protects against insufficient
deconvolution. Furthermore, since the residual image should be essentially noise if the deconvolution has
converged, it allows noise estimate on the cleaned image.

15.7.2 Interpretation of CLEAN

If CLEAN converged, the Clean component list is a plausible solution of the measurement equation (within
the noise), but it is not unique... Hence, because of convolution by the clean beam, the clean image is
not a solution. However, besides allowing a reasonable definition of the image unit in case of incomplete
convergence, there are two reasons to convolve by a clean beam. First, convolution by the clean beam
smears out artifacts due to extrapolation beyond the measured area of the uv plane. This is an a posteriori
regularization. Second, the clean components are forced to reside on the grid defined by the image. This
discrete representation has a number of limitations (e.g. necessity of negative clean components, limited
accuracy due to the finite size of the component list), which are reduced by convolution by the clean
beam, because the clean image then has finite resolution and can be properly represented on a discrete
grid provided the Nyquist sampling is preserved.

An important property of CLEAN is that (to first order) only the inner quarter of the dirty image
can be properly cleaned. This is easily understood when dirty beam and dirty images are computed on
the same grid size, since a source at one edge of the inner quarter requires knowledge of the dirty beam
sidelobes beyond the map size to be deconvolved from the opposite edge. However, this also remains true
if one computes the dirty beam on a twice larger grid than the dirty image: more than the inner quarter
can be deconvolved, but because of aliasing, the map edges can never be.

Finally, CLEAN offers a very simple way to impose further constraints on the class of solution which is
acceptable, by allowing definition of a support. This can be the standard (simple or multiple) Clean Box
available in many non interactive implementations, or a user defined mask in interactive implementations.
The search region can even be modified from iteration to iteration to help clean convergence. Such a
flexible support is available inside the MAPPING program. Note however that the Clean Box or support
should not be too limited: cleaning the noise is necessary too (as well as incorporating negative Clean
component).

15.7.3 The CLEAN variants

The original CLEAN method is due to [Hogbom 1974]. Several variants exist.

One of the most popular (CLARK) is due to [Clark 1980], and involves minor and major cycles. In
Minor cycles, an Hogbom CLEAN is performed, but with a truncated dirty beam, and only on the list
of brightest pixels. This search is fast, because of the dirty beam truncation and because of the limited
support. The Clean components identified during the minor cycles are removed at once by a FFT during a
Major cycle. Because removal is done by FFT, slightly more than the inner map quarter can be cleaned.

A second variant, called MX, due to [Cotton & Schwab 1984], is similar to the CLARK method, except
that the Clean components are removed from the uv table at the Major cycle stage (and thus the imaging
process is repeated at each major cycle). This avoid aliasing of sidelobes, allows to clean more than the
inner quarter, but is relatively slow because of the re-imaging at major cycles. Unless disk storage is a
real problem, a faster result of equal quality is obtained by standard Clean with a twice larger map.

The next variant, called SDI (from [Steer et al. 1984]), is again like the CLARK method, but in
Minor cycles, no deconvolution is performed, but only a selection of the strongest components down to
some threshold. Major cycles are identical to those of the CLARK method. Although the principle is
simple, the implementation is not easy because of normalization subtleties in the minor cycle stage. This
method is reasonably well suited for more extended structures, but could become unstable if the threshold
is inappropriate.

The Multi Resolution Clean (MRC, [Wakker & Schwartz 1988]) separates the problem in a smooth
map and a difference map. Since the measurement equation is linear, both maps can be Cleaned (with
Hogbom or Clark method) independently. This is faster than the standard CLEAN because the smooth
map can be compressed by pixel averaging, and only fine structure left in difference map, so fewer Clean
components are required.



196 CHAPTER 15. THE IMAGING PRINCIPLES

15.7.4 The GILDAS implementation

All the above variants are implemented in the GILDAS software. All of them, except MX, are implemented
both as tasks and as interactive commands in the MAPPING program. The later implementation allows
definition of a flexible support constraint. The default method is CLARK. SDI & MRC are usually not
necessary for Plateau de Bure, because of the small ratio between the field of view (primary beam) and
the resolution (< 30).

MX is implemented only as a task, and not recommended because of its relatively slow speed. Since
Plateau de Bure images are relatively small (128 x 128), it is easier to use a standard clean on larger
images.

The GILDAS software does not include any implementation of the Maximum Entropy Method, MEM.
The main reason is that MEM is not suited for limited uv coverage. But MEM also has some undesirable
properties, among which its attempt to give a unique solution, with no physical justification, the noise
dependent resolution, and the definition of a global criterium for adjustment to data. Furthermore, no
noise estimate is possible on MEM deconvolved images.
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16.1 Introduction

This lecture is the second part of a series describing how the visibility samples provided by an interfero-
metric device can be used to produce a high quality image of the sky.

WIPE is a regularized Fourier synthesis method recently developed in radio imaging and optical inter-
ferometry. The name of WIPE is associated with that of CLEAN, the well-known deconvolution method
presented in the previous lecture, and intensively used by astronomers at IRAM as well as in many insti-
tutes, worldwide.

The regularization principle of WIPE refers to the Shannon sampling formula and to theoretical consid-
erations related to multiresolution analysis. The notions of field and resolution appear via the definition of
two key spaces: the object space and the object representation space (a subspace of the first). The complex
visibilities define a function in another space: the data space. The functions lying in this space take their
values on a frequency list which is the concatenation of the experimental frequency list and a regulariza-
tion frequency list. The latter defines a virtual frequency coverage beyond the frequency coverage to be
synthesized, up to the highest frequencies of the scaling functions generating the object space. This virtual
sampling is performed at the Shannon rate corresponding to the synthesized field. The reconstructed
image, also called the neat map, is defined as the function minimizing a regularized objective functional in
which the data are damped appropriately. To describe WIPE we adopt a terminology derived from that
of CLEAN.

In this lecture, we present the basic foundations of WIPE, and its implementation in the IRAM data
processing software. The reader interested in the theoretical aspects and developments of WIPE is invited
to consult the articles [Lannes et al. 1994], [Lannes et al. 1996], [Lannes et al. 1997].
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16.2 Object space

In the problems of Fourier synthesis encountered in astronomy, the object function of interest, ®,, is a
real-valued function of an angular position variable ¢ = & = (z,y). The geometrical elements under
consideration are presented in Fig. 16.1.

Figure 16.1: Traditional coordinate systems used to express the relation between the complex visibilities
and the brightness distribution of a source under observation. Here, the two antennas A; and A point
toward a distant radio source in a direction indicated by the unit vector s, and b is the interferometer
baseline vector. The position pointed by the unit vector s, is commonly referred to as the phase tracking
center or phase reference position: s — s, = o.

The object model variable ¢ lies in some object space H, whose vectors, the functions ¢, are defined
at a high level of resolution. This space is characterized by two key parameters: the extension Az of its
field, and its resolution scale dz. To define this object space more explicitly, we first introduce the finite
grid (see Fig. 16.2):

G=LxL, Lz{pEZ:—%

N
SPSE—l}, (16.1)

where N is some power of 2.
On each pizel pdx(p € G), we then center a scaling function of the form

ep(x) = eo(x —pdz) with eo(z) = sinc(%)sinc(‘s%). (16.2)

It is easy to verify that these functions form an orthogonal set. In this presentation of WIPE, the
object space H, is the Euclidian space generated by the basis vectors ep, p spanning G (see Fig. 16.2).



16.3. EXPERIMENTAL DATA SPACE 199

Az = Néz Au = Ndu

Figure 16.2: Object grid G 0z (left hand) and Fourier grid G éu (right hand) for N = 8. The object
domain is characterized by its resolution scale dz and the extension of its field Ax = Ndox, where N is
some power of 2 (the larger is N, the more oversampled is the object field). The basic Fourier sampling
interval is du = 1/Ax, the extension of the Fourier domain is Au = 1/dz.

The dimension of this space is equal to N2: the number of pizels in the grid G. The functions ¢ lying
in H, can therefore be expanded in the form

P(x) = Z apep(T), (16.3)

preG

where the a,’s are the components of ¢ in the interpolation basis of H,.
The Fourier transform of ¢ is defined by the relationship

3w = [ of@ye A2 g,

where u is a two-dimensional angular spatial frequency: u = (u,v). According to the expansion of ¢ we
therefore have:

du) =Y apép(u), (16.4)
pEG
where
=N - —2inp- u . - 1 u v
ép(u) = €o(u)e Au  with &(u) = e rect(m)rect(ﬂ) (16.5)
and Au = 1/4z.

The dual space of the object space, }AIO, is the image of H, by the Fourier transform operator: ﬁo is
the space of the Fourier transforms of the functions ¢ lying in H,. This space is characterized by two key
parameters: its extension Au = 1/dz, and the basic Fourier sampling interval du = 1/Az (see Fig. 16.2).

16.3 Experimental data space

The experimental data U.(u) are blurred values of &)o(u) on a finite list of frequencies in the Fourier
domain:

Lo = {ue(1),ue(2), ..., uc(N.)}. (16.6)
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As the object function of interest @, is a real-valued function, it is natural to define ¥, (—u) as the complex
conjugate of ¥, (u). The experimental frequency list L. is defined consequently: if u € L., then —u € L,
(except for the null frequency u = 0: in the convention adopted here, either it does not lie in L, or there
exists only one occurrence of this point). The experimental frequency coverage generated by L. is therefore
centrosymmetric (see Fig. 16.3).

Figure 16.3: An example of an experimental frequency coverage provided by the IRAM interferometer.
Here, the number of points N, in the experimental frequency list L. is equal to 2862.

The ezperimental data vector ¥, lies in the erperimental data space K., the real Euclidian space
underlying the space of complex-valued functions ¢ on L., such that ¥(—u) = ¢(u). The dimension of
this space is equal to N.: the number of points in the experimental frequency list L.

16.4 Image reconstruction process

As the experimental frequency list is finite, and in addition the experimental data blurred, the object
representation that can be obtained from these data is of course incomplete. This simple remark shows
that the inverse problems of Fourier synthesis must be regularized: the high-frequency components of the
image to be reconstructed must be negligible.

The central problem is to specify in which conditions it is possible to extrapolate or interpolate, in
some region of the Fourier domain, the Fourier transform of a function ¢ whose support is contained in
some finite region of H,. It is now well established that extrapolation is forbidden, and interpolation
allowed to a certain extent. The corresponding regularization principle is then intimately related to the
concept of resolution: the interpolation is performed in the frequency gaps of the frequency coverage to be
synthesized.

16.4.1 Synthesized aperture

Let H be the Fourier domain: H = (—Awu/2, Au/2)%. In Fourier synthesis, the frequency coverage to be
synthesized is a centro-symmetric region H, C H (see Fig. 16.4).

CLEAN and WIPE share a common objective, that of the image to be reconstructed. This image, ®;, is
defined so that its Fourier transform is quadratically negligible outside ;. More explicitly, ®, is defined
by the convolution relation:

3, = 0, x B, (16.7)
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The “synthetic beam” O, is a function resulting from the choice of H,: the well-known clean beam in
CLEAN, the neat beam in WIPE.

16.4.2 Synthetic beam

The neat beam can be regarded as a sort of optimal clean beam: the optimal apodized point-spread function
that can be designed within the limits of the Heisenberg principle. More precisely, the neat beam O is a
centro-symmetric function lying in the object space H,, and satisfying the following properties:

e The energy of @s is concentrated in H,;. In other words, (:js has to be small outside H, in the
mean-square sense: we impose the fraction x? of this energy in H; to be close to 1 (say x = 0.98).

o The effective support D, of O, in H, is as small as possible with respect to the choice of H, and x2.
The idea is of course to have the best possible resolution.

This apodized point-spread function is thus computed on the grounds of a trade-off between resolution
and efficiency, with the aid of the power method.

128 -Au/2 —A,J/4 0 Au‘/4 Au/2
Au/2
0.04
0.03
961 1 Au/4 0.02
0.01
s 0.0

641

321 1 -Au/4 48

) ) ) -Aul2
0 32 64 96 128 80 48

Figure 16.4: FEzperimental frequency coverage and frequency coverage to be synthesized H, (left hand).
The ezxperimental frequency list L. includes N, = 2862 frequency points. The frequency coverage to be
synthesized M, is centred in the Fourier grid G éu, where du = Au/N with N = 128 (here, the diameter
of the circle is equal to 400u). The neat beam O (right hand) represented here corresponds to the
frequency coverage to be synthesized H, for a given value of x2 = 0.97. It is centred in the object grid
G 0z where 0z = 1/Au (here, the full width of ©, at half maximum is equal to 5dz).

16.4.3 Regularization frequency list

As extrapolation is forbidden, and interpolation only allowed to a certain extent in the frequency gaps of
the frequency coverage to be synthesized, the experimental frequency list L. should be completed by high-
frequency points. These points, located outside the frequency coverage to be synthesized H,, are those for
which the high-frequency components of the image to be reconstructed are practically negligible.

The elements of the regularization frequency list L, are the frequency points u, located outside the
frequency coverage to be synthesized Hs at the nodes of the Fourier grid G du:

Ly, ={u, =qdu,q € G:qdéu & Hs}. (16.8)

The global frequency list L is then the concatenation of £, with L,.
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16.4.4 Data space

According to the definition of the image to be reconstructed, the Fourier data corresponding to &, are
defined by the relationship:
T, (u) = O5(u)Te(u) Yu € Le. (16.9)

Clearly, ¥, lies in the experimental data space K.
Let us now introduce the data vector:

Ty(u) = {;IIS(u) 22 ﬁ (16.10)

This vector lies in the data space Kg4, the real Euclidian space underlying the space of complex-valued
functions ¢ on £, such that ¥(—u) = ¥ (u). This space is equipped with the scalar product:

@1 | 2)a= D Pr(w)ha(w)W(w)(6u)® + >ty (w)ehy(u)(du)*; (16.11)
u€el, uel,

W (u) is a given weighting function that takes into account the reliability of the data via the standard
deviation oe(u) of ¥.(u), as well as the local redundancy p(u) of u up to the sampling interval du.
The Fourier sampling operator A is the operator from the object space H, into the data space Ky :

_ _ d(u) on Le;
A:H, — Ky, (Ag)(u) = {(E(u) on L. (16.12)

As the ezperimental data U, (u) are blurred values of ®,(u) on L., this operator will play a key role in the
image reconstruction process. The definition of this Fourier sampling operator suggests that the action
of A should be decomposed into two components: A, on the experimental frequency list L., and A, on
the regularization frequency list L,.

16.4.5 Object representation space

The reconstructed image is defined as the function ®g of the object space H, minimizing some objective
functional. The definition of this functional takes into account the nature of the data, as well as other
constraints. For example, the image to be reconstructed may be confined to a subspace, or more generally
to a convex set, of the object space H,: this convex set is the object representation space E. It may be
defined from the outset (in an interactive manner, for example), or step by step throughout the image
reconstruction procedure (this is the case of the current implementation of WIPE). In both cases, the
projection operator onto this space, the projector Pg, will play an essential role in the image reconstruction
process.

REMARK 1: positivity constraint.

In most cases encountered in practice, the scalar components of ®g in the interpolation basis of H,
must be non-negative (c¢f. Eq.??). In the current implementation of WIPE this constraint is taken into
account. The object representation space E is then built, step by step, accordingly.

16.4.6 Objective functional

The reconstructed image is defined as the function ® g minimizing on E the objective functional:

q(¢) = [1%a — Ag|[7- (16.13)

According to the definition of the data vector ¥y and to that of the Fourier sampling operator A, this
quantity can be written in the form:

0e(9) =D |Ts(w) — p(u)[*W (u)(5u)?;

ucLe

gr(9) =D |p(w)|*(6u)”.

u€eLl,

4(9) = ge(4) + ar(¢) with (16.14)
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The experimental criterion g. constraints the object model ¢ to be consistent with the damped Fourier
data ¥, while the regularization criterion ¢, penalizes the high-frequency components of ¢.

Let now F be the image of E by A (the space of the A¢’s, ¢ spanning E), Ag be the operator from E
into F' induced by A, and ¥r the projection of ¥, onto F' (see Fig. 16.7). The vectors ¢ minimizing ¢
on E, the solutions of the problem, are such that Ap¢ = ¥p. They are identical up to a vector lying in
the kernel of Ag (by definition, the kernel of Ag is the space of vectors ¢ such that Ag¢ = 0).

As U; — U is orthogonal to F', the solutions ¢ of the problem are characterized by the property:
Vo € E,(Ap | ¥3 — Ap)q = 0. On denoting by A* the adjoint of A, this property can also be written in
the form:

Vo e E, (¢]|r)=0, with r = A*(¥; — A¢). (16.15)

where r is regarded as a residue. This condition is of course equivalent to Pgr = 0, where Pg is the
projector onto the object representation space E. The solutions of the problem are therefore the solutions
of the normal equation on E:

AL Apd = ALy, (16.16)

where A}, = PpA*.
Many different techniques can be used for solving the normal equation (or minimizing g on E). Some
of these are certainly more efficient than others, but this is not a crucial choice.

REMARK 2: beams and maps.

The action of A* A involved in A} Ay is that of a convolutor. As the two lists £, and £, are disjoints,
we have: A*A = AYA, + A} A,. Thus, the corresponding point-spread function, called the dusty beam,
has two components: the traditional dirty beam ©4 and the regularization beam. The latter corresponds
to the action of A%A,, the former to that of A*A. (see Fig. 16.5). Likewise, according to the definition
of the data vector, A*¥; = A*U, is called the dusty map (as opposed to the traditional dirty map A*¥,
because it is damped by the neat beam).

REMARK 3: construction of the object representation space.

With regard to the construction of the object representation space E, CLEAN and WIPE are very similar:
it is defined through the choice of the (discrete) object support. It is important to note that this space may
be constructed, in a global manner or step by step, interactively or automatically. In the last version of
WIPE implemented at IRAM, the image reconstruction process is initialized with a few iterations of CLEAN.
The support selected by CLEAN is refined throughout the iterations of WIPE by conducting a matching
pursuit process at the level of the components of r in the interpolation basis of H,: the current support
is extended by adding the nodes of the object grid G dx for which these coefficients are the largest above
a given threshold (half of the maximum value, for example). The objective functional is then minimized
on that new support, and the global residue r updated accordingly. The object representation space of the
reconstructed image is thus obtained step by step in a natural manner.

The simulation presented on Fig.16.5-16.6 corresponds to the conditions of Fig. 16.4. The Fourier
data ¥, were blurred by adding a Gaussian noise: for all u € L., the standard deviation of ¥, (u) was set
equal to 5% of the total flux of the object (60(0) /20). The image reconstruction process was initialized
with a few iterations of CLEAN, and the construction of the final support of the reconstructed image
was made as indicated in Remark 3. At the end of the reconstruction process, a final smoothing of the
current object support was performed. In this classical operation of mathematical morphology, the effective
support of O, Dy, is of course used as a structuring element. The boundaries of the effective support of
the reconstructed neat map are thus defined at the appropriate resolution. In particular, the connected

entities of size smaller than that of D, are eliminated.

16.4.7 Uniqueness and robustness

When the problem is well-posed, Ag is a one-to-one map (ker Ag = {0}) from E onto F'; the solution is
then unique: there exists only one vector ¢ € E such that Agp¢ = Up. This vector, P, is said to be the
least-squares solution of the equation Ag¢ “=" ¥,;.



204 CHAPTER 16. ADVANCED IMAGING METHODS: WIPE

0.03
0.02

A
0.01 «1700"\\\
il
K W
0.0 L
% %

\}
il

Figure 16.5: Dirty beam (left hand) corresponding to the experimental frequency list L. of Fig. 16.4, and
dusty map (right hand) of a simulated data set (the simulated Fourier data ¥, were blurred by adding a
Gaussian noise with a standard deviation o, equal to 5% of the total flux of the object ®,).

Figure 16.6: Image to be reconstructed ®s (left hand) at the resolution level defined in Fig. 16.4, and
reconstructed neat map ®g (right hand) at the same resolution: the final condition number kg is equal
to 2.46 (cf. Eq. 16.17 and 16.18).

In this case, let U be a variation of ¥p in F, and §®g be the corresponding variation of &g in E
(see Fig. 16.7). It is easy to show that the robustness of the reconstruction process is governed by the
inequality:

10®£l, < |0 F||a

< kg . 16.17
1®£llo 1% F|lq ( )
The error amplifier factor kg is the condition number of Ag:
)\I
PP ; 16.18
HERVN (16.18)

here A and X' respectively denote the smallest and the largest eigenvalues of A5 Ag. The closer to 1 is the

condition number, the easier and the more robust is the reconstruction process (see Fig. 16.8 and 16.9).
The part played by inequality 16.17 in the development of the corresponding error analysis shows that

a good reconstruction procedure must also provide, in particular, the condition number kg. This is the
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Figure 16.7: Uniqueness of the solution and robustness of the reconstruction process. Operator A is an
operator from the object space H, into the data space K4. The object representation space E is a particular
subspace of H,. The image of E by A, the range of Ag, is denoted by F'. In this representation, ¥ is the
projection of the data vector ¥; onto F'. The inverse problem must be stated so that Ag is a one-to-one
map from E onto F', the condition number kg having a reasonable value.

case of the current implementation of WiPE which uses the conjugate gradient method for solving the
normal equation 16.16.

To conduct the final error analysis, one is led to consider the eigenvalue decomposition of A}, A. This is
done, once again, with the aid of the conjugate gradient method associated with the QR algorithm. At the
cost of some memory overhead (that of the M successive residues), the latter also yields approximations
of the eigenvalues A\, of AL Ag. It is thus possible to obtain the scalar components of the associated
eigenmodes @y, in the interpolation basis of H,. The purpose of this analysis is to check whether some of
them (in particular those corresponding to the smallest eigenvalues) are excited or not in ®g. If so, the
corresponding details may be artefacts of the reconstruction.

The reconstructed map is then decomposed in the form:

M
<I’E = Zwkfbk, W = ((I)k | (I)E) (16.19)
k=1

The separation angle 6, between ® i and P, is explicitly given by the relationship:

Wk
f—M
D k=1 Wi

The closer to 7/2 is 0, the less excited is the corresponding eigenmode &, in the reconstructed neat
map Pg.

To illustrate in a concrete manner the interest of equations 16.19 and 16.20, let us consider the sim-
ulations presented in Fig. 16.4 and 16.9. Whatever the value of the final condition number is, the error
analysis allows the astronomer to check if there exists a certain similitude between some details in the
neat map and some features of the critical eigenmodes. This information is very attractive, in particular
when the resolution of the reconstruction process is greater than a reasonable value (the larger is the
aperture to be synthesized H,, the smaller is the full width at half-maximum of ©,). In such situations of
“super resolution,” the error analysis will suggest the astronomer to redefine the problem at a lower level
of resolution, or to keep in mind that some details in the reconstructed neat map may be artefacts of the
reconstruction process.

cosfy, = (0< 6, <m/2). (16.20)
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Figure 16.8: Reconstructed neat map ®g (left hand) and eigenmode ®; (right hand) corresponding to
the smallest eigenvalue A\; = 0.165 of A}, Ay,. The conditions of the simulations are those of Fig. 16.4
and 16.5: in particular, the diameter of H, is equal to 40 u. The final condition number is kg = 2.46
(the eigenvalues of A} Ap are plotted on the bar code below). This eigenmode is not excited in ®g: the
separation angle 6; between ® and @, is greater than 89°. In other situations, when the final condition
number is greater, this mode may be at the origin of some artefacts in the neat map (see Fig. 16.9).

16.5 Implementation of WIPE at IRAM

In this section we describe the successive steps of the image reconstruction process as it is implemented
now in the MAPPING program included in the IRAM software. For more information on this program, the
reader is invited to read the last version of the Mapping CookBook.

The first step of the image reconstruction process is to define the object space H,. This space is
characterized by two key parameters: the extension Az of its field, and its resolution scale dz = Az /N
(see Fig. 16.2). The procedure wipe_init is used to set these parameters properly.

The frequency coverage to be synthesized H, is defined with the aid of the procedure wipe_aper. This
tool provides an interactive way of fitting an ellipse over the experimental frequency coverage generated
by the ezperimental frequency list L. (see Fig. 16.4).

Once H; has been defined, the procedure wipe_beam is ready for computing the neat beam 0O, as well
as the dirty beam ©4. The latter plays a key role in the action of the convolutor A}, Ay, while the Fourier
transform of the former is involved in the definition of the data vector ¥y (cf. Eq. 16.9 and 16.10).

The last step in the image reconstruction process concerns the neat map. It is implemented in the
wipe_solve command. Before the initialization of the reconstruction, the dusty map A*¥,; is computed,
and an optional support can be selected (this support plays the role of the clean box of CLEAN). As WIPE
can be slow when reconstructing large images, it can be initialized with a few CLEAN iterations to quickly
build a first object representation space E. When switching to WIPE, the program starts by optimizing
the solution provided by CLEAN with the corresponding support. Then, at each iteration of WIPE, the
support grows, and for a given and fixed object representation space E, the normal equation 16.16 is
solved by using the conjugate gradient method, which also provides the condition number kg of Ag.
When leaving WIPE, a final smoothing of the current object support is performed, removing (through an
appropriate morphological analysis) the details of the reconstructed image smaller than the resolution limit
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Figure 16.9: Reconstructed neat map ®g (left hand) and related critical eigenmode ®; (right hand). The
latter corresponds to the smallest eigenvalue Ay = 0.057 of AL A,. The conditions of the simulations
are those of Fig. 16.5, but here the diameter of H; is taken equal to 48 du: the final condition number
is kg = 4.19 (the eigenvalues of A} Ay are plotted on the bar code below). The critical eigenmode ®; is
at the origin of the oscillations along the main structuring entity of ® g. This mode is slightly excited (the
separation angle 6; between ® g and ®; is less than 86°), thus the corresponding details may be artefacts.
In this case of “super-resolution” the error analysis provided by WIPE suggests that the procedure should
be restarted at a lower level of resolution (see Fig. 16.8), so that the final solution be more stable and
reliable.

of the reconstruction process. The final reconstructed image ®g is the function minimizing the objective
functional 16.13 on that support.

The control of the robustness of the reconstruction process is performed through an additional step with
the wipe_error command. This procedure computes with a fine accuracy the final condition number kg,
as well as the eigenvalues and the critical eigenmodes of A} Ag. One of the aims of this last step is to check
that the features present in the reconstructed image are not artefacts. This can be done by comparing
these features with those of the critical eigenmodes. When there exists a certain similitude (between these
features), it is then recommended to restart the process with a lower resolution, so that the final solution
be more stable and reliable.
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LN
G=LxL
p=(p,q)
x = (z,y)
u = (u,v)
Ax

q(¢)
qe (¢)7 ar (¢)
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One-dimensional grid, number of elements in L
Two-dimensional grid

Two-dimensional integer vector

Two-dimensional angular position variable
Two-dimensional angular spatial frequency
Extension of the synthesized field

Resolution scale of the synthesized field
Extension of the Fourier domain

Basic Fourier sampling interval

Object grid, Fourier grid

Global frequency list

Experimental frequency list, regularization frequency list
Fourier domain [—Au/2, Au/2]

Frequency coverage to be synthesized

Support of the neat beam O,

Energy confinement parameter

Apodized point-spread function (neat beam)
Instrumental point-spread function (dirty beam)
Object space, basis functions of H,

Object representation space, image of E by A
Experimental data space, data space

Weighting function

Redundancy of u, standard deviation of ¥, (u)
Regularized Fourier sampling operator

Fourier sampling operator on L., on L,
Projection operator onto F, restriction of A to E
Original object function, image to be reconstructed
Reconstructed image, reconstruction error on ¢
Experimental data, damped experimental data
Regularized data vector

Projection of ¥4 onto F, effective error on ¥p
Eigenvalue of A} Ap and related eigenmode
Separation angle between @ and ®y

Smallest and largest eigenvalues of A}, A
Condition number of Ag

Regularized criterion

Experimental criterion, regularization criterion
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17.1 Introduction

For a single-field interferometric observation, the dirty map F' is obtained by Fourier Transform of the
observed visibilities. It is related to the actual sky brightness distribution I by:

F=Dx(BxI)+N (17.1)

where D is the dirty beam, B the antenna primary beam, and N a noise distribution!. Hence, an
interferometer only measures the product B x I. B is a rapidly decreasing function, and it therefore limits
the size of the region it is possible to map. Correcting for the primary beam attenuation (i.e. dividing the
map by B) is possible, and necessary for a proper estimate of the flux densities, but it does not enlarge
the field of view, because of the noise distribution strongly increasing with the distance to the map center
after such a correction.

Due to the coupling between the receiver horn and the primary mirror of the antennas (see Chapter
1 by A. Greve), the primary beam B is, to a good approximation, a Gaussian. Its FWHM, proportional
to the ratio of the wavelength A to the antenna diameter D, can therefore be used to quantify the field of
view. Note that this size does not correspond to a clear cut of the map, but to the 50% attenuation level.
Table 17.1 gives the resulting values for the Plateau de Bure interferometer, for different frequencies. To
map regions more extended than the primary beam width, it is necessary to observe a mosaic of several

'Tn the following, we will assume an uniform noise rms, i.e. we do not take into account variation of the noise introduced
by the imaging process (see Chapter 15 by S. Guilloteau).

209
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Frequency Wavelength Field of View Largest structure

(GHz) (mm) () ()
85 35 58 36
100 3.0 50 31
115 2.6 43 27
215 14 23 14
230 1.3 21.5 13
245 1.2 20 12

Table 17.1: Field of view of the Plateau de Bure interferometer (15 m dishes). The two groups of frequencies
correspond to the two receivers that are currently available. The last column gives rough estimates of the
size of the largest structure which can be observed.

adjacent fields. Clearly, due to the gaussian-shape of the primary beam attenuation, these fields have to
strongly overlap to ensure a roughly uniform sensitivity over the whole mapped region.

A further complication arises from the lack of the short-spacings information in the interferometer data
set. Due to their diameter, the antennas cannot be put too close to each other, which results in a minimal
measured baseline (24 m at the Plateau de Bure). Even if projection effects reduce the effective baselines,
a central “hole” in the data distribution in the uv plane cannot be avoided. As a consequence, the extended
structures (whose visibilities are confined in a small region in the uv plane) are filtered out. The largest
structure it is possible to map with a single-field interferometric observation is thus even smaller than the
field of view, and can be very roughly estimated by the ratio of the wavelength to the minimal baseline
(Table 17.1).

17.2 Image formation in a mosaic

Some important mosaic properties can be understood by analyzing the combination of the data directly
in the uv plane. This analysis was first proposed by [Ekers & Rots 1979]. The reader is also referred to
[Cornwell 1989]. We consider a source with a brightness distribution I(z,y), where z and y are two angular
coordinates. The “true” visibility, i.e. the Fourier Transform of I, is noted V(u,v). An interferometer
baseline, with two identical antennas whose primary beam is B(z, y), measures a visibility at a point (u,v)
which may be written as:

Vines (u,v) = / /_ = B(z,y) I(z,y) e~ 27Uz +vY) gy gy (17.2)

If the observation is performed with a phase center in (z = 0,y = 0) but with a pointing center in (z,,y,),
the measured visibility (whose dependence on (zp,y,) is here explicitly indicated) is:

Vines (U, 0, Tp, Yp) = //+OO B(z — 2p,y — yp) I(z,9) o 2im(uz +vy) g, dy (17.3)
Using the symmetry properties of the primary beam B, this last relation can be rewritten:

Vines (U, v, Tp, Yp) = B(Zp, yp) * F(u, v, Tp, yp) (17.4)
where * denotes a convolution product and the function F is defined as:

F (0,9, p) = L@y, p) e~ 207 (427 + V) (17.5)

Now, let’s imagine an ideal “on-the-fly” mosaic experiment: for a given, fixed, (u, v) point, the pointing
direction is continuously modified, and the variation of the visibility Vimes with (2, yp) can thus be
monitored. The Fourier Transform of these data with respect to (z,y,) would give (from Eq. 17.4):

[FTp(Vimes)] (up, vp) = T (up, vp) V(u + up, v + vp) (17.6)

where:
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o FT,, denotes the Fourier Transform with respect to (zp,yp)-
e (up,vp) are the conjugate variables to (zp,yp)-
o [FT,(Vines)] (up,vp) is the Fourier Transform of the observations.

o T'(up,vp) is the Fourier Transform of the primary beam B(z,,y,). T is thus the transfer function of
each antenna. For a dish of diameter D, T(up,v,) = 0 if (u2 +v2)!/2 > D/A.

o V(u+ up,v +vp) is the Fourier Transform of F(u,v,xp,yp) with respect to (xp,yp). Indeed, F is
the product of the sky brightness distribution (whose Fourier Transform is V) by a phase term (see
Eq. 17.5). Hence, its Fourier Transform is V' taken at a shifted point.

For , /u2 4+ v2 < D/, we can thus derive:

_ [FTp(Vines)] (up; vp)

V(u+up,v+wvp) Ty, 0y)
p>Up

(17.7)

This relation illustrates an important property of the experiment we have considered. The observations
were performed at a given (u,v) point but with a varying pointing direction. Eq. 17.7 shows that is possible
to derive from this data set the visibility V(u + up,v +v,) at all (up, v,) which verify (u2 + v2)}/2 < D/A.
In other terms, the measurements have been done at (u,v) but the redundancy of the observations allows
to compute (through a Fourier Transform and a division by the antenna transfer function) the source
visibility at all the points of a disk of radius D/A, centered in (u,v).

Interpretation

In very pictorial terms, one can say that the adjacent pointings reinforce each other and thereby yield
an estimate of the source visibility at unmeasured points. Note however that the resulting image quality
is not going to be drastically increased: more information can be extracted from the data, but a much
more extended region has now to be mapped?. The redundancy of the observations has only allowed to
rearrange the information in the uv-plane. This is nevertheless extremely important, as e.g. it allows to
estimate part of the missing short-spacings (see below).

How is it possible to recover unmeasured spacings in the uv-plane? It is actually obvious that two
antennas of diameter D, separated by a distance B, are sensitive to all the baselines ranging from B — D
to B + D. The measured visibility is therefore an average of all these baselines: Vies is actually the
convolution of the “true” visibility by the transfer function of the antennas. This is shown by the Fourier
Transform of Eq. 17.2, which gives: Vipes = T % V. Now, if the pointing center and the phase center differ,
a phase gradient is introduced across the antenna apertures, which means that the transfer function is
affected by a phase term. Indeed, the Fourier Transform of Eq. 17.3 yields:

Vines (,0) = [ T(u,0) e =27 (W20 +0) | s v/ (1, 0) (17.8)

Hence, the measured visibilities are (still) a linear combination of the “true” visibilities. Measurements
performed in various directions (z,y,) give many such linear combinations. One can thus expect to derive
from this linear system the initial visibilities, in the baseline range from B — D to B+ D. Eq. 17.7 just
shows that a Fourier Transform allows to do that operation.

Field spacing in a mosaic

In the above analysis, a continuous drift of the pointing direction was considered. However, the same
results can be reached in the case of a limited number of pointings, provided that classical sampling
theorems are fulfilled. We want to compute the visibility in a finite domain, which extends up to £D/A
around the nominal (u,v) point, and therefore the pointing centers have to be separated by an angle of

2We have considered observations in different directions, performed with the same uv-coverage. The analysis presented
here shows that such an experiment is somehow equivalent to a single observation of the whole source, but with a denser
uv-coverage.
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A/2D radians (see [Cornwell 1988]). In practice, the (gaussian) transfer function of the millimeter dishes
drops so fast that one can use without consequences a slightly broader, more convenient, sampling, equal
to half the primary beam width (i.e. 1.2A/2D).

Mosaics and short-spacings

As with any other measured point in the uv plane, it is possible to derive visibilities in a small region (a
disk of diameter D/A) around the shortest measured baseline. This is the meaning of the statement that
mosaics can recover part of the short-spacings information: a mosaic will include (u, v) points corresponding
to the shortest baseline minus D/\.

In practice, however, things are more complex. First, we have to deal with noisy data. As a consequence,
it is not possible to expect a gain of D/A: the transfer function 7' which is used in Eq. 17.7 is strongly
decreasing, and thus signal-to-noise ratio limits the gain in the uv plane to a smaller value, typically D/2A
([Cornwell 1988]). This is still a very useful gain: for the Plateau de Bure interferometer, this corresponds
to a distance in the uv plane of 7.5 m/\, while the shortest (unprojected) baseline is 24 m/A. Secondly, the
analysis described above would be rather difficult to implement with real observations, which have a limited
number of pointing centers and different uv-coverages. Instead, one prefers to combine the observed fields
to directly reconstruct the sky brightness distribution. The resulting image should include the information
arising from the redundancy of the adjacent fields, among them part of the short-spacings. However, the
complexity of the reconstruction and deconvolution algorithms that have to be used precludes any detailed
mathematical analysis of the structures in the maps. For instance, the (unavoidable) deconvolution of the
image can also be interpreted as an interpolation process in the uv plane (see [Schwarz 1978] for the case
of the CLEAN algorithm) and its effects can thus hardly be distinguish from the intrinsic determination of
unmeasured visibilities that occur when mosaicing.

17.3 Mosaicing in practice

Observation and calibration

The observation of a mosaic with the Plateau de Bure interferometer and the calibration of the data
do not present any specific difficulties. We just mention here a few practical remarks:

e As shown in the previous paragraph, the optimal spacing between adjacent fields is half the half-
power primary beam width. Larger separations can be used (e.g. to map larger field of view in the
same amount of time) but the image reconstruction is not optimal in that case. Since observations
are performed with dual-channel receivers (operating at 1.3 and 3 mm), the field spacing has to be
chosen for one of the frequencies. Consequently, the mosaic observed at the other frequency is either
under- or oversampled.

e Even if this is not formally required by the reconstruction and deconvolution algorithm described
in the following section, it seems quite important to ensure similar observing conditions for all the
pointing centers. Ideally, one wants the same noise level in each field — so that the noise in the final
image is uniform — and the same uv-coverage — to avoid strong discrepancies (in terms of angular
resolution and image artifacts) between the different parts of the mosaic. In practice, the fields are
observed in a track-sharing mode, i.e. in a loop with a few minutes integration time per pointing
direction: hence, atmospheric conditions and uv-coverage are similar for all the fields.

e In most cases, a mosaic is not observed during an amount of time significantly larger than normal
projects. As the observing time is shared between the different pointing centers, the sensitivity of
each individual field is thus smaller than what would have been achieved with normal single-field
observations. Note however that the sensitivity is further increased in the mosaic, thanks to the
strong overlap between the adjacent fields (see below, Fig. 17.1).

e The number of fields, and therefore the size of the mosaic, is limited by the requirement to get good
enough sensitivity and uv-coverage for all the fields in a reasonable amount of observing time. The
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current observing mode used at the Plateau de Bure limits the maximum number of fields to about
20. Observing more fields is in principle possible, but would require (much) more observing time
and/or an other approach (e.g. mosaic of several mosaics). Note that in any case, the uv-coverage
obtained for each field is sparse as compared to normal synthesis observations. Finally, a potential
practical limitation is the disk and memory sizes of the computers, as mosaicing requires to handle
very large data cubes.

e The calibration of the data, including the atmospheric phase correction, is strictly identical with any
other observation performed with the Plateau de Bure interferometer, as only the observations of
the calibrators (quasars) are used. At the end of the calibration process, a uv table and then a dirty
map are computed for each pointing center.

Mosaic reconstruction

The point is now to reconstruct a mosaic from the observations of each field, in an optimal way in terms
of signal-to-noise ratio. For the time being, let’s forget the effects of the convolution by the dirty beam.
Each field ¢ can then be written: F; = B; x I + N;, where B; is the primary beam of the interferometer,
centered in a different direction for each observation ¢, and N; is the corresponding noise distribution. In
practice, the same phase center (i.e. the same coordinate system) is used for all the fields.

Hence, the mosaic observations can be described as several measurements of the same unknown quantity
I, each one being affected by a weighting factor B;. This is a classical mathematical problem: the best
estimate J of I, in the least-square sense, is given by:

B.
B2
2.7

(3

J= (17.9)

where the sum includes all the observed fields and o; is the rms of the noise distribution N;. (Note that in
Eq. 17.9 as well as in the following equations, ¢; is a number while other letters denote two-dimensional
distributions).

Linear vs. non-linear mosaicing

The problem which remains to be address is the deconvolution of the mosaic. This is actually the
main difficulty of mosaic interferometric observations. Two different approaches have been proposed (e.g.
[Cornwell 1993]):

o Linear mosaicing: each field is deconvolved using classical techniques, and a mosaic is reconstructed
afterwards with the clean images, using Eq. 17.9.

o Non-linear mosaicing: a joint deconvolution of all the fields is performed, i.e. the deconvolution is
performed after the mosaic reconstruction.

The deconvolution algorithms are highly non-linear, and the two methods are therefore not equivalent.
The first one is straightforward to implement, but the non-linear mosaicing algorithms give much better
results. Indeed, the combination of the adjacent fields in a mosaic allows to estimate visibilities which
were not observed (see previous paragraph), it allows to remove sidelobes in the whole mapped area, and
it increases the sensitivity in the (large) overlapping regions: these effects make the deconvolution much
more efficient.

Non-linear deconvolution methods based on the Maximum Entropy Method (MEM) have been proposed
by [Cornwell 1988] and [Sault et al 1996]. As CLEAN deconvolutions are usually applied on Plateau de
Bure data, a CLEAN-based method adapted to the case of the mosaics has been developed. The initial
idea was proposed by F. Viallefond (DEMIRM, Paris) and S. Guilloteau (IRAM), and the algorithm is
now implemented in the MAPPING software.
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17.4 A CLEAN-based algorithm for mosaic deconvolution

The dirty mosaic

The dirty maps of each field i are computed with the same phase center (i.e. the same coordinate
system) and can thus be written:

F;=D;* (B; x I) + N; (17.10)

Note that the dirty beams D; are a priori different for each pointing center, because the uv-coverages,
even if similar, are slightly different. The dirty mosaic J can then be constructed according to Eq. 17.9:

B.
> ;F > Bioy? [Dix (Bi x I) + N

s B > Bio”
% o"% ¢

This relation is homogeneous to the sky brightness distribution I: the mosaic is corrected for the primary
beams attenuation. In practice, a slightly modified mosaic is computed, in order to avoid noise propagation
(it makes no sense to add to the center of a field noise coming from the external, attenuated regions of an
adjacent field). For that purpose, the primary beams used to construct the mosaic are truncated to some

value, typically 10 to 30% of the maximum. The mosaic is thus defined by:

Bt
D=2 > Bloi?[Dix(Bix 1)+ N;]
J= ét2 - B2 ;2
> 2 2.

iai2

J = (17.11)

(17.12)

where B! denotes the truncated primary beam of the field i. This relation is the “measurement equation”
of a mosaic, connecting the observed quantity J to the sky brightness distribution I (Eq. 17.1 was the
measurement equation of a single-field observation).

Noise distribution

Due to the correction for the primary beams attenuation, the noise distribution in a mosaic is not
uniform. From Eq. 17.12, it can be written:

_ Zi Bl o2 N;
> Blo?

Accordingly, the noise rms o5 depends on the position and is given by:

. ‘B?2 o2 1
2,00 (17.14)

gy = =
Z t2 -2 /Z 12 __9
iBl O'i sz o'l.

Hence, the noise strongly increases at the edges of the mosaic, and the resulting image has thus to
be truncated (see Fig. 17.1). The non-uniformity of the noise level with the position makes it impossible
to use classical CLEAN methods to deconvolve the mosaic: the risk to identify a noise peak as a CLEAN
component would be too important. It is thus necessary to identify the CLEAN components on another
distribution. For that purpose, the “signal-to-noise” distribution is computed:

g J D Blol’F

gyJ t2 2
V 2, Bi" o

3 Blo;? [D,. «(Bix I) + N,»]
ie.: H = &= (17.15)

V2o, B o

N (17.13)
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Figure 17.1: One-dimensional mosaic of 10 half-power overlapping fields, with identical noise level o. Lower
panel: Normalized primary beams, truncated to Bnin, = 0.1. Upper panel: Resulting noise distribution
(Eq. 17.14). The noise rms in the mosaic is roughly constant, about 20% lower than the noise of each
individual field, but strongly increases at the edges. The two thick vertical lines indicate the truncation
of the mosaic done by the algorithm at 05 = 0/+/Bmin-

Deconvolution algorithm

The main idea of the algorithm is to iteratively find the positions of the CLEAN components on H,
and then to correct the mosaic J. The initial distributions Jy and Hy are computed from the observations
and the truncated primary beams, using Eqs. 17.12 and 17.15. The following operations have then to be
performed at each iteration k:

1. Find the position (zj,y) of the maximum of H.
2. Find the value jj of J at the position (xk,yr), whether it is the maximum of J or not.

3. Remove from J the contribution of a point-like source of intensity vjx, located at (x,yr) (7 is the
loop gain, as in the normal CLEAN algorithm):

Zi Blo;? [Di * ['ij Bi(xk;yk)‘s(mk;yk)“
> Bo

d(zg,yr) denotes a Dirac peak located at (xp, yx)-

Jp = Jp—1 — (17.16)

4. Do the same for H: remove the contribution of a point-like source of intensity 77, located at (z, yg):
Zi Blo;? [Dz‘ * ['ij Bz’(iﬂk,yk)5($k;yk)ﬂ

V2. B o

Note that in the two last relations, the CLEAN component is multiplied by the true, not truncated,
primary beam (taken at the (zg,yx) position).

Hy = Hy_y — (17.17)
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After knax iterations, the mosaic J can thus be written:

kmax

ZiBfUi_z [Di * <Bz’ X [Z “ij(s(ﬂ?k,yk)])]
= e
Y Bfo”

Enough iterations have to be performed to ensure that the residual Hj_ , is smaller than some user-
specified threshold (typically 1 to 3). The comparison between Eqgs. 17.12 and 17.18 shows that, within
the noise, the sum of the CLEAN components can be identified with the sky brightness distribution I. As

with the normal CLEAN algorithm, the final clean image is then reconstructed as:

J = (17.18)

kmax

M=Cx lz Y Jk 6(Tk> Yk)

k=1

+ Jhs (17.19)

where C' is the chosen clean beam. Note that the algorithm takes into account the dirty beams being
different, for each field, but the restoration is done using a single clean beam, which implicitly assumes
that the dirty beams have similar widths. In practice, the observing mode of mosaics with the Plateau de
Bure interferometer yields similar uv-coverages, and therefore similar dirty beams, for all the fields.

The modified CLEAN algorithms proposed e.g. by [Clark 1980] or [Steer et al. 1984] can be similarly
adapted to handle mosaics, the main idea being to identify CLEAN components on H and to correct J.
Note however that the multi-resolution CLEAN [Wakker & Schwartz 1988] cannot be directly adapted, as
it relies on a linear measurement equation, which is not the case for a mosaic.

The MAPPING software

MAPPING is a superset of the GRAPHIC software, which has been developed to allow more sophisticated
deconvolutions to be performed. For instance, it allows to choose a support for the deconvolution (clean
window) or to monitor the results of the deconvolution after each iteration. Several enhancements of
CLEAN (e.g. multi-resolution CLEAN) as well as the WIPE algorithm (see [Lannes et al. 1997]) are also
available. The deconvolution of a mosaic has to be done with MAPPING. The implemented algorithm
assumes that the noise levels in each field are similar (i.e. Vi o; = o), which is a reasonable hypothesis
for Plateau de Bure observations. In that case, the equations of the previous paragraphs are slightly
simplified: J is independent from o, and H can be written as the ratio H'/o, where H' is independent
from ¢ and is used in practice to localize the CLEAN components.

We refer to the Mapping Cookbook for a description of the MAPPING software. To deconvolve mosaics,
the following steps are performed:

o Create a uv table for each observed field. Then, run the UV_MAP task to compute a dirty map and a
dirty beam for each field, with the same phase center (variable UV_SHIFT = YES).

o The task MAKE_MOSAIC is used to combine the fields to construct a dirty mosaic. Two parameters
have to be supplied: the width and the truncation level By, of the primary beams. Three images
are produced: the dirty mosaic® (yourfile.lmv), all the dirty beams written in the same file (your-
file.beam), and a file describing the positions and sizes of the primary beams (yourfile.lobe). The
dirty maps and beams of each individual field are no longer used after this step and can thus be
removed if necessary.

o The data have to be loaded into the MAPPING buffers. This is done by the READ DIRTY yourfile.lmv,
READ BEAM yourfile.beam, and READ PRIMARY yourfile.lobe commands. The latter automati-
cally switches on the mosaic mode of MAPPING (the prompt is now MOSAIC>). From now, the
deconvolution commands HOGBOM, CLARK and SDI (for Steer-Dewdney-Ito) can be used and will ap-
ply the algorithm described above. Use the command MOSAIC to switch on or off the mosaic mode
if necessary.

3More precisely, this file contains the non normalized mosaic EBf X F;. The proper normalization (see Eq. 17.12) is
further done by the deconvolution procedures.
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o The clean beam of the final image can be specified by the user (variables MAJOR and MINOR). Other-
wise, the clean beam computed from the first field is used. To check if there are differences between

the various dirty beams, just use the FIT 4 command, which computes the clean beam for the ith
field.

o The deconvolution uses the same parameters as a classical CLEAN: support, loop gain, maximal
number of iterations, maximal value of the final residual, etc.

o In addition, two other parameters, SEARCH_W and RESTORE_W, can be supplied. Due to the strong
increase of the noise at its edges, the mosaic has to be truncated above some value of o, and these
two variables are used to define this truncation level, in terms of (o7 /o) 2. More precisely, SEARCH_W
indicates the limit above which CLEAN components have not to be searched, while RESTORE_W in-
dicates the limit above which the clean image is not reconstructed. Default values of these two
parameters (both equal to Bpin) are strongly recommended. The corresponding truncation is shown
in Fig. 17.1.

Tests of the method

Several tests of the method described in this paragraph have been performed, either with observations
(including the comparison of independent mosaics from the same source) or with simulations. They show
that very satisfactory results can be achieved with typical Plateau de Bure observations. Interestingly,
deconvolution of the same data set using MEM (e.g. the task VTESS in AIPS) seems to give worse results:
this is most probably related to the limited uv-coverage obtained with the Plateau de Bure interferometer,
as compared to typical VLA observations (MEM is known to be vulnerable when there is a relatively small
number of visibilities).

17.5 Artifacts and instrumental effects

The behaviour of the mosaicing algorithm towards deconvolution artifacts and/or instrumental effects can
be studied by the means of simulations of the whole mosaicing process. The simulations presented below
were computed with several models of sky brightness distributions. uwwv-coverages of real observations were
used (4-antennas CD configuration of a source of declination § = 68°). No noise has been added to the
simulations shown in the figures, so that pure instrumental effects can directly be seen.

Stripes

A well-known instability of the CLEAN algorithm is the formation of stripes during the deconvolution
of extended structures. After the dirty beam has been subtracted from the peak of a broad feature, the
negative sidelobes of the beam are showing up as positive peaks. The next iterations of the algorithm
will then identify these artificial peaks as CLEAN components. A regular separation between the CLEAN
components is thereby introduced and the resulting map shows ripples or stripes. [Steer et al. 1984]
proposed an enhancement of CLEAN (implemented as the command SDI in MAPPING) which prevents
such coherent errors: the CLEAN components are identified and removed in groups. As mosaics are
precisely observed to map extended sources, the formation of stripes can a priori be expected. Indeed,
the algorithm described in the previous paragraph presents this instability. Fig. 17.2 shows an example of
the formation of such ripples. To make them appear so clearly, an unrealistic loop gain (y = 1) was used.
Interestingly, the algorithm of [Steer et al. 1984], adapted to the mosaics, does not result in these stripes,
even with the same loop gain. It seems thus to be a very efficient solution to get rid of this problem, if it
should occur. Note however that more realistic simulations, including noise and deconvolved with normal
loop gain, do not show stripes formation. This kind of artifacts seems thus not to play a significant role
in the image quality, for the noise and contrast range of typical Plateau de Bure observations. In practice,
they are never observed.
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CLARK SDI

Figure 17.2: Mosaic deconvolved with the CLARK or SDI algorithms. Deconvolution parameters were
identical (with a loop gain = 1) and contours are the same in the two images. The formation of stripes
does not occur when using the SDI algorithm.

Short-spacings

The mosaicing technique allows, at least in theory, to recover part of the short-spacings information
(see Section 17.2). In practice, however, the lack of the short-spacings cannot be fully compensated,
and thus still introduces severe artifacts in the reconstructed images. The mosaic case is actually more
complex than the single-field case, because the most extended structures are filtered out in each field, thus
introducing a lack of information on an intermediate scale as compared to the size of the mosaic. As a
consequence, a very extended emission can be split into several pieces, each one having roughly the size of
the primary beam. This effect can be very well seen on the simulation presented in Fig. 17.3. To correct
for this problem, it is necessary to add the short-spacings informations (deduced typically from single-dish
observations) to the interferometric data set. Note however that the effects of the missing short-spacings
on the reconstructed mosaic strongly depend on the actual uv-coverage of the observations, as well as on
the size and morphology of the source: the artifacts can be small or negligible if the observed emission is
confined into reasonably small regions. From this point of view, the example shown in Fig. 17.3 represents
the worst case.

In any case, CLEAN is known to be not optimal to deconvolve smooth, extended structures. In order
to partially alleviate this problem and the effects of the missing short-spacings, [Wakker & Schwartz 1988]
proposed an enhanced algorithm, the so-called multi-resolution CLEAN: deconvolutions are performed at
low- and high-resolution, and the results are combined to reconstruct an image which then accounts for
the extended structures much better than in the case of a classical CLEAN deconvolution. As already
quoted before, this algorithm cannot be applied to a mosaic, because it relies on a linear measurement
equation. A multi-resolution CLEAN adapted to mosaics has however been developed ([Gueth 1997]) and
is implemented in MAPPING. This method will not be described here.

Pointing errors

Pointing errors during the observations can of course strongly affect the images obtained by mosaicing.
The rms of the pointing errors of the antennas of the Plateau de Bure interferometer is about 3". By
comparison, the primary beam size at 230 GHz is ~22"” (Table 17.1). The pointing errors are difficult
to model precisely: they are different for each antenna, random errors as well as slow drifts occur, the
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Figure 17.3: Left: Initial model of a very extended sky brightness distribution. Dotted circles indicate the
primary beams of the simulated observation. Middle: Reconstructed mosaic, without the short-spacings
information. Right: Reconstructed mosaic, with the short-spacings information. The contours are the
same in the two simulated observations.

amplitude calibration partially corrects them, etc. A complete simulation should therefore introduce
pointing errors during the calculation of each visibility. For typical Plateau de Bure observations, such
a detailed modeling is probably not necessary, as the final image quality is dominated by deconvolution
artifacts. To get a first guess of the influence of pointing errors, less realistic simulations were thus
performed, in which each field is shifted as a whole by a (random) quantity. Such a systematic effect most
probably maximizes the distortions introduced in the images. (Note that for a single field, the source would
simply be observed at a shifted position in such a simulation. For a mosaic, the artifacts are different,
because each individual field has a different, random pointing error. See [Cornwell 1987] for a simplified
analysis in terms of visibilities. Figure 17.4 presents typical reconstructed mosaics for different rms of the
pointing errors of the Plateau de Bure antennas. Obviously, the larger the pointing error, the worse the
image quality. With a pointing error rms of 3", reasonably correct mosaics can be reconstructed even
at 230 GHz. Clearly, care to the pointing accuracy has however to be exercised when mosaicing at the
highest frequencies.

17.6 Concluding remarks

Mosaic observations are now routinely performed with the Plateau de Bure interferometer, at both A 3 mm
and A 1.3 mm. It has proven to be a very efficient method to map extended sources, including using the
most extended configuration of the array. The number of fields are usually < 6, but can be more important
in some cases: as of the date of writing, the largest observed mosaic has 20 fields. Data processing
requires a few more operations than normal observations, but does not present any specific difficulties.
Reconstruction and deconvolution algorithms are available in the MAPPING software.
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Figure 17.4: Simulations of a 10-fields mosaic observed with the Plateau de Bure interferometer. Each
field is affected by a pointing error (see text). The corresponding rms are indicated in the lower left
(observations performed at 115 GHz) and lower right (230 GHz) corners of each panel.
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18.1 Visualisation

Contrary to the lower frequencies where continuum emission processes are dominant, mm interferometry
most frequently deals with spectral lines, and hence involves handling and display of data cubes. Only a
few astronomy packages have been designed for this: Gipsy, GILDAS, MIRIAD. Although the presentation
which follows is general enough about the principles (e.g. for the noise analysis or flux density measure-
ments), I will only present the tools which are currently available in GILDAS. Within GILDAS, two display
tools are available:

- The GRAPHIC program

- The MVIEW task

In GRAPHIC, easy display is available using the following commands
- GO MAP, for simple channel contour maps
- GO BIT, same with overlaid color bit map
- GO NICE, with clean beam in addition
- GO POS, for Position-Velocity plots
- GO SPECTRE, for maps of spectra.

Easy access to the parameters of these procedures is available through the Windowing interface. GRAPHIC
also provides access to all image processing tasks such as UV_MAP, UV_STAT, CLEAN, etc..., and flexible
controls for publication quality plots.

Task MVIEW provides a different approach. It is a Window based application which provides simple,
intuitive, and fast interactive 3-D data cube display. It provides spectrum display at cursor position, slices,
moments, movie features, color manipulation, etc...It also has a direct interface to some important tasks
(e.g. moments evaluation, subset extraction) for which interactively selecting parameters using mouse
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Figure 18.1: Tllustration of the difficulty to deconvolve a weak, extended structure. In this 1-D example,
half of the flux is in the extended structure, and cannot be recovered properly by deconvolution because
of low signal to noise.

motion is convenient. However, contrary to GRAPHIC, it cannot be customized to produce publication
quality images.

18.2 Photometry

18.2.1 From Flux density to Brightness temperature

The unit of the dirty map is ill defined. A single point source of 1 Jy appears with peak intensity of 1.
But if more than 1 point source is in the field of view, the combination of positive or negative sidelobes
from the other source modifies this result. It is thus necessary to deconvolve. After deconvolution, the
beam area is well defined: the CLEAN map unit is Jy per beam area.

The conversion to brightness temperature can then be done using the standard equation

2k,
Si = 5T (18.1)
2k7n62
= 27 18.2
4log2x2” ? (18.2)

for Gaussian beams. GO MAP and its variants automatically display the Jy/K conversion factor mentioned
above. The integrated flux density in a user defined area can then be computed on the clean map using
command GO FLUX.

18.2.2 Accuracy of Flux density estimates

The accuracy of flux measurements is limited by several factors.
Deconvolution Errors and Missing Flux

Deconvolution limits are among the most important. Deconvolution is required (see Chapter 15),
but it is impossible to deconvolve weak structures near the noise level. Nevertheless, these structures,
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when sufficiently extended, can contribute to a significant flux. The relevance of the missing flux to the
astronomical interpretation is to be decided by the astronomer. In most cases, however, the missing
flux does not correspond to any significant brightness, and its absence may not modify the astronomical
interpretation. A schematic illustration is given in Fig.18.1: half of the flux is buried in the noise, but the
brightness is measured properly (within the statistical error). Note also that WIPE ([Lannes et al. 1997])
offers an upper limit to the noise amplification factor due to the non linear deconvolution process. This
upper limit is often discouragingly large for the rather poor dirty beams provided by current mm arrays
(4 or 5 is not unusual).

Comparing the recovered flux to a single dish measurement can help you in estimating the corresponding
brightness level and evaluate whether this is important in your astronomical case. To convert from flux to
brightness, the characteristic size of the missed flux should be used. This is in between several synthesized
beam widths and about half of the primary beam. Although in general the problem is not as severe as one
would think (because, unfortunately, one is often signal to noise limited), this is an important information,
specially in the case of mosaics.

Seeing

A second important effect which affects flux density measurements is the seeing. Seeing result in an
underestimation of Point source flux. On the other hand, the total flux is spread over the seeing disk,
and is in principle conserved. Insufficient seeing conditions limit the deconvolution process, since the
effective synthesized beam (which should include atmospheric phase errors) is significantly different from
the theoretical synthesized beam (computed from uv coverage and weights). A good check is to make an
image of the two calibrators, and measure the corresponding point source flux and apparent size.

Noise estimate

Finally, the noise should be estimated. GO RMS gives the sigma of the image flux density distribution.
This is an improper estimate, since it includes any possible signal, all spectral channels, and map edges
where the noise level increases due to aliasing and gridding. A better estimate, derived from effective
weights, is in principle given by task UV_STAT. However, this estimate does not take into account possi-
ble deconvolution problems or dynamic range limitations due to atmospheric phase noise. The optimal
procedure is to use command GO FLUX on an empty area of the image to find out the point source rms
noise. The precision of the estimate is limited by statistical uncertainties linked to the number of beams
in the area. Then, another GO FLUX command on the emission area will give the total flux and number of
independent beams, n; the rms on the total flux is \/n times the point source rms determined by the GO
FLUX command applied to an empty region. Another good method to determine the noise level (yet to be
implemented as a GO NOISE procedure...) would be to build the histogram of the pixel values and fit a
Gaussian to it; if source structure only covers a small fraction of the image, this method provides a good
estimate.

Primary beam

One should emphasize that primary beam correction is essential in any correct flux density estimate.
All image plane analysis should be carried out on a primary beam corrected image. This introduces a
slight complication, since the noise level is then not uniform. The GO FLUX commands discussed before
should be applied in regions of similar extent and location vis-a-vis the primary beam(s).

uv plane analysis is also extremely useful both in measuring integrated flux densities and rms noise
level, at least for simple, relatively compact, source models. Task UV_FIT provides statistical errors for all
parameters of the fit. Primary beam correction should be applied a posteriori, based on the location of
the region of interest.

Dynamic Range

As mentioned above, the dynamic range may be a limitation. The dynamic range D,. is defined as the
ratio of the peak intensity to the lowest “believable” contour. D, is obviously lower than the signal to noise
ratio. It can be estimated as the absolute value of the peak to maximum negative contour ratio. As usual,
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map edges should not be included in this evaluation. Dynamic range is related to seeing and calibration
errors. It is typically 10 to 40 at Plateau de Bure (if signal to noise ratio allows). Errors should include
dynamic range effects.

Flux density scale

Finally, remember that the flux scale is determined by bootstrapping flux of (variable) quasars from
that of reference sources. Any errors accumulated in this process must be transferred to the source flux
estimate.

In summary, flux density estimates should quote errors which include

o Effective thermal noise

e Dynamic range problems

Relative (calibrator) flux uncertainty

Absolute flux scale uncertainty OR. reference flux scale.

Primary beam correction

18.3 Short Spacings

Extended structure are missed, attenuated or distorted in interferometric maps by lack of short uv spacing
information. While this effect may be negligible for some astronomical problems, it could also be essential
in a proper analysis. Deconvolution recovers some of them, but under-estimate the total flux because the
integral of the dirty beam is zero (the integral of the dirty beam is the weight of the (0,0) uv cell in the
uv data set).

Constructing a beam with a non zero integral can help deconvolution. This can be done by incorpo-
rating the Zero spacing flux or spectrum.

Short spacings provides even more information, because they give information on the spatial distri-
bution of this flux on scales between half the primary beam and the primary beam itself. Short spacings
can be provided by a smaller interferometer (e.g. BIMA) or a large single dish (e.g. 30-m). In theory,
short spacings can also be provided by the interferometer antennas used in single-dish mode. However,
because most interferometer have not been designed with total power stability as a goal, this has not been
practiced so far.

Incorporating short spacings into interferometer data is a two step process. Task UV_SINGLE extracts
short spacing information from single dish data (spectra) and creates a uv table. Task UV_MERGE merges
the single-dish and interferometer tables. Coordinates system should be consistent and checked before
(coordinates are always J2000.0 at Plateau de Bure, often B1950.0 at the other observatories...).

18.3.1 UV _SINGLE

Incorporating short spacings from the 30-m into Plateau de Bure data is a 3 step process for the user.

e Creation of a table of spectra
First, one should resample (in frequency) all spectra to same frequency grid than interferometer
data, using command RESAMPLE in CLASS. Then a table of spectra is produced using command GRID
(with no options) in CLASS.

e Image creation
The next step is the creation of “well behaved” map from the table of spectra. It starts with
resampling (in space) on a regular grid by a convolution kernel (interpolation techniques such as
the GREG command RANDOM_MAP are inappropriate). Weights are also resampled. Then, we follow
by extrapolation to zero outside the convex hull of the mapped region, using a kernel twice broader
than the single-dish beam, to avoid introducing spurious structure.
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Because of noise, the map still contains spurious high spatial frequencies. These are removed during
the uv table creation. The algorithm steps are

— Fourier transform of map and weight images

— Division by Fourier Transform of the single-dish beam

— Gridding correction (division by Fourier Transform of the gridding function)
— Truncation to some maximum uv distance (< dish diameter)

— Inverse Fourier Transform back to image plane

— Multiplication by primary beam of the interferometer

— Fourier Transform to uv plane

— Normalization of the weights so that the sum of weights is the weight of the total flux (derived
from integration time, bandwidth and system temperature).

— Optional application of an amplitude scaling factor.

— Optional application of a weight scaling factor.

This produces a uv table with optimal weights in terms of signal to noise ratio for the total flux,
and with effective tapering following the single-dish illumination pattern, except for the truncation
at some uv distance.

e Merging with interferometer data
The final step is to merge the resulting uv table with the interferometer uv table. Re-weighting and
re-scaling is again possible at this stage. Note that the choice of weighting function is arbitrary. It
may result in poorly behaved synthesized beams when combined with the interferometer uv data.
Weights can be lowered by any arbitrary factor (increasing the weights is only allowed if signal to
noise is not an issue). A good choice is to adjust the weights so that there is almost no negative
sidelobe.

18.4 Dirty Tricks

Besides flux density estimate, which, as discussed before, is a non trivial task, analyzing spectral line
images may force the astronomer to face some really tricky problems. The two most obvious are moment
evaluation and continuum subtraction.

18.4.1 MOMENTS

The lowest order moment of a spectral line data cubes offer very convenient ways of interpreting images.
The zero*® order moment is the integrated intensity, the first order moment the velocity, the second
order moment the line width. While these moments are linear combination of the channel maps, the
deconvolution process is non linear. Accordingly, the two operations do not commute.

Hence, it is impossible to recommend deconvolving before computing the mean intensity, or summing up
the individual cleaned channel maps. In the latter, limited signal to noise can prevent proper deconvolution.
In the former, velocity gradients can spread emission over an extended area which is difficult to handle in
the deconvolution. Choice can be a matter of trial (and errors).

To avoid introducing noise, a window in velocity is important. While noise on the integrated intensity
only increases as the square root of the window width, the effect on the higher order moments is much
more dramatic, and results in non-gaussian noise distribution on these variables. A threshold in intensity is
useful to prevent spurious noisy features. The window should in principle be pixel dependent to allow for
velocity gradients. Smoothing both in the spatial and spectral domains may help in obtaining better results
in moment extraction. A line fitting procedure (e.g. a Gaussian line fit at each pixel) may sometimes be
the best solution (under construction, check later...).

Moments can be computed using task MOMENTS and displayed using the GO VELOCITY command in
GRAPHIC.
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18.4.2 Continuum Subtraction

Continuum subtraction is a related problem. It is in principle needed to compute properly moment maps.
However, it may be completely impossible, for example in the case of an optically thick line partially
covering a continuum source. Continuum subtraction can be done in the image plane or in the uv plane.
uv plane subtraction avoid the non linearity in the deconvolution, and thereby any amplification of errors
induced in this process. Task UV_SUBTRACT performs this operation. Although signal to noise on the
continuum is often much better than on the spectral line, it may be advantageous to subtract a source
model rather than the measured visibilities; this is only true when thermal noise is more important than
phase noise. Task UV_MODEL compute visibilities from an input image.
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Low Signal to Noise (S/N) is unfortunately a frequent situation in mm astronomy. Since S/N increases
only as the square root of the integration time, it may not be feasible at all to go from a case of low S/N
to a case of even “decent” S/N. Thus the astronomer has to worry about interpreting properly low S/N
data. The risk of over-interpretation in such cases is to be considered seriously. This lecture will give you
some hints, as well as point out some traps which must be avoided.

19.1 Continuum Source

Let us start with a continuum source to simplify. The basic source parameters are position (x,y), flux
density S,, and size. To determine the first 3 parameters, the best strategy is to avoid resolving the source.
Since the position errors are proportional to the beam size, one should thus try to match the source size to
the beam size. Having a priori information on the source position (by other observations, e.g. an optical
image) will help to get a better accuracy on the source flux.

19.1.1 Flux measurement

e Accurate Position: If the position is known to better than 1/10%" of the beam, you should then
use UV_FIT with the position fixed to determine the flux and the noise. In doing so, you should use
an appropriate fixed source size, based on any a priori information you have (as you are following
the “best strategy”, this source size should be smaller than the beam size). In such a case, you only
have one free parameter, the flux, and a 3o signal is sufficient to claim a detection.

¢ Rough Position If the source position accuracy is not sufficient, you need to measure the position
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Rule 1 Do not resolve the source
Rule 2 Get the best absolute position before
Rule 3 Use UV_FIT to get

the parameters and their errors
a priori position accuracy

< 0.1 Beam | ~ Beam | Any
Minimum signal | 3 o 40 50
Position fixed free free, (make an image)
Source size fixed fixed fixed

Table 19.1: Recipes to use UV_FIT to measure the flux of a weak source

also. As you now have more parameters to derive, a higher S/N will be required to do so. When
the position uncertainty is about the beam size, a 4 ¢ signal will be required to get a firm detection.
Use UV_FIT to measure the flux and source position, with the same fixed source size as before.

e Unknown Position When the source position is really unknown, a 5 ¢ signal may become necessary
to claim a detection. To locate the source position, make an image first. Cleaning is usually not
required at that level, unless the sidelobe level is higher than the noise to signal ratio. Then, use
UV_FIT to measure the source flux, position and their associated errors, always using the same fixed
source size as before.

Note that in all cases, the source size being used should be at least equal to the effective seeing of the
observations, even if the source is actually a point source.

Table 19.1 summarizes the procedure to be followed. Once you have done your best in determining
the source parameters, they remain to be properly interpreted. As a rule of thumb, remember that All
fluxes for detected weak sources are biased by 1 to 2 ¢. The only exception is when the source
position and size is known a priori. The reason for the bias is very intuitive. Assume you have observed
just enough to get a 30 detection. A positive noise peak will bring that up to a 4o value, a negative noise
peak down to 20, which you will consider as a non-detection.

19.1.2 Other parameters

The other source parameters (position & size) require higher signal to noise to be determined. The position
accuracy is the synthesized beam size divided by the S/N ratio. Hence, to get a position accuracy to 25
% of the beam size, at least a 40 detection is required.

The above limitations are valid for a point source. If the source is not expected to be small enough,
additional complications occur. If you have performed the experiment according to the guidelines given
before (i.e. avoiding resolving the source), the source size may be just about the beam size. In such
circumstances, no source size at all can be estimated with current mm interferometers if the detection is
less than 6 0. To convince yourself, let us perform a simple thought experiment. Assume we have detected
a source at the 6 o level. Take this 6 o signal, and divide the observations in two equal (in sensitivity) data
sets, one containing only the shortest baselines, the other ones only the longest baselines. Each subset
has a /2 times higher noise level, and the error on the flux difference between these two data sets is 2
times the original noise level. Assume that the shortest baselines give us twice more flux than the longest
one. In such a case, we would in fact have a better detection (6.40) with the short baselines only, but
the difference flux is only measured with 3 0. Such an experiment is not optimal from the detection point
of view, since we would have obtained a better result (6.40) by observing only half of the time... Table
19.2 summarizes the corresponding numbers, and indicates that the minimum detection level to resolve a
source at the 40 level is 7.10.

The interpretation of such data is made even more difficult by the fact that if the size is unknown, the
error on the total flux increases quite significantly. Fig.19.1 shows the detection of a weak high-redshift
object in the Hubble Deep Field area [Downes et al 1999] Although the detection is at the 7o level, the
source size is not constrained by these observations, and the total flux becomes uncertain by as much as
40 % when the uncertainty on the source size is included.
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Point Beam Size Minimum Size
Source Source Resolved
Flux Noise S/N | Flux Noise S/N | Flux Noise S/N
(1) | Short baselines | 6 1.4 42 |9 1.4 6.4 10 1.4 7.1
(2) | Long baselines | 6 14 42 |3 14 21 |2 14 14
(3) | Difference 0 2 0 6 2 3 8 2 4
(4) | Mean 6 1 6 6 1 6 6 1 6

Table 19.2: Signal to Noise example for source size measurement. Line (1) indicate the flux measured
on short baselines, line (2) on long baselines, line (3) the difference between (1) and (2), and line (4) the
average. Three cases are shown: a point source, a source with size similar to the beam, and the smallest
source which can be resolved at the 40 level.
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Figure 19.1: Left: 7o detection of the strongest source in the Hubble Deep Field. Note that the contours are
visually misleading (they start at 2 o but with 1o steps, given the impression of a much better detection).
Right: Attempt to derive a size. Size can be as large as the synthesized beam... Note that the integrated
flux increases with the source size.
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19.2 Spectral Line Sources

Unfortunately, things get even worse for spectral lines, because the uncertainties on the line width and
source velocity add up to the position and size problem. If the source velocity is unknown, the observer will
tend to select the brightest part of the spectrum to define the integrated flux. This result in a positive bias
on the flux. Furthermore, if the line width is not known, the observe may limit the line to the brightest
part of the spectrum, resulting in another bias. This bias is in general positive, since positive noise peaks
will be included in the line region, but could be negative for specific line shapes.

If the source position was a priori unknown, it is common practice to determine it from the integrated
line flux map made using the tailored line window specified by the astronomer. Such a procedure results
in a positively biased total flux. Any speculated extension will also increase the total flux, by enlarging
the selected image region by selection of positive noise peaks. The net effect is a 1 to 2 o positive bias on
the integrated line flux. Things get really messy if a continuum is superposed to the weak line...

A good strategy is required to minimize these biases. The correct approach to point sources (or sources
less than about 1/3' of the synthesized beam), is to first determine the position (e.g. from continuum
data is available, or from the integrated line map if not, or ideally from other data). Once the position is
fixed, the line profile can be derived by fitting a point (or small fixed size) source, at fixed position into
the UV data. Using this line profile, the total line flux, as well as source velocity and line width, can be
derived by fitting an appropriate lineshape, e.g. a Gaussian if no other information is available. In this
last step, a constant baseline offset should be added if there is a continuum contribution.

For extended sources, which may be affected by velocity gradient, one has to fit a multi-parameter (6
for an elliptical gaussian) source model for each spectral channel into the UV data. As a consequence, the
signal in each channel should be at least 6 o to derive any meaningful information. The strict minimum
is 40 (per line channel...) to get flux and position for a fixed size source. Velocity gradients are not
believable unless even better signal to noise is obtained per line channel !... Moreover, for narrow lines,
most correlators produce spectral channels which are not independent; the correlation between adjacent
channels should be taken into account when analyzing velocity gradients.

To sum up the weak spectral line problems:

e Do not believe velocity gradient unless proven at a 5 o level. This requires a S/N larger than 6
in each channel. Remember that position accuracy per channel is the beamwidth divided by the
signal-to-noise ratio...

e Do not believe source size unless S/N > 10 (or better)
e Expect line widths to be very inaccurate
e Expect integrated line intensity to be positively biased by 1 to 2 ¢

e or even more biased if the source is extended

These biases are the analogous of the Malmquist bias.

Unfortunately, examples for such problems are numerous, especially for high redshift CO lines. The
z = 2.8 galaxy 53 W 002 was detected in CO with the OVRO interferometer by [Scoville et al 1997], who
claim an extended source, with velocity gradient. The published images (contour maps) look convincing,
but this is biased by the chosen visual representation, with contours starting at 20 but spaced by 1o. This
creates the visual impression of higher S/N ratio. The published spectra also looks convincing, but are
presented as a fully sampled spectra (i.e. channel width equal to twice the channel separation). Although
this is the proper way to present a complete information, the astronomer’s eye is not accustomed to such a
presentation, and the astronomer tends to interpret the data as if the channels were independent, thereby
underestimating the noise. Yet the total line flux is 1.5+ 0.2 Jy.km/s i.e. (at best) only 7 o, and thus,
according to the discussion presented above, no extension/gradient should be measurable. Indeed, using
the IRAM interferometer, [Alloin et al 2000] find a line flux of 1.20 + 0.15 Jy.km/s, no source extension,
no velocity gradient, different line width and redshift. Note that the line fluxes agree within the errors,
with the second determination just 1o below the first one, as expected for an initially biased result...

Another example of visually misleading result is shown in Fig.19.2. Although the two spectra appear
different, there is a weak continuum (which was measured independently) on the Northern source. Once
the continuum offset and a scale factor have been applied, the lack of visible structure in the difference
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Figure 19.2: Example of search for a Velocity Gradient: BR 1202-0725. The image is a contour map of
dust emission at 1.3 mm, with 2 o contours. The inserts are redshifted CO(5-4) spectra from the indicated
directions. A weak continuum (measured independently) exist on the Northern source. The rightmost
insert is a difference spectrum (with a scale factor applied, and continuum offset removed) (Cox, Guélin,
Guilloteau & Omont, in preparation).

spectrum shows that both line profiles are indistinguishable, i.e. that there is no measurable velocity
gradient. These two sources could be lensed images of the same galaxy...
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20.1 Introduction and Basic Formalism

Modern astrometry aims at improving our knowledge of celestial body positions, motions and distances to
a high accuracy. The quest for accuracy began in the early days of astronomy and is still continuing in the
optical domain with most sophisticated instruments (automated meridian circles, the Hipparcos satellite
or future astrometric space missions) as well as in the radio domain (connected-element interferometers
and VLBI). New instrumental concepts or calibration procedures and increased sensitivity are essential to
measure highly accurate positions of stars and radio sources. Positions accurate to about one thousandth
to one tenth of an arcsecond have now been obtained for hundreds of radio sources and for about 100 000
to one million stars in the Hipparcos and Tycho catalogues respectively.

In this lecture we are concerned with some basic principles of position measurements made with syn-
thesis radio telescopes and with the IRAM interferometer in particular. More details on interferometer
techniques can be found in the fundamental book of [Thompson et al. 1986]. The impact of VLBI in
astrometry and geodesy is not discussed here. (For VLBI techniques see [Sovers et al. 1998].)

We first recall that measuring a position is a minimum prerequisite to the understanding of the physics
of many objects. One example may be given for illustration. To valuably discuss the excitation of compact
or masing molecular line sources observed in the direction of late-type stars and HII regions sub-arcsecond
position measurements are required. This is because the inner layers of circumstellar envelopes around
late-type stars have sizes of order one arcsecond or less and because several compact HII regions have
sizes of one to a few arcseconds only. Position information is crucial to discuss not only the respective
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importance of radiative and collisional pumping in these line sources but also the physical asssociation
with the underlying central object.

The output of an interferometer per unit bandwidth at the observing wavelength A is proportional to
the quantity

R= / AR)I(R) cos(2nB.F/N)d0 (20.1)

where & is the unit vector toward the observed source, A is the effective antenna aperture, I the source
brightness, and B the baseline vector of the interferometer. For an extended source one refers the obser-
vations to the reference direction ko and supposing that the radiation comes from a small portion of the
sky we have k = ko + & where & is the position vector describing the source coordinates. (Since both Ko
and k are unit vectors we obtain k.6t = 0.) The interferometer output is given by

R =1V cos(2rB.kg/\ + ¥) (20.2)

where

Vexp(i¥) = / A(3)1(3) exp(i2mh.3)dS2 (20.3)

is the complex source visibility and I;(u, v) is the baseline vector projected on a plane normal to the tracked
direction. The exact definition of the baseline coordinates v and v is given in Section 20.3.

The astrometry domain corresponds to those cases where the source visibility amplitude is equal to 1
(point-like sources) and the phase provides the source position information.

20.2 The Phase Equation

The most important measurement for radio astrometry is that of the actual fringe phase of a connected-
element interferometer (or similarly the group delay in VLBI). Let 6 be the angle between the reference
direction and the meridian plane of a given interferometer baseline. The phase is then defined by

¢r = 2mBsin(6) /A (20.4)
If the point-like source of interest is offset by A8 from the reference direction the total phase is
¢ =2nBsin(d + AB) /A =~ ¢, + 2nB cos(0)AG/ A (20.5)

It is thus clear that measuring an angle or an offset position on the celestial sphere becomes possible only
when all phase calibration problems have been understood and solved.
Accounting for uncertainties in the baseline and source position vectors the actual phase is

-

¢ = 2n(B + 6B).(ko + 6k) /A (20.6)

where B is a first approximation of the baseline, ko the tracking direction; B+ 6B and ko + 6k are the true
baseline and source position vectors, respectively. The reference phase is given by

br = 20B.ko /A (20.7)
and, neglecting the term involving (55.(513, we obtain

¢ — ¢ = 21 (B.OK + 0B.ko) /A (20.8)
We consider all vector projections in the right-handed equatorial system defined by the unit vectors a;

(H=6h,0=0),a2 (H=0h,d§=0),a3 (6 =90°). (Note that this system is not the Cartesian coordinate
system used in [Thompson et al. 1986].) H and ¢ are the hour angle and declination, respectively. In the



20.3. DETERMINATION OF SOURCE COORDINATES AND ERRORS 235

equatorial system the baseline vector B has components (B, Be, Bs) and the components of the reference
position Ko are given by (cos(8) sin(H), cos(8) cos(H), sin(d))

The two limiting cases 6k = 0, and sB=0 correspond to those where we either calibrate the baseline
or determine the exact source position.

In the first case the source coordinates are perfectly known and by comparing the observed phase
¢ with the reference phase ¢, one determines 6B and hence the true baseline B + 6B. The reference
sources observed for baseline calibration are bright quasars or galactic nuclei whose absolute coordinates
are accurately known. The most highly accurate source coordinates are those of the radio sources used
to realize by VLBI the International Celestial Reference Frame (ICRF); distribution of coordinate errors
are below one milliarcsecond. However, the ICRF catalogue is insufficient for phase and baseline cal-
ibrations of millimeter-wave arrays because most sources are not bright enough in the millimeter-wave
domain. The IRAM calibration source list is thus a combination of several catalogues of compact radio
sources. Today, the Plateau de Bure Interferometer catalogue of calibration sources is based mostly on
compact radio sources from the Jodrell Bank — VLA Astrometric Survey (JVAS - [Patnaik et al 1992],
[Browne et al. 1998], [Wilkinson et al. 1998]).

20.3 Determination of Source Coordinates and Errors

Once the baseline is fully calibrated (65 = 0) the exact source coordinates are known from the Sk vector
components. These components are formally deduced from the differential of k9. In the right-handed
equatorial system defined in Section 20.2 we obtain

6k = (—sin(6)sin(H)AS — cos(8) cos(H)Aa, (20.9)
—sin(d) cos(H)AS + cos(d) sin(H)Aq,
cos(0)Ad)
where Aa and Ad are the right ascension and declination offsets in the equatorial system (Aa = —AH).
The phase difference is then a sinusoid in H
(Qé;i))\ = B.6k = Cy sin(H) + Cy cos(H) + C (20.10)
w
where
C; = —Bysin(d)Ad + Bs cos(d)Aa (20.11)
Cy = —Bssin(d)Ad — By cos(d)Aa (20.12)
Cs = B3cos(6)Ad + ¢ins (20.13)

and C3 contains the instrumental phase @;ys.

Measurement of the phase at time intervals spanning a broad hour angle interval allows us to determine
the three unknowns C, Cs, and C3, and hence Aa and Ad and the exact source position. Note that for
sources close to the equator, C; and Cj alone cannot accurately give Ad. In the latter case, C'5 must
be determined in order to obtain Ad; this requires to accurately know the instrumental phase and that
the baseline is not strictly oriented along the E-W direction (in which case there is no polar baseline
component).

A synthesis array with several, well calibrated, baseline orientations is thus a powerful instrument to
determine k. In practice, a least-squares analysis is used to derive the unknowns Aa and Ad from the
measurements of many observed phases ¢; (at hour angle H;) relative to the expected phase ¢,. This is
obtained by minimizing the quantity X(A¢, — (Cy sin(H;) + Cs cos(H;) + C3))? with respect to Cq, Ca,
and C5 where A¢} = (¢; — ¢r)A/27. A complete analysis should give the variance of the derived quantities
Aca and A§ as well as the correlation coefficient.

Of course we could solve for the exact source coordinates and baseline components simultaneously.
However, measuring the baseline components requires to observe several quasars widely separated on the
sky. At mm wavelengths where atmospheric phase noise is dominant this is best done in a rather short
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observing session whereas the source position measurements of often weak sources are better determined
with long hour angle coverage. This is why baseline calibration is usually made in separate sessions with
mm-wave connected-element arrays.

The equation giving the source coordinates can be reformulated in a more compact manner by using
the components u and v of the baseline projected in a plane normal to the reference direction. With v
directed toward the north and u toward the east, the phase difference is given by

(¢ — ¢r) = 2m(ucos(d)Aa + vAD) (20.14)

Comparing this formulation to the sinusoidal form of the phase difference we obtain

u = (=Bicos(H)+ Basin(H))/A (20.15)
= (Bscos(d) —sin(d)(By sin(H) + B2 cos(H)))/A (20.16)

Transforming the B » 3 into a system where the baseline is defined by its length B = (B? + B3 4+ B2)%% and
the declination d and hour angle h of the baseline vector (defined as intersecting the northern hemisphere)
we obtain

B1 = Bcos(d) sin(h), Ba = B cos(d) cos(h), Bs = Bsin(d) (20.17)
and

u = (cos(d)sin(H — h))B/A (20.18)
= (cos(0) sin(d) — sin(6) cos(d) cos(H — h))B/A

which shows that the locus of the projected baseline vector is an ellipse.

In order to derive the unknowns Aa and AJ the least-squares analysis of the phase data is now
performed using the components u;,v; derived at hour angle H;. In the interesting case where the phase
noise of each phase sample is constant (this occurs when the thermal noise dominates and when the
atmospheric phase noise is “frozen”) one can show that the error in the coordinates takes a simple form.
For a single baseline and for relatively high declination sources the position error is approximated by the
equation

Oa5 = A0 ~04/(2m\/np(B/ X)) (20.19)

where 0, is the phase noise and n, the number of individual phase measurements. This result implies (as
expected a priori) that lower formal uncertainties are obtained with longer observing times and narrower
synthesized beams. Of course the position measurements are improved with several independent interfer-
ometer baselines; the precision improves as the inverse of the square root of n(n — 1)/2 for n antennas in
the array.

We have shown that for a well calibrated interferometer the least-squares fit analysis of the phase
in the (u,v) plane can give accurate source coordinates. However, the exact source position could also
be obtained in the Fourier transform plane by searching for the coordinates of the maximum brightness
temperature in the source map. The results given by this method should of course be identical to those
obtained in the (u,v) plane although the sensitivity to the data noise can be different.

Finally, it is interesting to remind that the polar component of the baseline does not appear in the
equation of the fringe frequency which is deduced from the time derivative of the phase. There is thus less
information in the fringe frequency than in the phase.

20.4 Accurate Position Measurements with the IRAM Interfer-
ometer
Let us start with two general and simple remarks. First, the phase equation in Section 20.2 or the least-

square analysis of the uv data in Section 20.3 show that higher position accuracy is achieved for smaller
values of the fringe spacing A/B. Thus, for astrometry it is desirable to use long baselines and/or to go to
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short wavelengths. However, the latter case implies that the phases are more difficult to calibrate espe-
cially at mm wavelengths where the atmospheric phase fluctuations increase with long baselines. Second,
sensitivity is always important in radio astrometry. For a point-like or compact source the sensitivity of
the array varies directly as D?(n(n—1))°%5 where D is the antenna diameter and n the number of antennas.
Thus, the detection speed varies as D*n(n — 1) and big antennas are clearly advantageous [Baudry 1996].

Comparison of the IRAM 5-element array with one of its competitors, the Owens Valley Radio Obser-
vatory array (OVRO) with 6x10.4m, gives a ratio of detection speed of 1 over 0.36 at 3mm and 1 over
0.65 at 1.3mm in favour of the Plateau de Bure array (see Table 1 below where the two entries correspond
to 3mm and 1 mm; system temperatures have been adopted according to advertised array specifications
[June 2000]; sensitivity and speed are defined in Table 1). (Note also that the sixth antenna in the Bure
array will increase its detection speed by 50%.) For comparison we include in Table 1 the BIMA array
located in California and the Nobeyama array in Japan (NMA). In addition, it is interesting to note that
the large dishes of the TRAM array are well adapted to quick baseline and phase calibrations; this is
another clear advantage of the IRAM interferometer in astrometric observations.

Table 1. Comparison of Sensitivity and Speed of mm-wave Interferometers

BIMA IRAM NMA OVRO
Antennas 9 5 6 6
Baseline (m) 2000 400 400 480
Sensitivity  0.31 0.26 1.00 1.00 0.42 0.06 0.36 0.65
Speed 0.10 0.07v 1.00 100 0.18 — 0.13 042
Sensitivity = % "syz(m, Speed = [% "y"(T%l)]2

20.4.1 Absolute positions

To illustrate the potential of the IRAM array for astrometry we consider here observations of the SiO
maser emission associated with evolved late-type stars. Strong maser line sources are excited in the
v=1,J =2—1 transition of SiO at 8 GHz and easily observed with the sensitive IRAM array. Because
of molecular energetic requirements (the vibrational state v = 1 lies some 2000 K above the ground-state)
the SiO molecules must not be located too much above the stellar photosphere. In addition, we know
that the inner layers of the shell expanding around the central star have sizes of order one arcsecond
or less. Therefore, sub-arcsecond position accuracy is required to locate the SiO sources with respect
to the underlying star whose apparent diameter is of order 20-50 milliarcseconds. For absolute position
measurements one must primarily:

o select long baselines to synthesize small beamwidths,

o make a highly accurate baseline calibration observing several quasars selected for their small position
errors,

o observe at regular intervals two or more quasars (phase calibrators) in the field of each program star
in order to determine the instrumental phase and to correct for atmospheric phase fluctuations,

o observe the program star over a long hour angle interval, and use the best estimate of the stellar
coordinates (corrected for proper motion).

Our first accurate radio position measurements of SiO masers in stars and Orion were performed
with the IRAM array in 1991/1992. We outline below some important features of these observations
[Baudry et al. 1994]. We used the longest E-W baseline available at that time, about 300 m, thus achieving
beams of order 1.5 to 2 arcseconds. The RF bandpass calibrations were made accurately using strong
quasars only. To monitor the variable atmosphere above the array and to test the overall phase stability,
we observed a minimum of 2 to 3 nearby phase calibrators. Prior to the source position analysis we
determined accurate baseline components; for the longest baselines the r.m.s. uncertainties were in the
range 0.1 to 0.3 mm. The positions were obtained from least-square fits to the imaginary part of the
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calibrated visibilities. (Note that the SiO sources being strong, working in the (u,v) or image planes is
equivalent.)

The final position measurement accuracy must include all known sources of uncertainties. We begin
with the formal errors related to the data noise. This is due to finite signal to noise ratio (depending
of course on the source strength, the total observing time and the general quality of the data); poorly
calibrated instrumental phases may also play a role. In our observations of 1991/1992 the formal errors
were around 10 to 30 milliarcseconds. Secondly, phase errors arise in proportion with the baseline error 5B
and the offset between the unit vectors pointing toward the stellar source and the nearby phase calibrator.
This phase error is 6(¢—¢,) = (65.(kquasar —k0))27/A. Typical values are dB ~ 0.2 mm and dk ~ 10° —20°
corresponding to phase errors of 3° to 7°, that is to say less than the typical baseline residual phases. A
third type of error is introduced by the position uncertainties of the calibrators. This is not important
here because the accuracy of the quasar coordinates used during the observations were at the level of one
milliarcsecond.

The quadratic addition of all known or measured errors is estimated to be around 0.07" to 0.10”. In
fact, to be conservative in our estimate of the position accuracy we measured the positions of nearby
quasars using another quasar in the stellar field as the phase calibrator. The position offsets were around
0.1" t0 0.2" depending on the observed stellar fields; we adopted 0.1" to 0.2" as our final position accuracy
of SiO sources. The SiO source coordinates are derived with respect to baseline vectors calibrated against
distant quasars. They are thus determined in the quasi-inertial reference frame formed by these quasars.

Finally, it is interesting to remind a useful rule of thumb which one can use for astrometry-type projects
with any connected-element array provided that the baselines are well calibrated and the instrumental
phase is stable. The position accuracy we may expect from a radio interferometer is of the order of
1/10th of the synthesized beam (1/20th if we are optimistic). This applies to millimeter-wave arrays when
the atmospheric fluctuations are well monitored and understood. With baseline lengths around 400 m
the TRAM array cannot provide position uncertainties much better than about 0.05 — 0.1" at 86 GHz.
Extensions to one kilometer would be necessary to obtain a significant progress; the absolute position
measurements could then be at the level of 50 milliarcseconds which is the accuracy reached by the best
optical meridian circles.

20.4.2 Relative Positions and Self-calibration Techniques

We have measured with the IRAM array the absolute position of the SiO emission sources associated with
each spectral channel across the entire SiO emission profile. Any spatial structure related to the profile
implies different position offsets in the direction of the star. Such a structure with total extent of about 50
milliarcseconds is observed in several late-type stars. This is confirmed by recent VLBI observations of SiO
emission in a few stars. VLBI offers very high spatial resolution but poor absolute position measurements
in line observations.

The best way to map the relative spatial structure of the SiO emission is to use the phase of one
reference feature to map all other features. This spectral self-calibration technique is accurate because all
frequency-independent terms are cancelled out. The terms related to the baseline or instrumental phase
uncertainties as well as uncalibrated atmospheric effects are similar for all spectral channels and cancel
out in channel to channel phase differences. By making the difference

(¢(v) = d(vrer))(A/2m) = B.ok(v) — B.ok(vrey) (20.20)

where the SiO reference channel is at frequency v,.y we obtain a phase difference equation whose solution
gives the coordinate offsets Aa(r) and Ad(v) relative to channel vp.;. The main limitation in such
self-calibration techniques comes from the thermal noise and the achieved signal to noise ratio SNR. In
this case [Reid et al. 1988] showed that the one sigma position uncertainty or angular uncertainty A#@ is
approximately given by the equation

A6 = 0.5(\/B)/SNR (20.21)

Common practice with connected-element arrays shows that selection of a reference channel is not critical;
it must be strong in general. Self-calibration proved to be successful with the IRAM array in several stars
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and Orion where we have obtained accurate relative maps of SiO emission. Detailed and accurate relative
maps were also obtained for the rare isotope 2SiO emission which is nearly 2 orders of magnitude weaker
than that of the main isotope [Baudry et al. 1998]. A relative position accuracy of 2 to 5 milliarcsec was
obtained in the Orion spot map of 28SiO emission (Fig. 20.1).

0.1

Dec. Offset

702 L 1
0.2 0.1 0 —-0.1
R.A. Offset

Figure 20.1: Spot map of 28Si0 v = 1,J = 2 — 1 emission observed on August 1995 in the direction of
Orion IRc2 [Baudry et al. 1998]. The right ascension and declination offsets are in arcsec. Each small
open square marks the center of an individual channel. The diameter of each circle, given every 3 channels,
is proportional to the line intensity. The two main ridge of 22SiQ emission cover —1 — —10 (southern
ridge) and 12 — 20 kms™1.

The relative spot maps obtained with connected-element arrays do not give the detailed spatial extent
of each individual channel. This would require a spatial resolution of about one milliarcsecond which
can only be achieved with VLBI techniques. Note however that VLBI is sensitive to strong emission
features while the IRAM array allows detection of very weak emission; thus the two techniques appear to
be complementary.

With SiO spatial extents of about 50 milliarcseconds and absolute positions at the level of 0.1 arcsecond
it is still difficult to locate the underlying star. We have thus attempted to obtain simultaneously the
position of one strong SiO feature relative to the stellar photosphere and the relative positions of the
Si0 sources using the 1 and 3 mm receivers of the IRAM array. This new dual frequency self-calibration
technique is still experimental but seems promising.

20.5 Sources of Position Uncertainty

We have given evidence that extended baselines are best for accurate position measurements. In addition,
as long as sensitivity is not an issue and that observed sources are not resolved by the array, the outermost
stations should always be preferred (Section 20.4). The great asset of the IRAM array is clearly sensitivity
coupled with resolving power, although atmospheric fluctuations and instrumental limitations may limit
the accuracy of position measurements.

We further discuss below the boundary conditions or requirements in astrometric observations. Table
2 at the end of this section summarizes the limitations with respect to the IRAM array.
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20.5.1 Known Limitations

Among several practical limitations it is worth mentioning: wind effects, thermal effects in the antenna
structure (including de-icing instabilities), the influence of refraction effects, imperfections in subreflector
displacements, imperfections in the azimuth and elevation bearings of the antennas and, not least, un-
certainties in the “crossing point" of the azimuth and elevation axes. These imperfections, and in fact
the resulting differential effects of each antenna pair in the array, have adverse effects on the visibility
phase measurements; however, many of them can be removed to a large extent by phase calibration (a
posteriori), and thus will not be discussed further.

In order to make the reader more aware of these questions, we just mention that the large-scale
uneveness of the azimuth bearings gives rise, in places, to optical path deviations of about 40 um which
translate into position offsets of 0.04"” with 200 m baselines. Likewise, position uncertainties result from
imperfections in the “crossing point" of the azimuth and elevation (nodal point) of each antenna in the
array (see Chapter 6). Slow drifts in the focal position are also corrected to first order by the calibration
procedure. Only large and rapid focal drifts are problematic if not recognized as such in the phase of a
reference calibrator.

20.5.2 Practical Details

We elaborate here on some properties of the IRAM array related to inaccuracies in the determination of
baseline lengths, and we briefly discuss how atmospheric phase noise and source strength can limit the
accuracy of position measurements.

o Baselines: are easily measured with the IRAM interferometer on Plateau de Bure with a precision
of a few degrees or a small fraction of one millimetre. As a reference, good winter conditions allow
us to measure baselines at 86 GHz, using a number of quasars well-distributed in hour-angle and
declination, with uncertainties of 5° — 8° in the D configuration (the most compact one at IRAM)
and 10° — 20° in the A configuration. But even the most accurate baseline measurement will be
limited in precision. Residual uncertainties in the baselines will finally produce phase errors that scale
with Ak = Equasar — Ksource, the distance between a calibration quasar and the source. Combining
the different forms of the phase equation defined in Section 20.2, we can then derive a rough estimate

of the mean uncertainty in the absolute position of a source from
AQ ~ (6B - AE)/B ~ (6¢/27) (A\/B) ~ (6¢/27) 65 (20.22)

where d¢ is the phase error due to inaccuracies in the baselines. This formula is convenient, as
it associates uncertainties in the knowledge of the baseline length at a given frequency with 6p,
the synthesized beam. For instance, observations at 86 GHz in the D configuration with baseline
phase residuals d¢ between 2° and 5° (i.e. assuming baseline errors, 88 = 0.2 mm, and typical phase
calibrator distances, Ak =5° — 15°) appear to have position uncertainties smaller than 0.20”. See
Subsection 20.4.2 for suggestions to improve these uncertainties.

o Atmospheric phase fluctuations are among the most important limitations that affect the ac-
curacy of position measurements. Poor seeing conditions imply phase decorrelation which in turn
implies reduced flux density sensitivity and larger apparent source sizes (see Chapters 9 and 10).
When the atmospheric phase noise dominates, phase decorrelation can be estimated by least-square
fitting in time the phase profile of a reference calibrator. Under the assumptions made at the end
of Section 20.3 or assuming here that the atmospheric phase fluctuations remain unchanged, namely
0 is similar for each phase sample, we can estimate the mean angular uncertainty from

A6 ~ 04/ (2n\ /iy (B/N) = 04 05/ (27 /5 (20.23)

where n,, is the number of phase samples. The size of the associated “seeing disk" is defined as
(04/2m)v/81In26p. For instance, measuring mean atmospheric phase fluctuations o4 ~ 10° at 86 GHz
on a 60 m baseline is equivalent to observe in ~ 0.78" seeing conditions (which is small since 6 ~
A/B ~ 12" and corresponds to a small fraction of the synthesized beam). Observations at the same
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frequency, on the same baseline and with similar atmospheric conditions will then provide a position
accuracy of order Af ~ 0.33"/,/n, (or 3% of 85 ~ 12").

o Source strength and finite signal to noise ratio is another important limitation to astrometric
accuracy. While reference calibrators have to provide enough sensitivity for rapid detection, detection
of program sources may require hours of integration. In addition, observed sources are sometimes
resolved out with extended configurations. Therefore, the interesting astrometric case described in
Section 20.4 where spectral sources are rather easily detected may not be common in mm-wave
astronomy. As mentioned in Section 20.4.2 we can use the result of [Reid et al. 1988] to estimate
the one sigma position uncertainty

AG:U(; ~ (03/2)(05/5) :aB/(Z'SNR) (20.24)

where og is the noise in the map and S the source flux density. With the IRAM array in the D
configuration, a source at mean declination (e.g. 30° —40°) detected with a signal-to-noise SNR ~ 5,
cannot be located with a precision better than 10% of 6p (e.g. 0.25"” at 230 GHz). Uncertainties
in declination measurements will obviously be larger for southern sources owing to the elongation of
the synthesized beam.

On the other hand, astrometric observations of bright sources such as the SiO line sources presented
in Section 20.4 are not limited by SNR issues in general, but by the accuracy of the bandpass
calibration. While delay calibration (see Chapter 5) already removes the bulk of the phase gradient
across the band selected for observations, residual variations can only be removed by observing strong
calibrators. Using the classical radiometric equation, bandpass calibration requires the following;:

AtY = (S8 -05)*/(C - oc)*At° (20.25)

In this expression, S and C are the flux densities of the source and calibrator, og and o¢ the
respective r.m.s. noise levels, and At® and At® the integration times on the source and calibrator.
For instance, a 1 sec integration on a 15 Jy calibrator like 3C273 (at the time of writing, the strongest
calibrator at 86 GHz available in the northern sky) is sufficient for bandpass calibration in the case
of a 5o—detection of a 2mJy source. (In practice, however, several seconds integration would be
better.) On the other hand, a 10 min integration on the same calibrator would just be sufficient to
meet the minimum requirement (0g = o¢) to calibrate 1 min observations of a 50 Jy strong source.

There are a few other issues which we list below. They are worth mentioning although there is little
implication for observations with the IRAM array. (For other effects such as bandwidth smearing and
visibility averaging, we recommend reading the book of [Thompson et al. 1986]; see Chapter 6.)

o Pointing offsets is a potential source of position errors. Ideally, the phase of the incoming wavefront
does not depend on pointing offsets across the Airy (or diffraction) pattern. However, imperfections
in the optical system may result in differences in the Airy pattern from an antenna to another in the
array (although all antennas are of comparable quality). Experience at 86 GHz shows, that rather
strong phase differences (up to 10°) may appear when antennas are individually offset from the
target position by a distance equal to half the primary beamwidth (HPBW).

o Primary beam attenuation produces a radial displacement for off-axis targets. It needs to be
corrected for targets at large angular distances (~ HPBW/2) from the phase tracking center of the
interferometer.

o Gravitational Lensing by the Sun introduces positional offsets ~ M /Dg (/1 + cos8/v/1 — cos8)
which are negligible for targets outside the Sun avoidance region of the IRAM antennas (8 > 45°).
For instance Af ~ 0.1" at ~ 5° from the Sun limb.

A summary of the main practical position uncertainties for the IRAM array is given in Table 2 in arc
second or in terms of the synthesized beam 6p; B is the baseline length in meter. Only instrumental errors
are removed to first order by calibration.
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Table 2. Plateau de Bure Interferometer — Main Sources of Position Uncertainty

TELESCOPE* A6 Calibration
Focus Offset < 0.20" - (100/B) Yes
Axes Non-Intersection < 0.10” - (100/B) Yes
AzFEl Bearings < 0.08"-(100/B) Yes
OBSERVATION

Atmospheric Seeing! < 0.06-6p No
Calibrator Distance! < 0.02-6p No
Pointing Offset < 0.02-0p Partially
Source Intensity < (0.5/SNR) - 05 No

t Upper limits are illustrative for astrometric observations in limiting conditions. See text for more details.
* Instrumental values are all calibrated out to first order.
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This chapter is a brief summary of the panel discussion. The goal was to present the main differences
concerning not only the instrumentation itself but also the language which is used by both community.

The summary does not appear as a standard panel discussion where several people interact because
we have chosen to compare both techniques through three fundamental aspects:

e The expression of the interferometric equation

e The instrumental differences

e The atmospheric behaviour and the noise properties

21.1 The basic equation of interferometry

In a two element interferometer, the signal coming on the detectors from telescopes 1 and 2 is the sum
of contributions from the background By » (either the atmosphere or the instrumentation itself) and from

the astronomical source I ».

243



244CHAPTER 21. MM VERSUS OPTICAL INTERFEROMETRY: A QUALITATIVE COMPARISON

21.1.1 Additive interferometry

For direct detection (or additive) interferometry, as in the optical domain, an interferometer mea-
sures on-source on the baseline Bi:

Ilg = Il +I2 +2\/ I1I2V:7+Bl +BQ|V12|COS‘I)12 (21.1)

The term I; + I + By + By is the continuum term while 24/I1 IV, [V12| cos @14 is the interferometric term.
After doing an on-off (also called the “sky calibration”), Eq.21.1 becomes:

Ilg = Il + I2 + 2\/ I1I2V:;|V12| COS @12 (21.2)

Where V2 is the visibility of the astronomical source measured on baseline B;2 of amplitude |V;2| and
phase ®15.
The visibility to calibrate can be expressed by:

NINE

Veorr =
L+ 1,

Vo|Vi2| cos @12 (21.3)

V, is the contrast which takes into account the calibration of all the system (instrumentation + atmo-
sphere). The photometric term is given by 2IV1 ff; (note that I and > are relatively easily measured).
The visibility Vi2 = [Vi2| cos 12 appears as a fringe contrast (which is flux calibrated), therefore it is

normalized to unity. Note finally that in the optical case By s < I12.

21.1.2 Multiplicative interferometry

For heterodyne or multiplicative detection, the output of the interferometer (correlator) gives a
correlation rate 15 which is a dimension less number (this uses a simple correlation between two antennas,
not a “bi-spectrum”).

The correlation corresponding to v/I1 IoV, V12 is the term of astronomical interest, and is related to 712
by:

\/ I1_[2V0|V12|6iq>12 =712 \/(Bl + I1)(B2 + Ig) (214)

Where (B; + 1) and (Bz2 + I2) are the autocorrelations mesured on telescopes 1 and 2, respectively.
At mm waves, By 2 > I > because the atmospheric thermal emission strongly dominates with typically
I5/By 2~ 1072 — 10~* (except for the Sun and bright planets). Therefore, Eq.21.3 simplifies as:

VI LV, |Vi2|e®®? = r15\/B1 By (21.5)

The heterodyne technique does not allow to measure the continuum term but preserves the phase
(thanks to the use of a complex correlator, see Chapter 2). V, can be seen as the correlation efficiency
of the interferometer (instrumental + atmospheric). The calibrated visibilities (as defined in previous
chapters) Vi2 = /1 I3 V12 are expressed in unit of flux density (Jy) while /By Bs can by considered as the
photometric term (including the photometric calibration of the atmosphere).

21.2 Getting the fringes

For details about both techniques, we invite the reader to read Chapters 2 and 4. We only focus here on
some basic points.

Additive detection versus Heterodyne technique

An heterodyne system preserves the phase information, therefore one major interest of the heterodyne
detection is to allow high resolution spectroscopy. Some interferometers working at 10um such as IST use
heterodyne technique. However they have a low efficiency and can only observe very bright sources.
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Electronic compensating delay versus delay lines

Direct detection at optical wavelengths uses delay lines which are well suited to the wavelengths and
baseline lengths. In the mm range, due to the low wavelengths and the long baselines, the size of the
mirrors would be prohibitive. To avoid losses due to diffraction in the delay lines, the mirror size must be
larger than about v/B x A. For example, at A = 3mm and assuming a baseline of B = 400 meters (which
is of medium size), the mirror should be larger than 1.1 meters. For ALMA, assuming baselines of 14 km
and a wavelength 3mm, the required diameter goes up to 6 m. Using electronic compensating delay is
definitely easier for the purpose of mm interferometry.
Note finally that the term white fringe in the optical is similar to the fringe stopping, at mm waves.

Phase calibration

Since t, is typically of order several 10 minutes at A ~ 1.3 mm, the atmospheric phase can be regularly
calibrated by reference to a nearby source close to the astronomical source. This allows phase retrieval.

This is not possible in the optical because t, is of order a few 10-100 milli seconds, and also because the
angular scale over which the atmospheric phase is coherent (the isoplanetic patch) is too small. Instead as
soon as optical arrays have three telescopes (or more), opticians use the phase closure relations in order
to retrieve the astronomical phase.

Phase closure relations

In this sense, the phase closure relations are not applied in mm interferometry because individual visibilities
are very noisy (dominated by the atmospheric noise, as explained above). Hence applying such a method
does not really bring new constrains on the phase.

However a careful reader of Chapters 7, 9 and 12 should have noticed that mm interferometric data are
mostly calibrated per antenna and not per baseline, the interest being to reduce the number of unknowns
and therefore increase the SNR. This calibration technics implicitly assumes that the closure relations in
phase and in amplitude are applied on the calibrators. This remains possible because the closure relations
are indeed respected by the instrumentation.

21.3 Atmospheric behaviour and noise properties

Table 21.3 summarises the properties of the atmosphere and the resulting noise (including also the instru-
mentation) at both wavelengths.
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Mm versus optical interferometry: Atmosphere & Noise properties

| Item | Radio mm | Optical
A 0.6mm to lcm 0.4 to 30 pm
v 30 to 450 GHz 10 to 600 THz

Comparison given for A~ 1.3mm A~ 1lpym

Noise sources
Main instrumental noise

Signal Detection

background limited
(gaussian)
Receiver (thermal)
thermal sky emission
Tsignal/Tsys ~ 10_2-10_4

photon limited
(poisson)*
Detector (read-out)

photon limited

Seeing origin

Fried Parameter r,
(size of the coherence cell)

Coherence Time t,
(time to reach A® ~ 180°)

Equivalent to

Variation of W(H-0)

> antenna

several 10 minutes

Single-speckle

Variation of Ty,

< telescope

~ 10 milli-seconds

Multi-speckle

Atmospheric correction
Photometry

Seeing

Phase Calibration

monitoring of Ty

radiometric
phase correction

phase referenced
on nearby sources

“standard” photometry technics

tip tilt
adaptive optics

t, too short
closure phase on dual interferometer

Measurements

Information on

complex correlator rates: r;,r,
complex visibility V
|V ]& ®v

Imaz—Tmin

Vi =
fringe contrast
| V|, amplitude

Imaz+Imin

Imaging

Algorithms

Complex visibilities

all standard imaging

Phase retrieval by
closure relations
+ amplitude model fitting
in the UV plane

* Note that for A > 2.5um, the atmosphere and the telescope are starting to contribute as main sources

of noise (thermal emission), therefore the noise becomes background limited.




Bibliography

[Alloin et al 2000]

[Altenoff et al. 1994]

[Baudry et al. 1994]

[Baudry 1996]

[Baudry et al. 1998]

[Beasley et al. 1995]

[Berger et al. 2001]

[Born & Wolf 1975]

[Bracewell 1978]
[Bremer 1994]

[Bremer 1995]

[Bremer et al. 1995]

[Browne et al. 1998]

[Cernicharo 1988]

[Cernicharo & Pardo 1999]

Alloin, D., Barvainis, R., Guilloteau, S., 2000, Ap J 528, L&1
New CO and Millimeter Continuum Observations of the Z = 2.394 Radio
Galaxy 53W002

Altenhoff, W., Thum, C., Wendker, H.J., 1994, A¢A 281, 161-183
Radio emission from stars: a survey at 250 GHz.

Baudry A., Lucas R., Guilloteau S., 1995, Aé6A4 293, 594
Accurate position of SiO masers.

in Science with Large Millimetre Arrays, ed. P.A.Shaver, p. 353
ESO Astrophysics Symposia, Springer

Baudry A., Herpin F., LucasR. 1998, AéA 335, 654
298i0 (v=0) and 28Si0 (v=1) J=2-1 maser emission from Orion TRc2

Beasley et al. 1995, in First mm-VLBI Workshop, Boston, 53

Berger J.-P., Haguenauer P., Kern P., Rousselet-Perraut K., Malbet F.,
Schanen-Duport 1., Séveri M., Millan-Gabet R., Traub W. 2001, in prepara-
tion

Born, M., and Wolf, E., 1975 Pergamon Press
Principles of Optics, New Physical Optics Notebook
Bracewell R.N. 1978, Nature 274, 780

Bremer, M. 1994, IRAM internal report
The Phase Project: First Results

Bremer, M., 1995, IRAM report 238
The Phase Project: Observations on Quasars

Bremer, M., Guilloteau, S., Lucas, R. 1995, IRAM Newsletter 24 (Nov. 1995)
Atmospheric Phase Correction: from random phase down to 20 degree r.m.s.
at 230 GHz.

Browne, LW.A., et al. 1998 MNRAS 293, 257
Interferometer phase calibration sources — II

Cernicharo, J., 1998, PhD Thesis Paris, and IRAM report 52
ATM: A Program to compute Theoretical Atmospheric Opacity for Frequen-
cies below 1 THz

Private communication.

[Christiansen and Hogbom 1969] Christiansen, W.N., and Hogbom, J.A.; 1969, Cambridge University

Press
Radiotelescopes

247



248

[Clark 1980]

[Cooper 1970]
[Cornwell 1987]

[Cornwell 1988]

[Cornwell 1989]

[Cornwell 1993]

[Cotton & Schwab 1984]

BIBLIOGRAPHY

Clark, B.G., 1980, A&A, 89, 377
An efficient implementation of the algorithm “CLEAN”

Cooper, B.F.C., 1970, Aust. J. Phys. 23, 521
Cornwell, T.J., 1987, MMA Memo. 42

Cornwell, T.J., 1988, A&A, 202, 316
Radio interferometric imaging of very large objects.

Cornwell, T.J., 1989

in Synthesis Imaging in Radio Astronomy,
Perley R.A., Schwab F.R., Bridle A.H. (eds),
ASP Conferences Series Volume 6, p. 277

Cornwell, T.J., 1993

in Astronomy with Millimeter and Sub-millimeter Wave Interferometry,
Ishiguro M., Welch W.J. (eds),

ASP Conference Series Volume 59, p. 96

Schwab, F.R., 1984, Astron. J. 89, 1076
Relaxing the isoplanetism assumption in self-calibration: applications to low
frequency radio interferometry. (see top of p.1078)

[Coudé Du Foresto, Mazé, & Ridgway 1993] Coudé du Foresto V., Mazé G., Ridgway S. 1993, ASP Conf.

Ser. 37: Fiber Optics in Astronomy II, 285

[Coudé Du Foresto, Ridgway, & Mariotti 1997] Coudé Du Foresto V., Ridgway S., & Mariotti J.-M. 1997,

[D’Addario 1989]

[Danchi et al. 1988]

[Downes & Altenhoff 1989]

[Downes et al 1999]

[Ekers & Rots 1979]

[Evans & Stephens 1995]

[Felli & Spencer 1989]

A&AS, 121, 379

D’Addario, L., 1989, in

Synthesis Imaging in Radio Astronomy,
Perley R.A., Schwab F.R., Bridle A.H. (eds),
ASP Conferences Series Volume 6, p. 59

Danchi W.C., Bester M., Townes C.H. 1988, in ESO Conf. Workshop Proc.,
29, 867

Downes, D., Altenhoff, W.J., 1989

Anomalous refraction at radio wavelengths

URSI/TAU Colloquium on Radio Astronomical Seeing, Beijing (China)
J.E.Baldwin, Wang Shouguan, eds., International Academic Publisher &
Pergamon Press, p. 31

Downes, D., Neri, R., Greve, A. et al, 1999 A€6A 347, 809
Proposed identification of Hubble Deep Field submillimeter source HDF 850.1

Ekers, R.D., Rots, A.H., 1979, in

Images formation from coherence function in astronomy, C. van Schooneveld
(ed.),

Proc. TAU Symp. 49, p. 61

Evans, K. F., and Stephens, G.L., 1995 Journal of the Atmospheric Sciences,
52, 2058-2072.

Felli, M., and spencer R.E., 1989 NATO ASI Series, 283
Very Long Baseline Interferometry



BIBLIOGRAPHY

[Feynman et al. 1964]

[Fizeau 1868]
[Froehly 1981]

[Gay & Journet 1973]
[Goldsmith 1988]

[Goodman 1985]
[Greve & Hooghoudt 1981]

[Greve et al. 1995]

[Greve et al. 1998]

[Gueth 1997]

[Gundlach 1989]
[Guilloteau 1990]

[Guilloteau et al. 1993]

[Guilloteau et al. 1999]

249

Feynman R.P., Leighton R.B. and Sands M. 1964, Addison- Wesley Publishing
Company
The Feynman Lectures on Physics

Fizeau H. 1868, C. R. Acad. Sci. 66, 932

Froehly C. 1981, Coherence and Interferometry through Optical Fibers. In:
Ulrich M.-H., Kjar K. (eds) Proc. ESO Conf., Science Importance of High
Angular Resolution at Infrared and Optical Wavelengths. ESO, Garching, p.
285.

Gay J., Journet A. 1973, Nature Phys. Sci. 241, 32

Goldsmith P.F., 1988, IEEE press
Instrumentation and Technique for Radio Astronomy

Goodman J.W. 1985, Statistical Optics (New York: John Wiley & Sons)

Greve A., Hooghoudt, B. 1981, A&A 93, 76
Quality evaluation of radio reflector surface.

Greve et al., 1995, A6A 299, L33

Greve A., Kramer, C., & Wild, W., 1998, A&A Supp 133, 271
The beam pattern of the IRAM 30-m telescope (a reflector with several
surface error distributions).

Gueth, F.; 1997, PhD thesis, University of Grenoble
Gundlach, K.H., 1989 (NATO ASI series, F 59, p. 259)

Guilloteau, S., 1990, IRAM Documentation
Amplitude Calibration

Guilloteau, S., Dutrey, A., Marten, A., & Gautier, D., 1993, A&A 279, 661
CO in the troposphere of Neptune: Detection of the J=1-0 line in absorption

Guilloteau, S., Dutrey, A., Simon, M., 1999, A6A 348, 570.
GG Tauri: the ring world.

[Hanbury Brown & Twiss 1956] Hanbury Brown R., Twiss R.Q. 1956, Nature 177, 27

[Hogbom 1974]

[Hagen et al. 1973]
[Hill & Cliffort 1981]
[Johnson et al. 1974]
[Karpov 1999]

Hogbom, J.A., 1974, A6A Supp., 15, 417.
Aperture synthesis with a non regular distribution of interferometer baselines.

Hagen, J.B., Farley, D.T., 1973, Radio Science 8, 775

Hill, R.J., and Cliffort, S.F., 1981, Radio Science 16 No. 1, 77

Johnson M.A., Betz A.L., Townes C.H. 1974, Phys. Rev. Lett. 33, 1617
Karpov A., 1999, C.R.Acad.Sci.Paris, t.327, ITb, p.539

[Kellerman & Thompson 1985] Kellerman & Thompson 1985, Science 228, 123

[Kemball et al. 1995]
[Kolmogorov 1941]

Kemball et al. 1995, AAS 110, 383

Kolmogorov, A.N. (1941), in

Dissipation of energy in a locally isotropic turbulence, Doklady Akad. Nauk
SSSR, 32, 141

(English translation in: American Mathematical Society Translations 1958,
Series 2, Vol 8, p. 87, Providence R.I)



250

[Kraus 1982]

[Krichbaum et al. 1994]
[Krichbaum et al. 1998]
[Labeyrie 1975]
[Labeyrie 1978]

[Landau & Lifshitz 1959]
[Lannes et al. 1994]

[Lannes et al. 1996]

[Lannes et al. 1997]

[Lay 1997]

[Lo and Lee]

[Love 1978]

[Lucas 1995]

[Malbet et al. 1999]

[Mariotti et al. 1992]

[Martin-Pintado et al. 1988§]

[Mauersberger et al. 1989]

[Matsushita et al. 1999]

[Michelson & Pease 1921]
[Minnet & Thomas 1968]
[Mishchenko 2000]

BIBLIOGRAPHY

Kraus, J.D., 1982 McGraw Hill
Radio Astronomy

Krichbaum et al. 1994, Proc. 2nd EVN/JIVE Symp., Torun, 47

Krichbaum et al. 1998, A&A 335, L 106

Labeyrie A. 1975, ApJ 196, L71

Labeyrie, A. 1978, ARA&A, 16, 77

Landau L.D. & Lifshitz E.M. 1959 Pergamon Press, p.49 // Fluid Mechanics

Lannes, A., Anterrieu, E., and Bouyoucef, K., J. mod. Optics, 1994, 41,
1537-1574.

“Fourier Interpolation and Reconstruction via Shannon-type Techniques.
Part I: Regularization principle.”

Lannes, A., Anterrieu, E., and Bouyoucef, K., J. mod. Optics, 1996, 43,
105-138.

“Fourier Interpolation and Reconstruction via Shannon-type Techniques.
Part II: Technical developments and applications”

Lannes, A., Anterrieu, E., and Maréchal, P., A6A Supp., 1997, 123, 183-198.
CLEAN and WIPE

Lay, O., 1997, A&A Supp 122, 547
Phase calibration and water vapor radiometry for millimeter wave arrays.

Lo, SW., & Lee
Antenna Handbook theory, applications and design

Love, A.W., 1978, IEEFE press
Reflector Antennas

Lucas, R. 1995, IRAM internal report
Practical Implementation of phase correction.

Malbet F., Kern P., Schanen-Duport I., Berger J.-P., Rousselet-Perraut K.,
Benech P. 1999, A&AS 138, 135

Mariotti J.-M. et al. 1992, Coherent Combined Instrumentation for the VLT
Interferometer. VLT Report No. 65. ESO, Garching,.

Martin-Pintado, J., et al 1988 A&A 197, L15-1L18.
Radiocontinuum and recombination lines towards CRL618 - Evidence for an
ionized stellar wind ?

Mauersberger, R. et al 1989, A6A Suppl 79, 217
Line calibrators at A 1.3, 2 and 3 mm

Matsushita S, Matsuo H, Pardo J.R., Radford S., 1999 Publ. Astron. Soc.
Japan, 51, 603-610.

Michelson A.A., Pease F.G. 1921, ApJ 53, 249
Minnet & Thomas 1968, Proc. IEE 115, 1419.
Mishchenko, M.I., 2000, Applied Optics, 39, 1026-1031.



BIBLIOGRAPHY

[Padin et al. 1990]
[Paine et al. 2000]

[Pardo et al. 2001a

[Pardo et al. 2001]

[Patnaik et al 1992]

[Pedretti et al. 2000]

[Penzias & Burrus 1973]
[Perrin et al. 2000]
[Queney 1974]

[Reid et al. 1988]

[Reynolds et al. 1989]

[Rogers et al. 1984]

[Roddier 1981]

[Ruze 1966]
[Sault et al 1996]

[Schwarz 1978]

[Scoville et al 1997]

[Serabyn & Weisstein 1996]
[Shannon 1949]

[Shao & Colavita 1992]
[Sovers et al. 1998]

[Steer et al. 1984]

251

Padin et al. 1990, ApJ 360, L 11

Paine S, Blundell R, Papa D.C., Barrett J.W., Radford S.J.E., 2000 PASP,
767, 108-118.

Pardo, J.R., E. Serabyn, and J. Cernicharo, 2001, J. Quant. Spectrosc. Ra-
diat. Transfer, 68, 419-433.

Pardo, J.R., Cernicharo J., and Serabyn E., 2001, IEEFE transc. Antennas
and Propagation, accepted (10 Feb., 2001).

Patnaik, A., et al 1992 MNRAS 254, 655
Interferometer phase calibration sources — I

Pedretti E., Labeyrie A., Arnold L., Thureau N., Lardiere O., Boccaletti A.,
Riaud P. 2000, 147, 285

Penzias A.A., & Burrus C.A., 1973, ARA&A 11, 51
Perrin G., Lai O. Léna P.J. 2000, SPIE 4006, 708

Elements de Météorologie, P. Queney, 1974,
Collection de I’Ecole Nationale de Techniques Avancées, Masson & Cie Pub.
Paris

Reid, M. et al. 1988, ApJ 330, 809
The distance to the center of the Galaxy — H20 maser proper motions in
Sagittarius B2(N)

Reynolds, G.O., DeVelis, J.B., Parrent, G.B.Jr., & Thompson, B.J., 1989,
SPIE Optical Engineering Press
Physical optics notebook: Tutorial in Fourier optics.

Rogers et al. 1984, Radio Science 19, 1552

Roddier F. 1981, Progress in optics. Volume 19. Amsterdam, North-Holland
Publishing Co., 1981, p. 281-376., 19, 281

Ruze 1966, Proc. IEEE 54, 633

Sault R.J., Staveley-Smith L., Brouw W.N., 1996, A&A Supp., 120, 375
An approach to interferometric mosaicing

Schwarz U.J., 1978, A&A, 65, 345
Mathematical-statistical description of the iterative beam removing technique
(method CLEAN).

Scoville, N.Z., Yun, M.S., Windhorst, R.A., Keel, W.C., Armus, L., 1997. Ap
J 485 L21
CO J=3-2 Emission in the Radio Galaxy 53W002 at it Z = 2.394

Serabyn E, Weisstein EW., 1996 Applied Optics, 35, 2752-2763.
Shannon, C.E., 1949, Proc. IRE, 37, 10-21
Shao M., Colavita M.M. 1992, A&A 262, 353

Sovers O.J., Fanselow J.L., Jacobs C.S., in Reviews of Modern Physics, Vol.
70, No. 4, October 1998, p.1393.

Steer D.G., Dewdney P.E., Ito M.R., 1984, A&A, 137, 159
Enhancement to the deconvolution algorithm “CLEAN”.



252

[Stéphan.1873]
[Tatarski 1961]

[Tatarski 1971]

[Thayer 1974]
[Thompson et al. 1986]

[Townes & Schawlow 1975]

[Van Vleck 1966]

[Waters 1976]

[Wakker & Schwartz 1988|

[Weigelt et al. 2000]

[Wilkinson et al. 1998]

[Zensus et al. 1995]

BIBLIOGRAPHY

Stéphan E. 1874, C. R. Acad. Sci. 78, 1008

Tatarski V.I. 1961
Wave Propagation in a turbulent Medium, McGraw-Hill

Tatarski V.I. 1971

The Effects of the turbulent Atmosphere on Wave Propagation

(translated from Russian by the Israel Program for Scientific Translations
Ltd, ISBN 0 7065 0680 4)

reproduced by National Technical Information Service, U.S. Department of
Commerce, Springfield, Va. 22151

Thayer G.D. 19974, Radio Science 9 No 10, p. 803

Thompson, A.R., Moran, J.M., Swenson, G.W., 1986
Interferometry and Synthesis in Radio Astronomy (Wiley : New York)

C.H. Townes, A.L. Schawlow, 1975
Microwave Spectroscopy, Dover Pub. New York

Van Vleck, J.H., Middleton, D., 1966, Proc. IEEE 54, 2

Absorption and Emission by atmospheric gases, J.W.Waters 1976,
in Methods of experimental physics, 12, ed. M.L.Meeks p. 147 Academic
Press, New York

Wakker B., Schwarz U.J., 1988, A&A, 200, 312
The multi-resolution CLEAN and its application to the short-spacing prob-
lem in interferometry.

Weigelt G. et al. 2000, SPIE 4006, 617

Wilkinson, P.N., et al. 1998 MNRAS 300, 790
Interferometer phase calibration sources — I1I

Zensus A.J., Diamond P.J, Napier P.J, 1995, ASP Conf. Series 82
Very Long Baseline Interferometry and the VLBA



