next up previous contents
Next: 10.4.1 Correction for the Up: 10. Amplitude and Flux Previous: 10.3.5 The program FLUX

   
10.4 Interferometric Calibration of the Amplitude

For antenna i, the antenna-based amplitude correction is given by (Eq.10.3 and 10.4).

 \begin{displaymath}a^K_i(t) = T^K_{cali}(t)G^{K}_i(\nu,t)\ensuremath{\mathcal{B}} _i(t)
\end{displaymath} (10.14)

where K = U or L. The decorrelation factor f (see R.Lucas lecture 7) is not taken into account here because it is fundamentally a baseline-based parameter.

In a baseline-based decomposition, the complex gain of baseline ij, ${\ensuremath{\mathcal{G}} _{ij}}$ is given by:

 \begin{displaymath}\ensuremath{\mathcal{G}} ^K_{ij}(t) = f \times a_i(t) a_j(t) e^{i(\phi_i(t)-\phi_j(t))}
\end{displaymath} (10.15)

and the amplitude of the baseline ij is $\ensuremath{\mathcal{A}} _{ij}$

 \begin{displaymath}\ensuremath{\mathcal{A}} ^K_{ij}(t) = f
\sqrt{T^K_{cali}T^K_{...
... \ensuremath{\mathcal{B}} _i(t)\ensuremath{\mathcal{B}} _j(t)}
\end{displaymath} (10.16)

We will discuss first the term $\ensuremath{\mathcal{B}} _i$ and estimate then the decorrelation factor f, before giving a global scheme of the amplitude calibration.



 
next up previous contents
Next: 10.4.1 Correction for the Up: 10. Amplitude and Flux Previous: 10.3.5 The program FLUX
S.Guilloteau
2000-01-19