next up previous contents
Next: 5.4 The PdB Signal Up: 5.3 Side band separation Previous: 5.3.1 Fringe rate method

5.3.2 Phase switching method

Assume a variable phase offset $\psi_1$ is added to the LO1 phase command appropriate for compensating the geometrical delay variation:

\begin{displaymath}\ensuremath{\varphi_\mathrm{\scriptscriptstyle 1}} = - \ensur...
...le 1}}\ensuremath{\tau_\mathrm{\scriptscriptstyle G}} + \psi_1
\end{displaymath} (5.14)

$\psi_1$ will be subtracted to the phase of the USB signal, and added to that of the LSB signal. If $\psi_1$ is switched between 0 and $\pi/2$, the relative phase of the USB and LSB will be switched between 0 and $\pi$, and the signals may be separated by synchronous demodulation:

$\psi_1$ Signal
0 $\ensuremath{V_\mathrm{\scriptscriptstyle 1}} = \ensuremath{A_\mathrm{\scriptscr...
...criptscriptstyle L}} e^{-i\ensuremath{\varphi_\mathrm{\scriptscriptstyle L}} } $
$\pi/2$ $\ensuremath{V_\mathrm{\scriptscriptstyle 2}} = \ensuremath{A_\mathrm{\scriptscr...
...riptstyle L}} e^{i(-\ensuremath{\varphi_\mathrm{\scriptscriptstyle L}} +\pi/2)}$
Then one may compute the visibilities in each side band:
$\displaystyle \ensuremath{A_\mathrm{\scriptscriptstyle U}} e^{i\ensuremath{\varphi_\mathrm{\scriptscriptstyle U}} }$ = $\displaystyle (\ensuremath{V_\mathrm{\scriptscriptstyle 1}} +i\ensuremath{V_\mathrm{\scriptscriptstyle 2}} )/2$  
$\displaystyle {\rm and~~~} \ensuremath{A_\mathrm{\scriptscriptstyle L}} e^{-i\ensuremath{\varphi_\mathrm{\scriptscriptstyle L}} }$ = $\displaystyle (\ensuremath{V_\mathrm{\scriptscriptstyle 1}} -i\ensuremath{V_\mathrm{\scriptscriptstyle 2}} )/2$ (5.15)

We have assumed here that we have a complex correlator (sine + cosine), or equivalently a spectral correlator measuring positive and negative delays (see Chapter 4).

One may also switch the phase by $\pi$, in which case the sign of all the correlated voltages is reversed. This has the advantage of suppressing any offsets in the system. Actually both switching cycles are combined in a 4-phase cycle:

$\psi_1$ Signal
0 $\ensuremath{V_\mathrm{\scriptscriptstyle 1}} = \ensuremath{A_\mathrm{\scriptscr...
...criptscriptstyle L}} e^{-i\ensuremath{\varphi_\mathrm{\scriptscriptstyle L}} } $
$\pi/2$ $\ensuremath{V_\mathrm{\scriptscriptstyle 2}} = \ensuremath{A_\mathrm{\scriptscr...
...riptstyle L}} e^{i(-\ensuremath{\varphi_\mathrm{\scriptscriptstyle L}} +\pi/2)}$
$\pi$ $\ensuremath{V_\mathrm{\scriptscriptstyle 3}} = -\ensuremath{V_\mathrm{\scriptscriptstyle 1}} $
$3\pi/2$ $\ensuremath{V_\mathrm{\scriptscriptstyle 4}} = -\ensuremath{V_\mathrm{\scriptscriptstyle 2}} $

$\displaystyle \ensuremath{A_\mathrm{\scriptscriptstyle U}} e^{i\ensuremath{\varphi_\mathrm{\scriptscriptstyle U}} }$ = $\displaystyle (\ensuremath{V_\mathrm{\scriptscriptstyle 1}} +i\ensuremath{V_\ma...
...athrm{\scriptscriptstyle 3}} -i\ensuremath{V_\mathrm{\scriptscriptstyle 4}} )/4$  
$\displaystyle {\rm and~~~} \ensuremath{A_\mathrm{\scriptscriptstyle L}} e^{-i\ensuremath{\varphi_\mathrm{\scriptscriptstyle L}} }$ = $\displaystyle (\ensuremath{V_\mathrm{\scriptscriptstyle 1}} -i\ensuremath{V_\ma...
...athrm{\scriptscriptstyle 3}} +i\ensuremath{V_\mathrm{\scriptscriptstyle 4}} )/4$ (5.16)

In a N antenna system one needs to switch the relative phases of all antenna pairs. This could be done by applying the above square-wave switching on antenna 2, then on antenna 3 at twice the switching frequency, and so on. In practice the switching waveforms are orthogonal Walsh functions.


next up previous contents
Next: 5.4 The PdB Signal Up: 5.3 Side band separation Previous: 5.3.1 Fringe rate method
S.Guilloteau
2000-01-19