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1.1 Introduction

We can define a radio antenna as an instrument which collects, and detects, electromagnetic radiation from
a certain area and direction of the sky, allowing to build up an image from individual observations. In
radio astronomy we are interested in the detection and analysis of radiation emitted from celestial objects,
i.e. solar system bodies, stars, interstellar gas, galaxies, and the universe. The electromagnetic radiation
observed in radio astronomy covers the wavelength range from several meters, say 10m (= 30 MHz), to
a fraction of a millimeter, say 0.3mm (a 1000 GHz). Since the antenna must be many wavelengths in
diameter in order to collect a large amount of energy and to provide a reasonable directivity (angular
resolution), it is evident that antennas for meter wavelengths may have dimensions of many 10 meters to
several 100 meters, while antennas for millimeter wavelengths have dimensions of several meters to several
10 meters (=~ 10000 to 50000 X’s). The technique of mechanical contruction is therefore different for
meter and millimeter wavelength antennas: antennas for m—wavelengths can be constructed, for instance,
as mesh—wire networks and plate arrays, mm—wavelength antennas are full-aperture solid surface parabolic
reflector antennas. Typical examples are the obsolete Mills—Cross antenna, the Effelsberg and GBT 100-m
antennas, and the IRAM 30-m (Pico Veleta) and 15-m (Plateau de Bure) antennas. However, despite the
variety of mechanical constructions, all antennas can be understood from basic principles of eletromagnetic
radiation, optics, and diffraction.

Here we discuss full-aperture parabolic antennas, like the IRAM antennas, which are used for obser-
vations at ~ 3 — 0.8 mm wavelength (100 — 350 GHz). These antennas are very similar to optical reflector
telescopes and use in particular the Cassegrain configuration of a parabolic main reflector and a hyperbolic
subreflector (Figure 1.3), with an image formed at the secondary focus near the vertex of the main reflector
where the receiver, or a receiver—array, is installed. These antennas are steerable and can observe in any
direction of the visible hemisphere, with the facility of tracking, scanning, and mapping of a source.
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The collected radiation is concentrated in the secondary focus and is (coherently) detected by a receiver
at a certain frequency v (or wavelength A) and within a certain bandwidth Av (or A)). Heterodyne mm-—
wavelength receivers, which preserve the phase of the incident radiation, have small bandwidths of the
order of Av = 0.5 — 2 GHz so that Av/v = AX/A = 0.5 GHz/100 GHz =~ 1/200. From the point of view
of antenna optics, these receivers detect “monochromatic” radiation, and the antenna characteristics can
be calculated for a monochromatic wave (as will be done below). Bolometer receivers, on the other hand,
detect power in a broad bandwidth of the order of Av = 50 GHz so that Av = 50 GHz/250 GHz =~ 1/5.
These detectors are no longer monochromatic, and the chromatism of the antenna must be considered in
their application.

The construction and operation of a radio antenna is based on exact physical theories, like Maxwell’s
theory of electromagnetic radiation, the pointing theory of an astronomical instrument, the transformation
(mixing, down—conversion, amplification) and detection of electromagnetic radiation, etc. The theory of
a radio antenna presented here is, however, only the very tip of an iceberg (of several 100000 published
pages), but may provide sufficient information for the user astronomer to understand the basic principle
of a telescope, either a perfect one, which nobody has but which can be described with high precision,
or a real one, with small defects and aberrations, which can be described with sufficient detail to apply
corrections.

The theory, construction, and use of radio antennas is contained in many textbooks and journals
such as IEEE Transactions Antennas and Propagation, Radio Science, Applied Optics. A biased selec-
tion is mentioned here: [Born & Wolf 1975] [Reynolds et al. 1989] [Love 1978] [Lo and Lee] [Kraus 1982]
[Goldsmith 1988]

1.2 Basic Principles

The properties of electromagnetic radiation propagation and of radio antennas can be deduced from a few
basic physical principles, i.e.

1. the notion that Electromagnetic Radiation are Waves of a certain Wavelength (), or Frequency (v),
and Amplitude (A) and Phase (¢);

2. from Huygens Principle which says that each element of a wavefront is the origin of a Secondary
Spherical Wavelet;

3. the notion that the Optical Instrument (like a single-dish antenna, a telescope, etc.) combined with
a receiver manipulates the incident wavefront through their respective phase and amplitude transfer
functions.

Summarized in one sentence, and proven in the following, we may say that the radio antenna transforms
the radiation incident on the aperture plane (A) to an image in the image plane (Z), also called focal plane.
Following Huygens Principle illustrated in Figure 1.1, the point a(x,y) = a(7) of the incident wavefront in
the aperture plane A is the origin of a spherical wavelet of which the field dE(a’) at the point a'(u,v) =
a(@) in the image plane 7 is

O0E(@) = A(F)expliks]/s (1.1)

with k = 27 /). The ensemble of spherical wavelets arriving from all points of A at the point a/(@) of the
image plane 7 produces the field

B@ - [ | AGIAB fexp(iks) sy (1.2)

For the paraxial case, when the rays are not strongly inclined against the direction of wave propagation
(i.e. the optical axis), the inclination factor A can be neglected since A(8) = cos(8) ~ 1. Also, s & sg for
paraxial rays, but expl[iks] # exp[iksg] since these are cosine and sine terms of s where a small change in
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Figure 1.1: Nllustration of Huygens Principle. The individual points of the plane wavefront in the aperture
plane (A) are the origin of secondary spherical wavelets, which propagate to the right, and superpose to
form a plane wavefront in the image plane (7). The optical instrument (telescope) is placed in between A
and 7.

s may produce a large change of the cosine or sine value. Thus, for the paraxial approximation we may
write

s=[x-u’+F-v)+22"? ~ R+gxy,R) - (xu+yv)/R (1.3)
with
R=(+y’+2)"? and g(x,y,R) = (x> +y%)/2R (14)

When using these expressions in Eq.1.2, we obtain
E(u,v) = [exp(ikR) /5] / AA(X’ y)exp[ik(g(x,y, R) — (ux + vy)/R)]dxdy (1.5)

This equation describes the paraxial propagation of a wavefront, for instance the wavefront arriving from
a very far away star. In particular, this equation says, that without disturbances or manipulations in
between A and 7 the plane wavefront continues to propagate in straight direction as a plane wavefront.

1.3 The perfect Single-Dish antenna

We now place an optical instrument (a mirror, lens, telescope etc.) in the beam between 4 and Z with the
intention, for instance, to form an image of a star. Optical instruments are invented and developed already
since several centuries; however, the physical-optics (diffraction) understanding of the image formation
started only a good 200 years ago. Thus, speaking in mathematical terms, the telescope (T) manipulates
the phases (not so much the amplitudes) between the points (¥) of the aperture plane (A) and the points
(@) of the image plane (Z) by the phase transfer function Qo (7, @), so that the wavefront converges in
the focal point. The receiver (R)/detector introduces an additional modulation of the amplitude Qg (7, @),
as described below. Using this information, the field distribution in the focal plane (Z) of the telescope

becomes
E(a@) = [exp(ikR) /s,] / AA(F)QoQRexp[ik(g(X; v, R) — (ux + vy)/R)]dxdy (1.6)

The phase modulation of the parabolic reflector used in a radio telescope is, fortunately,

Qo = exp[-ikg(x,y, F)] (1.7)
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Figure 1.2: Phase modulation of a reflector. The plane wavefront (W) propagates to the left and the ray
reflected at P(x,y) toward the focus F is shifted in phase by the amount A.

(where F is the focal length of the reflector), which inserted into Eq.1.6 eliminates this term in the exponent
so that

E(7) = [exp(ikF)/F]/AA(T")QRexp[—ik(ux +vy)/Fldxdy = FT[A()Qr(7)] (1.8)

This equation says that the field distribution E(#) in the focal plane of the telescope is the Fourier trans-
form (FT) of the receiver—weighted field distribution A(7)Qg (7) in the aperture plane. Since E(@)E*(@) #
0(@—1,) for a realistic optical instrument /telescope with limited aperture size, we arrive at the well known
empirical fact that the image of a point—like object is not point-like; or; with other words, the image of a
star is always blurred by the beam width of the antenna Oy, & A\/D, with D the diameter of the reflector.

To close the argumentation, we need to show that the telescope manipulates the incident wave in the
way given by Eq.1.7). To demonstrate this property in an easy way, we consider in Figure 1.2 the paraxial
rays of a parabolic reflector of focal length F. From geometrical arguments we have

(F—A) +(* +y*) =F? (1.9)
which for small A becomes
A= _(X2 + yz)/F = - g(X7Y>F) = QO(F) (110)

which is the instrumental phase modulation function Qo used above. The proof is given for a simple
parabolic reflector; however, a combined telescope with main reflector and subreflector can be treated in
a similar way, leading to the same result.

The fundamental Eq.1.8 can be used to show that an interferometer is not a single dish antenna, even
though one tries with many individual telescopes and many telescope positions (baselines) to simulate as
good as possible the aperture of a large reflector. If we assume for the single dish antennas that A(7) =1
and Qg = 1, then the power pattern P(@) (beam pattern) in the focal plane of the single antenna is

P(it) = B(@)E* (i) = / ) / | expl-ikil(@ — )| (dxdy), (dedy), o< (7)o (1.11)

where J; is the Bessel function of first order (see [Born & Wolf 1975]). The function [J; (u)/u]? is called
Airy function, or Airy pattern. The interferometer does not simulate a continuous surface, but consists
of individual aperture sections Aeo, Ag, .... of the individual telescopes, so that its power pattern Px (@)
(beam pattern) in the focal plane is

re@ =3 3, | . / _ explikil(d - 2)(dxdy) (dxdy), # P(3) (1.12)

The important result of this equation is the fact that the image obtained with the interferometer is “incom-
plete”, though certainly not as blurred as seen with a single telescope (Op o A/D), but having the superior
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resolution of the spatial dimension (approximately the longest baseline B) of the array (05 o< A/B). For
the Plateau de Bure interferometer B/D = 300m/15m =& 20 so that Op = 1/20 Op. The incompleteness
sometimes requires (in particular for mm—VLBI observations which are very similar) additional informa-
tion for a full image reconstruction, for instance that the object consists of several point-like sources, or
a point-like source and a surrounding halo, etc. (see for instance the number of components in CLEAN).

The single telescope selects a part of the incident plane wavefront and ’bends’ this plane into a spherical
wave which converges toward the focus. This spherical wavefront enters the receiver where it is mixed,
down—converted in frequency, amplified, detected, or correlated. The horn—lens combination of the re-
ceiver modifies the amplitude of the spherical wavefront in a way expressed by the function Qg (7). This
function, called taper or illumination function of the horn-lens combination, weighs the wavefront across
the aperture, usually in a radial symmetric way. Figure 1.3 shows, schematically, the effect of a parabolic
taper as often applied on radio telescopes, and expressed as

Qr(p) =K +[1-p (1.13)

with p the normalized radius of the circular aperture, and K and p being constants. For A(7) = 1 (i.e. an
incident wavefront without structure) the diffraction integral is

Br(d) = / On(@explikitfdsdy and B@)E (7) = Ax(d) (1.14)

Er is the tapered field distribution in the focal plane, and At the tapered beam pattern.

Figure 1.4 shows as example a two—dimensional cut through the calculated beam pattern At of the
TRAM 15-m telescope at A = 3mm, once without taper (i.e. for Qg (%) = 1), and for a -10 dB edge taper,
i.e. when the weighting of the wavefront at the edge of the aperture is 1/10 of that at the center (see
Figure 1.3). As seen from the figure, the taper preserves the global structure of the non—tapered beam
pattern, i.e. the main beam and side lobes, but changes the width of the beam (BW: ©y,), the position of
the first null (Og,), and the level of the side lobes. The effect of the taper depends on the steepness of the
main reflector used in the telescope, as shown in Figure 1.5. The influence of several taper forms is given
in Table 1.1 [Christiansen and Hogbom 1969].

The complete telescope, i.e. the optics combined with the receiver, has a beam pattern Ar(@) (in
optics called point—spread—function) with which we observe point-like or extended objects in the sky
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Figure 1.5: Illustration of the tapered beam pattern for telescopes using parabolic main reflectors of
different steepness, expressed by the opening angle §,. TRAM 30-m and 15-m telescopes: 6, ~ 63°,
optical telescopes: 8, ~ 5°. From [Minnet & Thomas 1968], Copyright: @ 1968 IEE, with kind permission

from IEE Publishing Department.
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O O First sidelobe  Aperture
p K (radian)  (radian) (dB) Efficiency
0 O 1.02)\/D 122 \/D 17.6 1.00
1 0 127\D 162)\/D 24.7 0.75
2 0 1.47 A\/D 2.03 \/D 30.7 0.55
1 025 117A/D 149 \/D 23.7 0.87
2 025 123X/D 1.68A/D 32.3 0.81
1 0.5 1.13\/D 133 X/D 22.0 0.92
2 05 116\/D 151)\/D 26.5 0.88

Table 1.1: Beamwidths, side lobe levels, and maximum aperture efficiency (¢,) for various parameters of
the tapering function. Adapted from [Christiansen and Hogbom 1969

with the intention to know their position, structural detail, and brightness distribution Bg as function of
wavelength. The telescope thus provides information of the form

(@) / A (i — @)Bg (i) di? (1.15)
Source

If the telescope is perfect, and we know Ar, we can use the information I(%) to derive the calibrated
brightness distribution Bg of the source distribution.

When we point the antenna toward the sky, in essence we point the beam in the direction of observation.
If, for instance, we observe a point—like source it is evident that the peak of the main beam should point
exactly on the source which requires that the pointing errors (A®) of the telescope should be small in
comparison to the beam width. The loss in gain is small, and acceptable, if the mispointing A® < 1/10 Oy,
Since modern radio telescopes use an alt-azimuth mount, this criterion says the mispointing in azimuth
(A®,,) and elevation (A®) direction should not exceed 1/4/2 this value. The pointing and focus (see
below) of the IRAM antennas are regularly checked during an observation, and corrected if required. The
corresponding protocol of an observing session at Plateau de Bure, using 5 antennas, is shown in Figure
1.6.

1.4 The real Single-Dish Antenna

A telescope, however, is never perfect since mechanical, thermal, and wind—induced deformations of the
structure occur, and the optics may be misaligned and/or have production imperfections, for one or
the other reason. The resulting effect on the beam pattern is negligible if the corresponding wavefront
deformations introduced by these imperfections are small compared to the wavelength of observation,
generally smaller than ~ \/15; the effect is noticeable and disturbing when the wavefront deformations
are large compared to the wavelength (~ 1/4)\ and larger). The wavefront deformations due to such
imperfections may be of systematic nature, or of random nature, or both.

1.4.1 Systematic Deformations: Defocus, Coma, Astigmatism

There are three basic systematic surface/wavefront deformations (occasionally associated with pointing
errors) with which the observer may be confronted, i.e. defocus, coma, and astigmatism (a transient
feature on the IRAM 30-m telescope).

1. The most important systematic wavefront/beam error is due to a defocus of the telescope. This
error is easily detected, measured, and corrected from the observation of a strong source at a number
of focus settings. Figure 1.7 shows, as example, the beam pattern measured on Jupiter with the
telescope being gradually defocused. Evidently, the peak power in the main beam decreases, the
power in the side lobes increases, until finally the beam pattern has completely collapsed. To be on
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Figure 1.6: Protocol of pointing corrections applied in azimuth and elevation direction, and focus correc-
tions; shown for 5 antennas during an observation which lasted 6 hours.

the safe side for observations, the defocus of the telescope should not exceed ~ 1/10\. A defocus
does not introduce a pointing error.

2. A telescope may have a comatic wavefront/beam error due to a misaligned subreflector, shifted
perpendicular off the main reflector axis. Figure 8 shows, as example, a cross scan through a
comatic beam of the IRAM 15-m telescope, especially produced by displacement of the subreflector.
A comatic beam pattern introduces a pointing error. It may be useful for the observer to recognize
this error, in particular if unexplained pointing errors occur in an observations. [The IRAM telescopes
are regularly checked for misalignments, and correspondingly corrected.]

3. A telescope may have an astigmatic wavefront/beam error, usually introduced by complicated
mechanical and/or thermal deformations (a transient feature on the IRAM 30-m telescope). While
this beam deformation is easily recognized by the observer from the difference in beam widths
measured from in—and—out—of—focus cross scans, the improvement of the telescope usually is difficult,
and out of reach of the observer. A focused astigmatic beam does not introduce a pointing error.
Figure 1.9 shows the focused beam pattern measured on a telescope which has a strong astigmatic
main reflector (amplitude of the astigmatism ~ 0.5 mm).

The beam deformation of systematic wavefront deformations occurs close to the main beam, and
the exact analysis should be based on diffraction calculations. A convenient description of systematic
deformations uses Zernike polynomials of order (n,m) [Born & Wolf 1975]. Without going into details, the
Zernike-type surface deformation dn.m = on,m Rn(p) cos(mb) [with (p,6) normalized coordinates of the
aperture, and R special polynomial functions| with amplitude o m has a quasi rms—value 0 = anm/vn + 1
and introduces a loss in main beam intensity of

€sys/€o = exp[—(dma/N)?/(n + 1)] (1.16)

For primary coma n = 1, for primary astigmatism n = 2. Although the beam deformation may be very
noticeable and severe, the associated loss in main beam intensity may still be low because of the reduction
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Figure 1.9: [Illustration of an
astigmatic beam pattern; well fo-
cused.

APERTURE

Figure 1.10: Explanation of ran-
dom errors (§) and their corre-
lation length (L), for Gaussian
caussian  hat-like deformations (example).
HATS From [Ruze 1966|, Copyright: @
1966 IEEE, reprinted by permis-

sion of IEEE, Inc.

by the factor (n+1).

1.4.2 Random Errors

Besides systematic surface/wavefront deformations explained above (mainly due to misalignment of the
optics), there are often permanent random deformations on the optic surfaces like ripples, scratches, dents,
twists, misaligned panels, etc., with spatial dimensions ranging from several wavelengths to significant areas
of the aperture. These deformations introduce identical deformations of the wavefront, which cannot be
expressed in mathematical form (as the Zernike polynomials used above). Nevertheless, the effect on
the beam pattern of this type of deformations can be analyzed in a statistical way and from a simple
expression, the RUZE equation. This equation is often used to estimate the quality of a telescope, in
particular as function of wavelength. The values obtained from this equation are directly related to
the aperture efficiency, and beam efficiency, of the telescope, and hence are important for radiometric
measurements (see Sect.1.5).

As illustrated in Figure 1.10, there are two parameters which allow a physical-optics description of the
influence of random errors, i.e. the rms-value (root mean square value) o of the deformations, and their
correlation length L.

Random errors occur primarily on the main reflector; the other optical components of the telescope
(subreflector, Nasmyth mirror, lenses, polarizers) are relatively small and can be manufactured with good
precision. In order to explain the rms—value o, we assume that the reflector aperture is divided into many
elements (i = 1,2,...N), and that for each element [i] the deformation §(i) of the reflector is known with
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respect to a smooth mean surface. The rms—value of these random surface deformations is

o= Zizl,N 8(i)2/N (1.17)

The surface deformations §(i) introduce corresponding wavefront deformations (i), approximately two
times larger than the mechanical deformations § in case we are dealing with reflective optics. The rms—
value o, of the corresponding phase deformations of the wavefront is

o, =2kRo (1.18)

again with k = 27/, and R = 0.8 a factor which takes into account the steepness of the parabolic main
reflector [Greve & Hooghoudt 1981].

A description of the wavefront deformation by the rms-value o, is incomplete since the value does
not contain information on the structure of the deformations, for instance whether they consist of many
dents at one part of the aperture, or many scratches at another part. A useful physical-optics description
requires also a knowledge of the correlation length L of the deformations. L is a number (L < D) which
quantifies the extent over which the randomness of the deformations does not change. For example, the
deformations of a main reflector constructed from many individual panels, which may be misaligned, often
has a random error correlation length typical of the panel size, but also a correlation length of 1/3 to 1/5
of the panel size due to inaccuracies in the fabrication of the individual panels. A typical example is the
30-m telescope [Greve et al. 1998].

When knowing, by one or the other method, the rms—value o, and the correlation length L, it is
possible to express the resulting beam shape in an analytic form which describes well the real situation.
The beam pattern F(x) of a wavefront with random deformations (¢, L) [the telescope may actually have
several random error distributions| consists of the degraded diffraction beam F.(x) and the error beam
Fe(x) such that

F(O©) = Fe(©) + Fe(0) (1.19)
with

Fe(©) = exp[ — (0,)*]A1(O) (1.20)
where A1 (0) is the tapered beam pattern (Eq.1.14), and

Fo(©) = aexp[—(mOL/\)?] (1.21)
where

a= (L/D)’[1 - exp(~0})]/eo (1.22)

In these equations, D is the diameter of the telescope aperture, A the wavelength of observation, © the
angular distance from the beam axis, and ¢, the aperture efficiency of the perfect telescope. In the
formalism used here the beam is circular symmetric. The error beam Fo(x) has a Gaussian profile of
width FWHP) ©, = 0.53\/L [radians|, i.e. the smaller the correlation length (the finer the irregular
structure), the broader is the beam width ©,. The random errors of panel surface deformation and panel
alignment errors may have large error beams (up to arcminutes in extent) which can pick up radiation from
a large area outside the actual source. A knowledge of the structure and of the level of the error beam(s)
is therefore important when mapping a source and making absolute power measurements. Figure 1.11
shows the diffraction beam and the combined error patterns measured on the 30—m telescope at various
wavelengths. The smaller the wavelength of observation, the smaller is the power received in the main
beam and the larger the power received in the error beam. Due to its particular mechanical construction,
this telescope has three error beams [Greve et al. 1998|.
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Figure 1.11: Beam pattern mea-
sured on the TRAM 30-m tele-
scope. The beam consists of the
diffraction beam (=~ main beam)
and a combined, extended error
beam (solid line).



1.5. RADIOMETRIC RELATIONS 13

Ruze Relation

1
T T T ‘ T T T ‘ T T T ‘ TT T T TT T
0.9
(\‘/2 L
< L
5 L
[0
Q‘E 0.8 j
\
iy L
o L
o |- B
07
o
0.6 1 5 3 Figure 1.12: Tllustration of the
Wavelength (mm) RUZE relation exp[—(47TRa/)\)2]
L L | | as function of wavelength (fre-
300 200 100 quency) and values Ro as indi-
Frequency (GHz) cated (mm).

1.5 Radiometric Relations

The imperfections of a telescope, either due to systematic or random errors, produce beam deformations,
a loss in gain, and focus and pointing errors. These effects must be taken into account when mapping
and measuring a source. Information on the beam pattern obtained from a map (for instance holography
map) of a strong point—like source; information on the sensitivity [Jy/K] and calibration of the telescope is
obtained from absolute power measurements of, for instance, the planets, of which the brightness temper-
atures are quite well known. This information is usually collected by the observatory staff, and provided
to the observer (30-m Telescope Manual; observation protocols of Plateau de Bure measurements).

We summarize the influence of random deformations, at least as far as the main beam is concerned,
since for this case the RUZE equation provides sufficient precision for an understanding of the telescope
behaviour; also for the astronomer observer without going into complicated radio optics detail. This
relation appears in the expression of the diffraction beam F. (see Eq.1.20) and shows clearly the fact
that the degradation of the telescope, in particular for power measurements, increases exponentially with
wavelength.

Aperture Efficiency:

€ap = €0 exp[—0,] = €,exp[—(47Ra /N)?]

Antenna Gain:
S/T% =2(k/A)ns/eap = 2(k/A) exp[+(40R/N)?]/€ap [Iy/K]
Beam Efficiency:
M = 0.8899[0n/(A\/D)I/eap
Op =a)\/D, 1<a<12 [radians]
ny ~ 1.2 €,exp[—(47Ra /N\)?]

The quantities in these expressions are ¢,: aperture efficiency of the perfect telescope (usually of the
order of ~ 75 — 90 % ; see Table 1.1); €, effective aperture efficiency at the wavelength A, including all
wavefront / telescope deformations; o: rms—value of the telescope optics deformations; R = 0.8: reduction
factor for a steep main reflector (N = F/D = 0.3); S: flux density of a point source [Jy]; T}: measured
antenna temperature [K] (see also Chapter 10); A: geometric surface area of the telescope [m?]; n;: forward
efficiency, measured at the telescope for instance from a sky dip; ©p: main beam width (FWHP).
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