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16.1 Introduction

This lecture is the second part of a series describing how the visibility samples provided by an interfero-
metric device can be used to produce a high quality image of the sky.

WIPE is a regularized Fourier synthesis method recently developed in radio imaging and optical inter-
ferometry. The name of WIPE is associated with that of CLEAN, the well-known deconvolution method
presented in the previous lecture, and intensively used by astronomers at IRAM as well as in many insti-
tutes, worldwide.

The regularization principle of WIPE refers to the Shannon sampling formula and to theoretical consid-
erations related to multiresolution analysis. The notions of field and resolution appear via the definition of
two key spaces: the object space and the object representation space (a subspace of the first). The complex
visibilities define a function in another space: the data space. The functions lying in this space take their
values on a frequency list which is the concatenation of the experimental frequency list and a regulariza-
tion frequency list. The latter defines a virtual frequency coverage beyond the frequency coverage to be
synthesized, up to the highest frequencies of the scaling functions generating the object space. This virtual
sampling is performed at the Shannon rate corresponding to the synthesized field. The reconstructed
image, also called the neat map, is defined as the function minimizing a regularized objective functional in
which the data are damped appropriately. To describe WIPE we adopt a terminology derived from that
of CLEAN.

In this lecture, we present the basic foundations of WIPE, and its implementation in the IRAM data
processing software. The reader interested in the theoretical aspects and developments of WIPE is invited
to consult the articles [Lannes et al. 1994, [Lannes et al. 1996], [Lannes et al. 1997].
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16.2 Object space

In the problems of Fourier synthesis encountered in astronomy, the object function of interest, ®,, is a
real-valued function of an angular position variable ¢ = & = (z,y). The geometrical elements under
consideration are presented in Fig. 16.1.

Figure 16.1: Traditional coordinate systems used to express the relation between the complex visibilities
and the brightness distribution of a source under observation. Here, the two antennas A; and A point
toward a distant radio source in a direction indicated by the unit vector s, and b is the interferometer
baseline vector. The position pointed by the unit vector s, is commonly referred to as the phase tracking
center or phase reference position: s — s, = o.

The object model variable ¢ lies in some object space H, whose vectors, the functions ¢, are defined
at a high level of resolution. This space is characterized by two key parameters: the extension Az of its
field, and its resolution scale dz. To define this object space more explicitly, we first introduce the finite
grid (see Fig. 16.2):

G=LxL, Lz{pEZ:—%

N
SPSE—l}, (16.1)

where N is some power of 2.
On each pizel pdx(p € G), we then center a scaling function of the form

ep(x) = eo(x —pdz) with eo(z) = sinc(%)sinc(‘s%). (16.2)

It is easy to verify that these functions form an orthogonal set. In this presentation of WIPE, the
object space H, is the Euclidian space generated by the basis vectors ep, p spanning G (see Fig. 16.2).
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Az = Néz Au = Ndu

Figure 16.2: Object grid G 0z (left hand) and Fourier grid G éu (right hand) for N = 8. The object
domain is characterized by its resolution scale dz and the extension of its field Az = Ndéz, where N is
some power of 2 (the larger is N, the more oversampled is the object field). The basic Fourier sampling
interval is du = 1/Ax, the extension of the Fourier domain is Au = 1/dz.

The dimension of this space is equal to N2: the number of pizels in the grid G. The functions ¢ lying
in H, can therefore be expanded in the form

P(x) = Z apep(T), (16.3)

peEG

where the a,’s are the components of ¢ in the interpolation basis of H,.
The Fourier transform of ¢ is defined by the relationship

o) = [ o@)e A2 o,

where u is a two-dimensional angular spatial frequency: u = (u,v). According to the expansion of ¢ we
therefore have:

du) =Y apep(u), (16.4)
PEG
where
=N - —2inp- u . - 1 u v
ép(u) = €o(u)e Au  with &(u) = e rect(m)rect(ﬂ) (16.5)
and Au = 1/4z.

The dual space of the object space, }AIO, is the image of H, by the Fourier transform operator: ﬁo is
the space of the Fourier transforms of the functions ¢ lying in H,. This space is characterized by two key
parameters: its extension Au = 1/§z, and the basic Fourier sampling interval du = 1/Az (see Fig. 16.2).

16.3 Experimental data space

The experimental data U.(u) are blurred values of &)o(u) on a finite list of frequencies in the Fourier
domain:

Lo = {ue(1),ue(2), ..., uc(N.)}. (16.6)
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As the object function of interest ®, is a real-valued function, it is natural to define ¥.(—u) as the complex
conjugate of ¥, (u). The experimental frequency list L. is defined consequently: if u € L., then —u € L,
(except for the null frequency u = 0: in the convention adopted here, either it does not lie in L, or there
exists only one occurrence of this point). The experimental frequency coverage generated by L. is therefore
centrosymmetric (see Fig. 16.3).

Figure 16.3: An example of an experimental frequency coverage provided by the IRAM interferometer.
Here, the number of points N, in the experimental frequency list L. is equal to 2862.

The ezperimental data vector ¥, lies in the erperimental data space K., the real Euclidian space
underlying the space of complex-valued functions ¢ on L., such that ¥(—u) = ¢¥(u). The dimension of
this space is equal to N.: the number of points in the experimental frequency list L.

16.4 Image reconstruction process

As the experimental frequency list is finite, and in addition the exzperimental data blurred, the object
representation that can be obtained from these data is of course incomplete. This simple remark shows
that the inverse problems of Fourier synthesis must be regularized: the high-frequency components of the
image to be reconstructed must be negligible.

The central problem is to specify in which conditions it is possible to extrapolate or interpolate, in
some region of the Fourier domain, the Fourier transform of a function ¢ whose support is contained in
some finite region of H,. It is now well established that extrapolation is forbidden, and interpolation
allowed to a certain extent. The corresponding regularization principle is then intimately related to the
concept of resolution: the interpolation is performed in the frequency gaps of the frequency coverage to be
synthesized.

16.4.1 Synthesized aperture

Let H be the Fourier domain: H = (—Awu/2, Au/2)%. In Fourier synthesis, the frequency coverage to be
synthesized is a centro-symmetric region H; C H (see Fig. 16.4).

CLEAN and WIPE share a common objective, that of the image to be reconstructed. This image, ®, is
defined so that its Fourier transform is quadratically negligible outside ;. More explicitly, ®, is defined
by the convolution relation:

B, = 0, x B, (16.7)
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The “synthetic beam” O, is a function resulting from the choice of H,: the well-known clean beam in
CLEAN, the neat beam in WIPE.

16.4.2 Synthetic beam

The neat beam can be regarded as a sort of optimal clean beam: the optimal apodized point-spread function
that can be designed within the limits of the Heisenberg principle. More precisely, the neat beam O is a
centro-symmetric function lying in the object space H,, and satisfying the following properties:

e The energy of (:)s is concentrated in H,;. In other words, (:53 has to be small outside H, in the
mean-square sense: we impose the fraction x? of this energy in H; to be close to 1 (say x2 = 0.98).

o The effective support D, of O, in H, is as small as possible with respect to the choice of H, and x2.
The idea is of course to have the best possible resolution.

This apodized point-spread function is thus computed on the grounds of a trade-off between resolution
and efficiency, with the aid of the power method.
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Figure 16.4: FEzperimental frequency coverage and frequency coverage to be synthesized H, (left hand).
The ezxperimental frequency list L. includes N, = 2862 frequency points. The frequency coverage to be
synthesized M, is centred in the Fourier grid G éu, where du = Au/N with N = 128 (here, the diameter
of the circle is equal to 400u). The neat beam O (right hand) represented here corresponds to the
frequency coverage to be synthesized H, for a given value of x2 = 0.97. It is centred in the object grid
G 0z where 0z = 1/Au (here, the full width of O, at half maximum is equal to 5dz).

16.4.3 Regularization frequency list

As extrapolation is forbidden, and interpolation only allowed to a certain extent in the frequency gaps of
the frequency coverage to be synthesized, the experimental frequency list L. should be completed by high-
frequency points. These points, located outside the frequency coverage to be synthesized H,, are those for
which the high-frequency components of the image to be reconstructed are practically negligible.

The elements of the regularization frequency list L, are the frequency points u, located outside the
frequency coverage to be synthesized Hs at the nodes of the Fourier grid G du:

Ly, ={u, =qdu,q € G:qdéu & Hs}. (16.8)

The global frequency list L is then the concatenation of £, with L,.
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16.4.4 Data space

According to the definition of the image to be reconstructed, the Fourier data corresponding to &, are
defined by the relationship:
T, (u) = O5(u)Te(u) Yu € Le. (16.9)

Clearly, ¥, lies in the experimental data space K.
Let us now introduce the data vector:

Ty(u) = {;IIS(u) Zz ﬁ (16.10)

This vector lies in the data space Kg4, the real Euclidian space underlying the space of complex-valued
functions 9 on £, such that ¥(—u) = ¥ (u). This space is equipped with the scalar product:

(W1 [ 2)a= Y dhr(w)iha (W)W (w)(6u)* + Y r(w)ehs(u)(6u)*; (16.11)
u€L. ucLl,

W (u) is a given weighting function that takes into account the reliability of the data via the standard
deviation oe(u) of ¥.(u), as well as the local redundancy p(u) of u up to the sampling interval du.
The Fourier sampling operator A is the operator from the object space H, into the data space Ky :

_ _ d(u) on Le;
A:H, — Ky, (Ag)(u) = {(E(u) on L. (16.12)

As the ezperimental data U, (u) are blurred values of ®,(u) on L., this operator will play a key role in the
image reconstruction process. The definition of this Fourier sampling operator suggests that the action
of A should be decomposed into two components: A, on the experimental frequency list L., and A, on
the regularization frequency list L,.

16.4.5 Object representation space

The reconstructed image is defined as the function ®g of the object space H, minimizing some objective
functional. The definition of this functional takes into account the nature of the data, as well as other
constraints. For example, the image to be reconstructed may be confined to a subspace, or more generally
to a convex set, of the object space H,: this convex set is the object representation space E. It may be
defined from the outset (in an interactive manner, for example), or step by step throughout the image
reconstruction procedure (this is the case of the current implementation of WIPE). In both cases, the
projection operator onto this space, the projector Pg, will play an essential role in the image reconstruction
process.

REMARK 1: positivity constraint.

In most cases encountered in practice, the scalar components of ®g in the interpolation basis of H,
must be non-negative (cf. Eq.??). In the current implementation of WIPE this constraint is taken into
account. The object representation space E is then built, step by step, accordingly.

16.4.6 Objective functional

The reconstructed image is defined as the function ® g minimizing on E the objective functional:

q(9) = [1%a — Ag|[7- (16.13)

According to the definition of the data vector ¥y and to that of the Fourier sampling operator A, this
quantity can be written in the form:

0e(9) =D |Ts(w) — p(u)[*W (u)(5u)?;

ucLe

gr(9) =D |p(w)|*(6u).

u€eL,

4(9) = ge(4) + ar(¢) with (16.14)
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The experimental criterion g, constraints the object model ¢ to be consistent with the damped Fourier
data ¥, while the regularization criterion ¢, penalizes the high-frequency components of ¢.

Let now F be the image of E by A (the space of the A¢’s, ¢ spanning E), Ag be the operator from E
into F' induced by A, and ¥ the projection of ¥; onto F' (see Fig. 16.7). The vectors ¢ minimizing ¢
on E, the solutions of the problem, are such that Agp¢ = Up. They are identical up to a vector lying in
the kernel of Ag (by definition, the kernel of Ag is the space of vectors ¢ such that Ag¢ = 0).

As ¥; — ¥ is orthogonal to F, the solutions ¢ of the problem are characterized by the property:
Vo € E,(Ap | ¥3 — Ap)q = 0. On denoting by A* the adjoint of A, this property can also be written in
the form:

YoeE, (¢|r)=0, with r = A*(¥y — Ag). (16.15)

where r is regarded as a residue. This condition is of course equivalent to Pgr = 0, where Pg is the
projector onto the object representation space E. The solutions of the problem are therefore the solutions
of the normal equation on E:

ApApd = Ap¥y, (16.16)

where A}, = PpA*.
Many different techniques can be used for solving the normal equation (or minimizing q on E). Some
of these are certainly more efficient than others, but this is not a crucial choice.

REMARK 2: beams and maps.

The action of A* A involved in A} Ay is that of a convolutor. As the two lists £, and £, are disjoints,
we have: A*A = AYA, + A} A,. Thus, the corresponding point-spread function, called the dusty beam,
has two components: the traditional dirty beam ©4 and the regularization beam. The latter corresponds
to the action of A%A,, the former to that of A*A. (see Fig. 16.5). Likewise, according to the definition
of the data vector, A*¥; = A*U, is called the dusty map (as opposed to the traditional dirty map AX¥,
because it is damped by the neat beam).

REMARK 3: construction of the object representation space.

With regard to the construction of the object representation space E, CLEAN and WIPE are very similar:
it is defined through the choice of the (discrete) object support. It is important to note that this space may
be constructed, in a global manner or step by step, interactively or automatically. In the last version of
WIPE implemented at IRAM, the image reconstruction process is initialized with a few iterations of CLEAN.
The support selected by CLEAN is refined throughout the iterations of WIPE by conducting a matching
pursuit process at the level of the components of r in the interpolation basis of H,: the current support
is extended by adding the nodes of the object grid G dx for which these coefficients are the largest above
a given threshold (half of the maximum value, for example). The objective functional is then minimized
on that new support, and the global residue r updated accordingly. The object representation space of the
reconstructed image is thus obtained step by step in a natural manner.

The simulation presented on Fig.16.5-16.6 corresponds to the conditions of Fig. 16.4. The Fourier
data ¥, were blurred by adding a Gaussian noise: for all u € L., the standard deviation of ¥, (u) was set
equal to 5% of the total flux of the object (60(0) /20). The image reconstruction process was initialized
with a few iterations of CLEAN, and the construction of the final support of the reconstructed image
was made as indicated in Remark 3. At the end of the reconstruction process, a final smoothing of the
current object support was performed. In this classical operation of mathematical morphology, the effective
support of O, Dy, is of course used as a structuring element. The boundaries of the effective support of
the reconstructed neat map are thus defined at the appropriate resolution. In particular, the connected

entities of size smaller than that of D, are eliminated.

16.4.7 Uniqueness and robustness

When the problem is well-posed, A is a one-to-one map (ker Ag = {0}) from E onto F'; the solution is
then unique: there exists only one vector ¢ € E such that Ag¢ = Up. This vector, P, is said to be the
least-squares solution of the equation Ag¢ “=" ¥,;.
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Figure 16.5: Dirty beam (left hand) corresponding to the experimental frequency list L. of Fig. 16.4, and
dusty map (right hand) of a simulated data set (the simulated Fourier data ¥, were blurred by adding a
Gaussian noise with a standard deviation o, equal to 5% of the total flux of the object ®,).

Figure 16.6: Image to be reconstructed ®s (left hand) at the resolution level defined in Fig. 16.4, and
reconstructed neat map ®g (right hand) at the same resolution: the final condition number kg is equal
to 2.46 (cf. Eq. 16.17 and 16.18).

In this case, let 6Up be a variation of ¥p in F, and §®g be the corresponding variation of &g in E
(see Fig. 16.7). It is easy to show that the robustness of the reconstruction process is governed by the
inequality:

[[0®El, < |0 F||a

S KE . (16.17)
1®£llo 1% F|lq
The error amplifier factor kg is the condition number of Ag:
)\I
PP ; 16.18
5= ( )

here A and X' respectively denote the smallest and the largest eigenvalues of A5 Ag. The closer to 1 is the

condition number, the easier and the more robust is the reconstruction process (see Fig. 16.8 and 16.9).
The part played by inequality 16.17 in the development of the corresponding error analysis shows that

a good reconstruction procedure must also provide, in particular, the condition number kg. This is the
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Figure 16.7: Uniqueness of the solution and robustness of the reconstruction process. Operator A is an
operator from the object space H, into the data space K4. The object representation space E is a particular
subspace of H,. The image of E by A, the range of Ag, is denoted by F'. In this representation, ¥ is the
projection of the data vector ¥; onto F'. The inverse problem must be stated so that Ag is a one-to-one
map from E onto F', the condition number kg having a reasonable value.

case of the current implementation of WIPE which uses the conjugate gradient method for solving the
normal equation 16.16.

To conduct the final error analysis, one is led to consider the eigenvalue decomposition of A}, Ag. This is
done, once again, with the aid of the conjugate gradient method associated with the QR algorithm. At the
cost of some memory overhead (that of the M successive residues), the latter also yields approximations
of the eigenvalues A\, of A;Ap. It is thus possible to obtain the scalar components of the associated
eigenmodes @y, in the interpolation basis of H,. The purpose of this analysis is to check whether some of
them (in particular those corresponding to the smallest eigenvalues) are excited or not in ®g. If so, the
corresponding details may be artefacts of the reconstruction.

The reconstructed map is then decomposed in the form:

M
<I’E = Zwk@k, W = ((I)k | (I)E) (16.19)
k=1

The separation angle 6;, between ® i and P, is explicitly given by the relationship:

W
f—M
D k=1 Wi

The closer to 7/2 is 8, the less excited is the corresponding eigenmode &, in the reconstructed neat
map Pg.

To illustrate in a concrete manner the interest of equations 16.19 and 16.20, let us consider the sim-
ulations presented in Fig. 16.4 and 16.9. Whatever the value of the final condition number is, the error
analysis allows the astronomer to check if there exists a certain similitude between some details in the
neat map and some features of the critical eigenmodes. This information is very attractive, in particular
when the resolution of the reconstruction process is greater than a reasonable value (the larger is the
aperture to be synthesized H,, the smaller is the full width at half-maximum of ©,). In such situations of
“super resolution,” the error analysis will suggest the astronomer to redefine the problem at a lower level
of resolution, or to keep in mind that some details in the reconstructed neat map may be artefacts of the
reconstruction process.

cosfy, = (0< 6, <m/2). (16.20)
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Figure 16.8: Reconstructed neat map ®g (left hand) and eigenmode ®; (right hand) corresponding to
the smallest eigenvalue A\; = 0.165 of A}, Ay,. The conditions of the simulations are those of Fig. 16.4
and 16.5: in particular, the diameter of H, is equal to 40 u. The final condition number is kg = 2.46
(the eigenvalues of A} Ap are plotted on the bar code below). This eigenmode is not excited in ®g: the
separation angle 6; between ® and @, is greater than 89°. In other situations, when the final condition
number is greater, this mode may be at the origin of some artefacts in the neat map (see Fig. 16.9).

16.5 Implementation of WIPE at IRAM

In this section we describe the successive steps of the image reconstruction process as it is implemented
now in the MAPPING program included in the IRAM software. For more information on this program, the
reader is invited to read the last version of the Mapping CookBook.

The first step of the image reconstruction process is to define the object space H,. This space is
characterized by two key parameters: the extension Az of its field, and its resolution scale dz = Az /N
(see Fig. 16.2). The procedure wipe_init is used to set these parameters properly.

The frequency coverage to be synthesized H, is defined with the aid of the procedure wipe_aper. This
tool provides an interactive way of fitting an ellipse over the experimental frequency coverage generated
by the ezperimental frequency list L. (see Fig. 16.4).

Once H; has been defined, the procedure wipe_beam is ready for computing the neat beam 0O, as well
as the dirty beam ©4. The latter plays a key role in the action of the convolutor A}, Ay, while the Fourier
transform of the former is involved in the definition of the data vector ¥y (cf. Eq. 16.9 and 16.10).

The last step in the image reconstruction process concerns the neat map. It is implemented in the
wipe_solve command. Before the initialization of the reconstruction, the dusty map A*¥,; is computed,
and an optional support can be selected (this support plays the role of the clean box of CLEAN). As WIPE
can be slow when reconstructing large images, it can be initialized with a few CLEAN iterations to quickly
build a first object representation space E. When switching to WIPE, the program starts by optimizing
the solution provided by CLEAN with the corresponding support. Then, at each iteration of WIPE, the
support grows, and for a given and fixed object representation space E, the normal equation 16.16 is
solved by using the conjugate gradient method, which also provides the condition number kg of Ag.
When leaving WIPE, a final smoothing of the current object support is performed, removing (through an
appropriate morphological analysis) the details of the reconstructed image smaller than the resolution limit
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Figure 16.9: Reconstructed neat map ®g (left hand) and related critical eigenmode ®; (right hand). The
latter corresponds to the smallest eigenvalue Ay = 0.057 of AL A,. The conditions of the simulations
are those of Fig. 16.5, but here the diameter of H; is taken equal to 48 du: the final condition number
is kg = 4.19 (the eigenvalues of A} Ay are plotted on the bar code below). The critical eigenmode ®; is
at the origin of the oscillations along the main structuring entity of ® g. This mode is slightly excited (the
separation angle 6; between ® g and ®; is less than 86°), thus the corresponding details may be artefacts.
In this case of “super-resolution” the error analysis provided by WIPE suggests that the procedure should
be restarted at a lower level of resolution (see Fig. 16.8), so that the final solution be more stable and
reliable.

of the reconstruction process. The final reconstructed image ®g is the function minimizing the objective
functional 16.13 on that support.

The control of the robustness of the reconstruction process is performed through an additional step with
the wipe_error command. This procedure computes with a fine accuracy the final condition number kg,
as well as the eigenvalues and the critical eigenmodes of A} Ag. One of the aims of this last step is to check
that the features present in the reconstructed image are not artefacts. This can be done by comparing
these features with those of the critical eigenmodes. When there exists a certain similitude (between these
features), it is then recommended to restart the process with a lower resolution, so that the final solution
be more stable and reliable.



208

Glossary

LN
G=LxL
p=(p,9)
x = (z,y)
u = (u,v)

a(¢)
2.(9), a-(9)
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One-dimensional grid, number of elements in L
Two-dimensional grid

Two-dimensional integer vector

Two-dimensional angular position variable
Two-dimensional angular spatial frequency
Extension of the synthesized field

Resolution scale of the synthesized field
Extension of the Fourier domain

Basic Fourier sampling interval

Object grid, Fourier grid

Global frequency list

Experimental frequency list, regularization frequency list
Fourier domain [—Aw/2, Au/2]

Frequency coverage to be synthesized

Support of the neat beam O

Energy confinement parameter

Apodized point-spread function (neat beam)
Instrumental point-spread function (dirty beam)
Object space, basis functions of H,

Object representation space, image of E by A
Experimental data space, data space

Weighting function

Redundancy of u, standard deviation of ¥, (u)
Regularized Fourier sampling operator

Fourier sampling operator on L., on L,
Projection operator onto E, restriction of A to E
Original object function, image to be reconstructed
Reconstructed image, reconstruction error on ¢
Experimental data, damped experimental data
Regularized data vector

Projection of ¥, onto F, effective error on ¥ p
Eigenvalue of AL Ap and related eigenmode
Separation angle between ®p and ®y

Smallest and largest eigenvalues of A} AL
Condition number of Ag

Regularized criterion

Experimental criterion, regularization criterion



