Imaging Principles

Jérôme PETY (Obs. de Paris/IRAM)

3rd IRAM Millimeter Interferometry School Sep. 30 - Oct. 5 2002, Grenoble

Scientific Analysis of a mm Interferometer Output

mm interferometer output:

Calibrated visibilities in the uv plane (\simeq the Fourier plane).

2 possibilities:

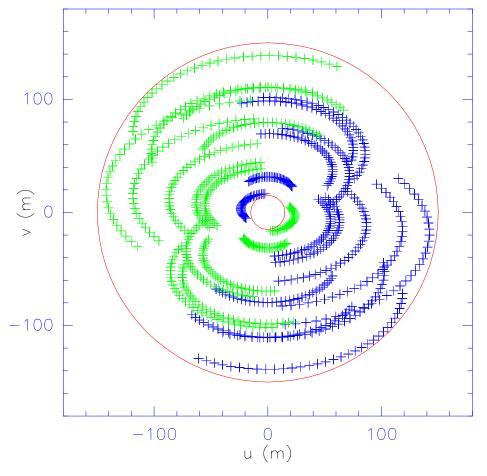
- *uv* plane analysis (cf. Lecture by S. Muller): Always better . . . when possible! (in practice for "simple" sources as point sources or disks)
- Image plane analysis:
 - \Rightarrow Mathematical transforms to go from uv to image plane!

Goal: Understand effects of the imaging process on

- The resolution;
- The field of view (single pointing or mosaicing, cf. Lecture by F. Gueth, tomorrow);
- The reliability of the image (cf. this lecture and next one);
- The noise level and repartition (cf. lecture by S.Guilloteau);

From Calibrated Visibilities to Images: I. Comparison Visibilities/Source Fourier Transform

$$V_{ij}(b_{ij}) = 2 \mathsf{D} \mathsf{FT} \left\{ B_{\mathsf{primary}} . I_{\mathsf{source}} \right\} (b_{ij}) + N$$



- Primary Beam
 - \Rightarrow Distorted source information.
- Noise \Rightarrow Sensitivity problems.
- Irregular, limited sampling
 - \Rightarrow incomplete source information:
 - Support limited at:
 - * High spatial frequency
 - \Rightarrow limited resolution;
 - * Low spatial frequency \Rightarrow problem of wide field imaging;
 - Inside the support, incomplete (*i.e.* Nyquist's criterion not respected) sampling \Rightarrow lost of information.

From Calibrated Visibilities to Images: II. Effect of Irregular, Limited Sampling

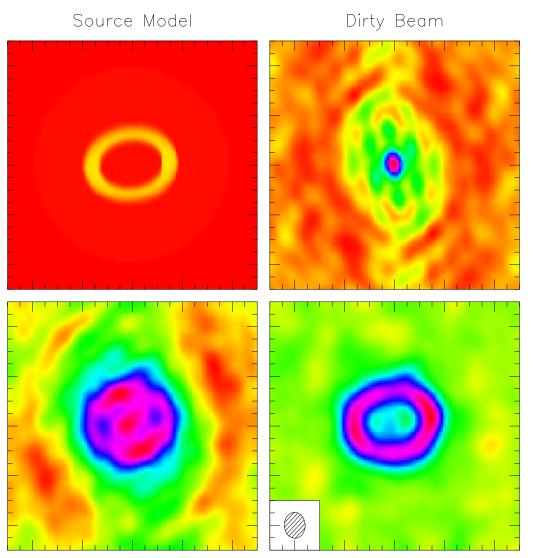
Definitions:

- $V = 2D \ \mathsf{FT} \{B_{\mathsf{primary}}, I_{\mathsf{source}}\};$
- Irregular, limited sampling function:
 - -S(u,v) = 1 at (u,v) points where visibilities are measured;
 - -S(u,v) = 0 elsewhere;
- $B_{\text{dirty}} = 2D \ FT^{-1} \{S\};$
- $I_{\text{meas}} = 2D \ FT^{-1} \{S.V\}.$

Fourier Transform Property #1: $I_{\text{meas}} = B_{\text{dirty}} * \{B_{\text{primary}}, I_{\text{source}}\}.$

 B_{dirty} : Point Spread Function (PSF) of the interferometer (*i.e.* if the source is punctual, then $I_{\text{meas}} = I_{\text{tot}}.B_{\text{dirty}}$).

From Calibrated Visibilities to Images: III. Why Deconvolving?



Dirty Image (Jy/Beam)

Clean Image (Jy/Beam)

- Difficult to do science on dirty image.
- Deconvolution ⇒ a clean image compatible with the sky intensity distribution.

From Calibrated Visibilities to Images: IV. Summary

Fourier Transform and Deconvolution: The two key issues in imaging.

Stage	Implementation
Calibrated Visibilities	UV_STAT
↓ Fourier Transform	UV_MAP
Dirty beam & image	
\Downarrow Deconvolution	CLEAN
Clean beam & image	
↓ Image analysis	Your Job!
Physical information	
on your source	

Direct vs. Fast Fourier Transform

Direct FT:

- Advantage: Direct use of the irregular sampling;
- Inconvenient: Slow.

Fast FT:

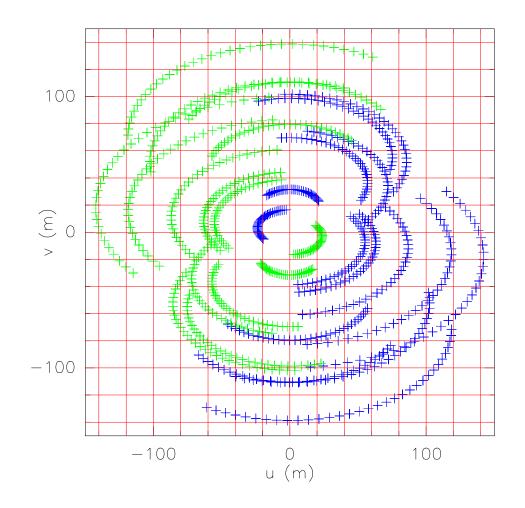
- Inconvenient: Needs a regular sampling \Rightarrow Gridding;
- Advantage: Quick for images of size $2^M \times 2^N$.
- \Rightarrow In practice, everybody use FFT.

From Calibrated Visibilities to Images: Summary

Fourier Transform and Deconvolution: The two key issues in imaging.

Stage	Implementation
Calibrated Visibilities	UV_STAT
↓ Gridding & FFT	UV_MAP
Dirty beam & image	
\Downarrow Deconvolution	CLEAN
Clean beam & image	
↓ Image analysis	Your Job!
Physical information	
on your source	

Gridding: I. Interpolation Scheme



Convolution because:

- Visibilities = noisy samples of a smooth function.
 - \Rightarrow Some smoothing is desirable.
- Nearby visibilities are not independent.
 - $V = 2D FT \{B_{primary}, I_{source}\}$ = $\tilde{B}_{primary} * \tilde{I}_{source};$
 - FWHM(convolution kernel) < FWHM($\tilde{B}_{primary}$)
 - \Rightarrow No real information lost.

Gridding: II. Convolution Equation is Kept Through Gridding

Demonstration:

• $I_{\text{meas}}^{\text{grid}} \stackrel{\text{2D,FT}}{\Leftarrow} G * (S.V) \quad \Leftrightarrow \quad I_{\text{meas}}^{\text{grid}} = \tilde{G}.(\widetilde{S.V});$ • $B_{\text{dirty}}^{\text{grid}} \stackrel{\text{2D,FT}}{\Leftarrow} G * S \quad \Leftrightarrow \quad B_{\text{dirty}}^{\text{grid}} = \tilde{G}.\tilde{S};$

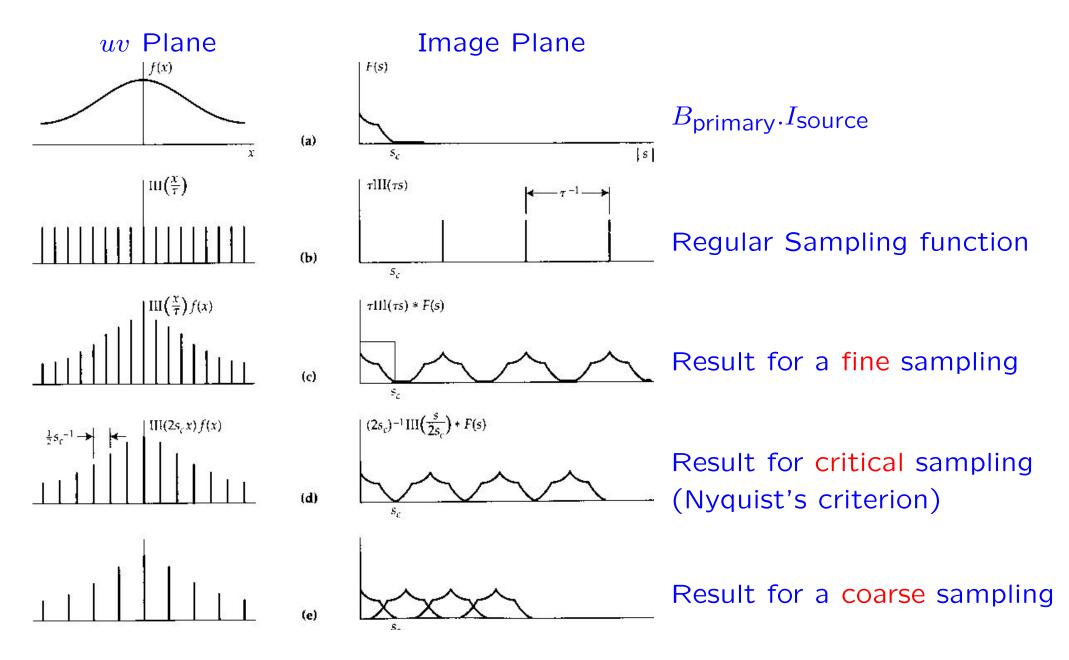
$$\Rightarrow I_{\text{meas}} = B_{\text{dirty}} * \left\{ B_{\text{primary}}.I_{\text{source}} \right\}$$

with $I_{\text{meas}} = I_{\text{meas}}^{\text{grid}} / \tilde{G}$
and $B_{\text{dirty}} = B_{\text{dirty}}^{\text{grid}} / \tilde{G}$.

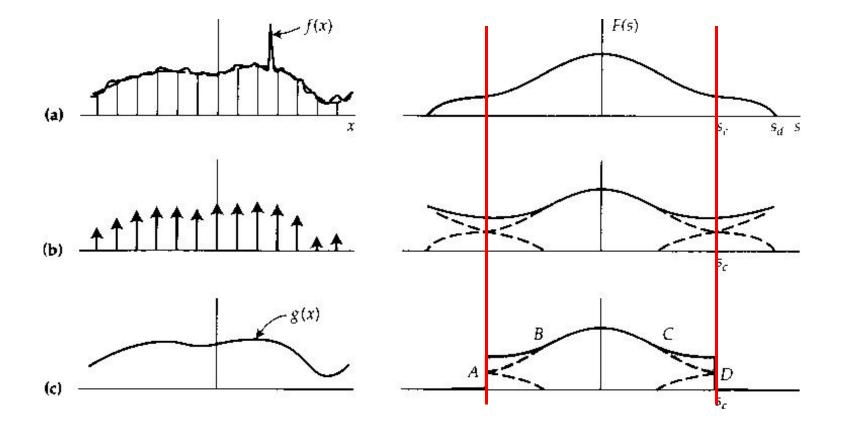
Remark: Gridding may be hidden in equations but it is still there. \Rightarrow Artifacts due to gridding! (cf. next transparencies)

Gridding:

III. Effect of a Regular Sampling (Periodic Replication)



Gridding: III. Effect of a Regular Sampling (Aliasing)



Aliasing = Folding of intensity outside the image size into the image. \Rightarrow Image size must be large enough.

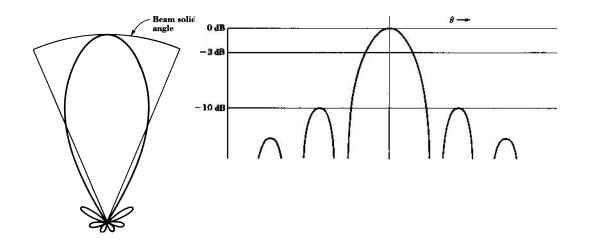
Gridding: IV. Pixel and Image Sizes

Pixel size: Between 1/3 and 1/4 of the synthesized beam size (*i.e.* more than the Nyquist's criterion in image plane to ease deconvolution).

Image size:

- = uv plane sampling rate (FT property # 2);
- Natural resolution in the uv plane: $\tilde{B}_{primary}$ size;
- ⇒ At least twice the B_{primary} size (*i.e.* Nyquist's criterion in uv plane).

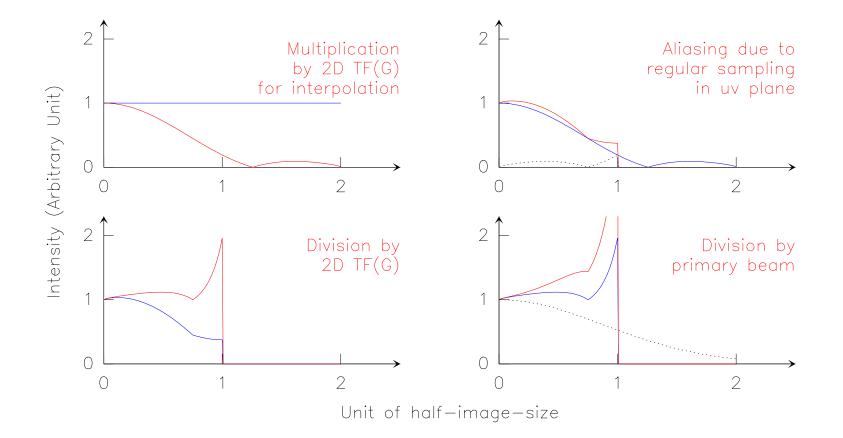
Gridding: V. Bright Sources in *B*_{primary} **Sidelobes**



Bright Sources in $B_{primary}$ sidelobes outside image size will be aliased into image. \Rightarrow Spurious source in your image!

Solution: Increase the image size. (Be careful: only when needed for efficiency reasons!)

Gridding: VI. Noise Distribution



Gridding: VII. Choice of Gridding function

Gridding function must:

- Fall off quickly in image plane (to avoid noise aliasing);
- Fall off quickly in *uv* plane (to avoid too much smoothing).
- \Rightarrow Define a mathematical class of functions: Spheroidal functions.

GILDAS implementation: In UV_MAP

- Spheroidal functions = Default gridding function;
- Tabulated values are used for speed reasons.

Dirty Beam Shape and Image Quality

 $B_{\text{dirty}} = 2\mathsf{D} \; \mathsf{F}\mathsf{T}^{-1}\{S\}.$

Importance of the Dirty Beam Shape:

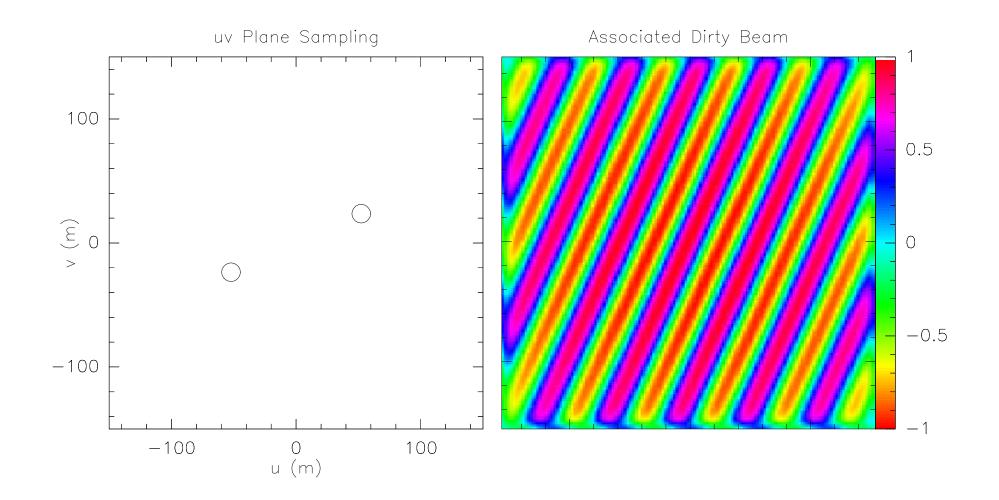
- Deconvolving a dirty image is a delicate stage;
- The closest to a Gaussian B_{dirty} is, the easier the deconvolution;
- Extreme case:

 $B_{\text{dirty}} = \text{Gaussian} \Rightarrow \text{No deconvolution needed at all!}$

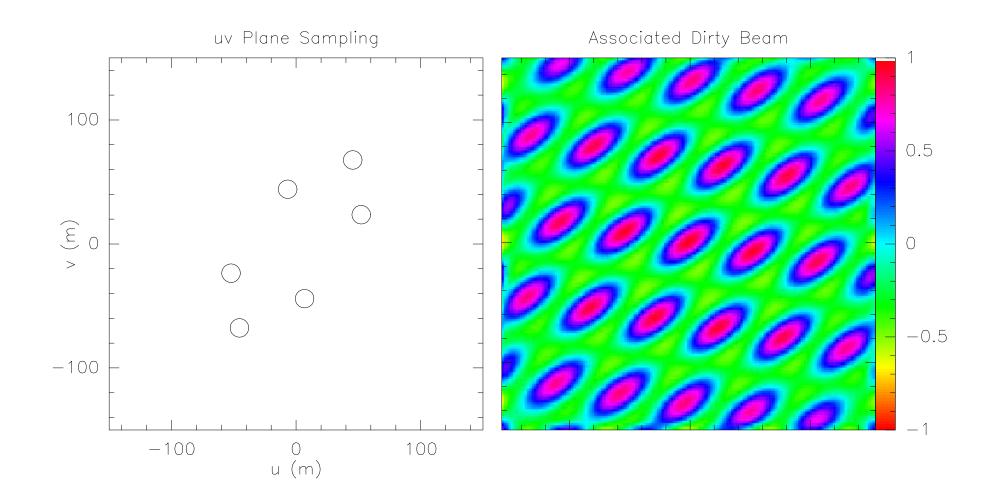
Ways to improve (at least change) B_{dirty} shape:

- Increase the number of antenna (costly).
- Change the antenna layout (technically difficult).
- Weight the irregular, limited sampling function *S* (the only thing you can do in practice).

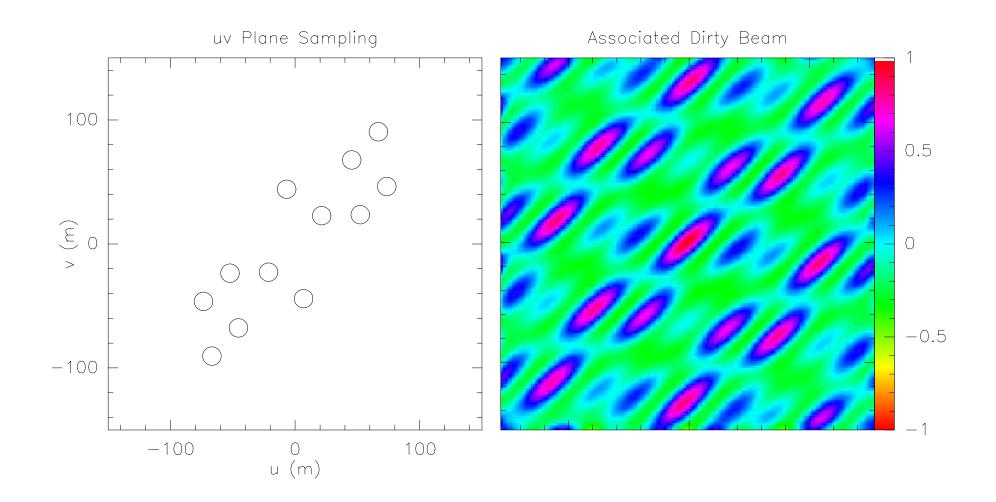
Dirty Beam Shape and Number of Antenna: 2 Antenna



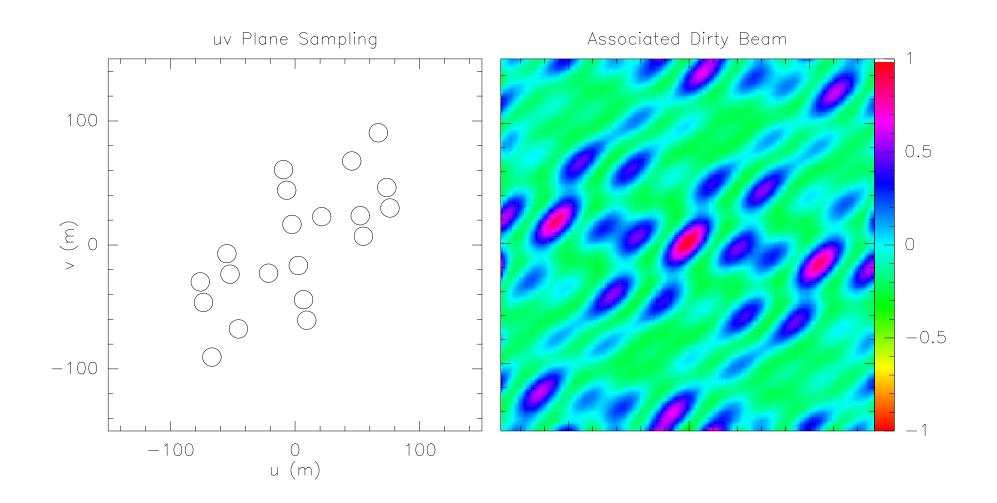
Dirty Beam Shape and Number of Antenna: 3 Antenna



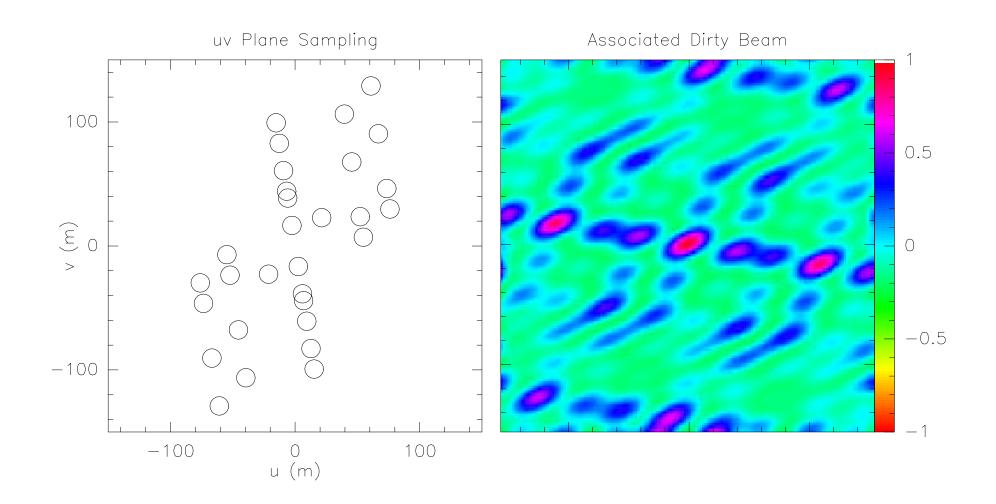
Dirty Beam Shape and Number of Antenna: 4 Antenna

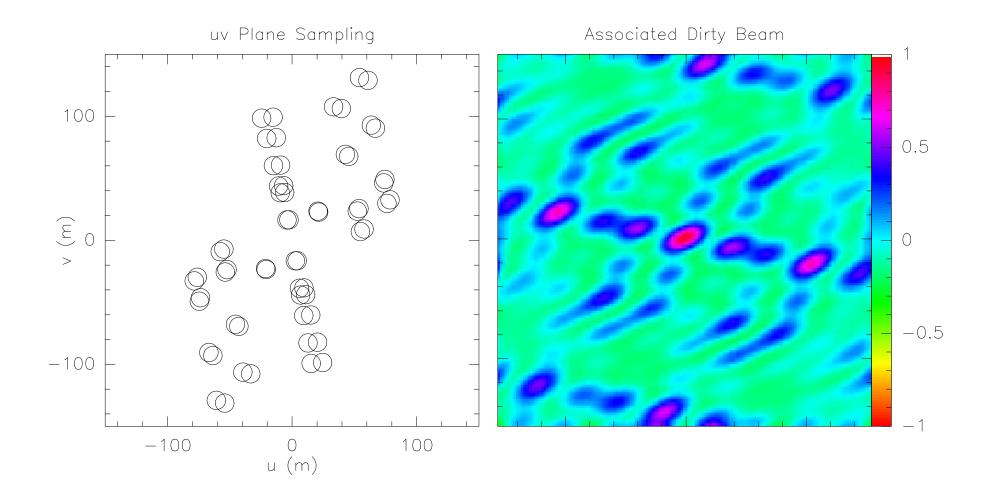


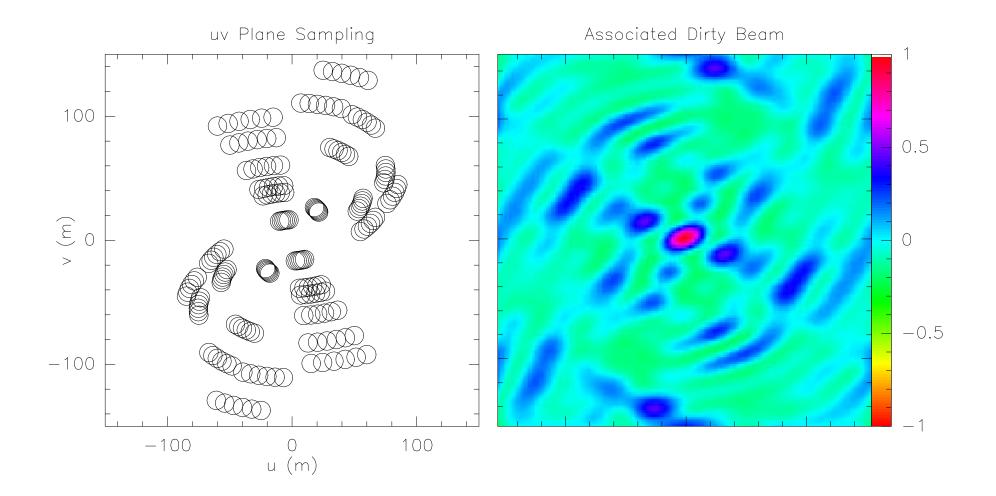
Dirty Beam Shape and Number of Antenna: 5 Antenna

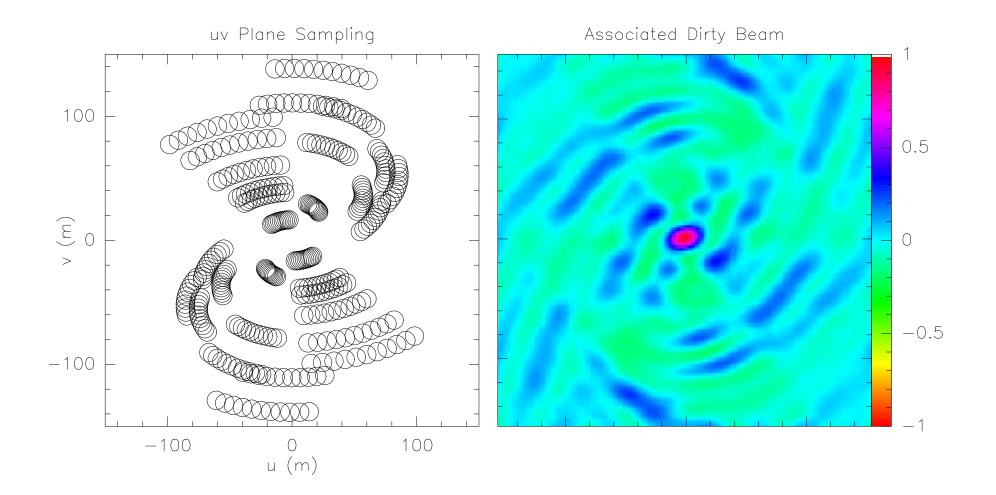


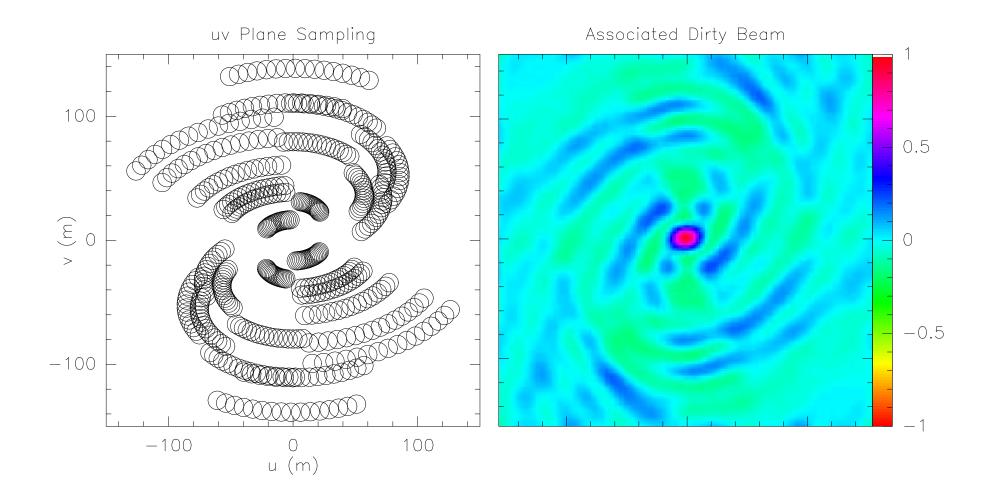
Dirty Beam Shape and Number of Antenna: 6 Antenna

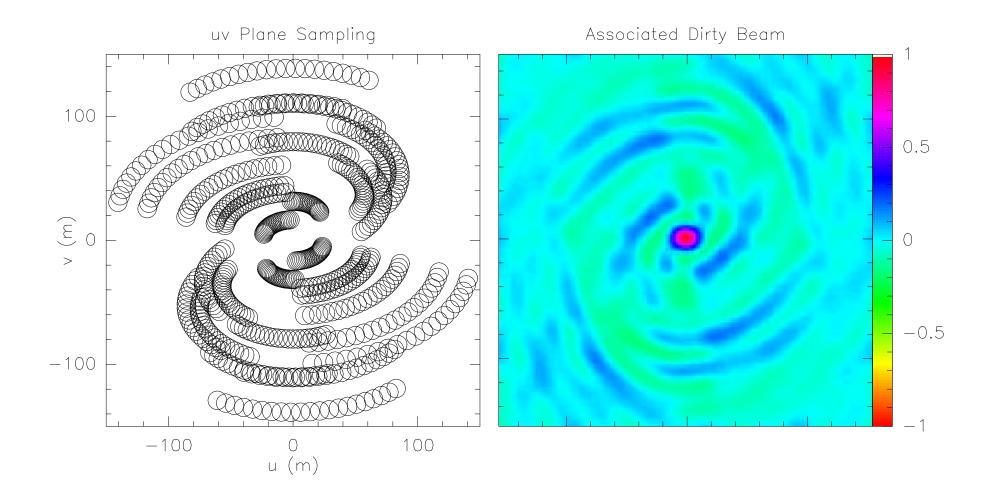


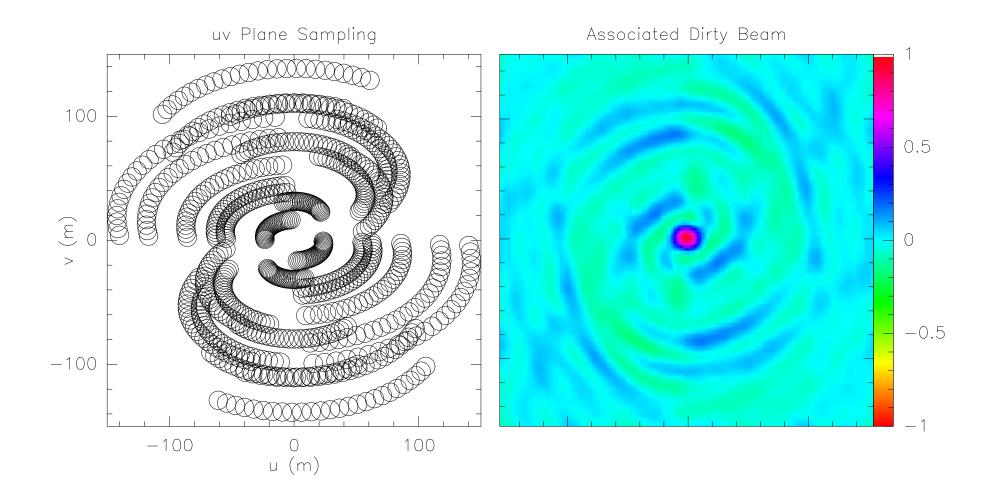


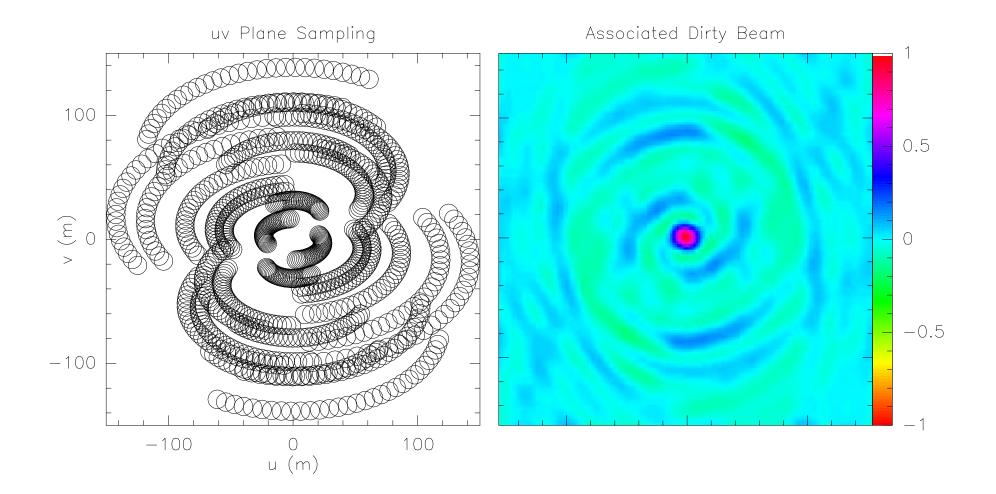


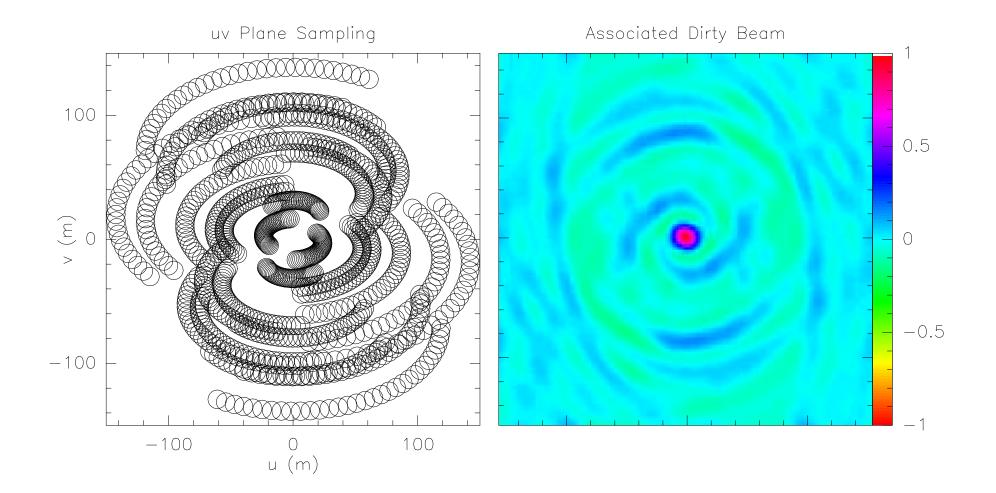












Dirty Beam Shape and Weighting

Natural Weighting: Default definition of the irregular sampling function at uv table creation.

- $S(u,v) = 1/\sigma^2$ at (u,v) points where visibilities are measured;
- S(u,v) = 0 elsewhere;

with $\sigma^2(u, v)$ the noise variance of the visibility.

Introduction of a weighting function W(u, v):

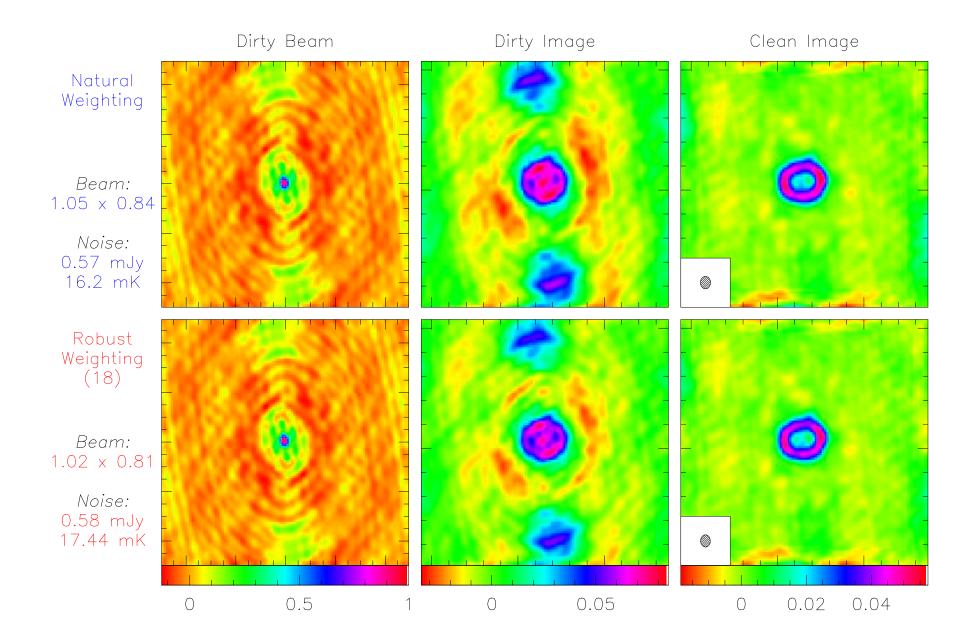
- $B_{\text{dirty}} = 2D \ FT^{-1} \{W.S\};$
- Robust weighting: W enhance the large baseline contribution;
- Tapering: W enhance the small baseline contribution.

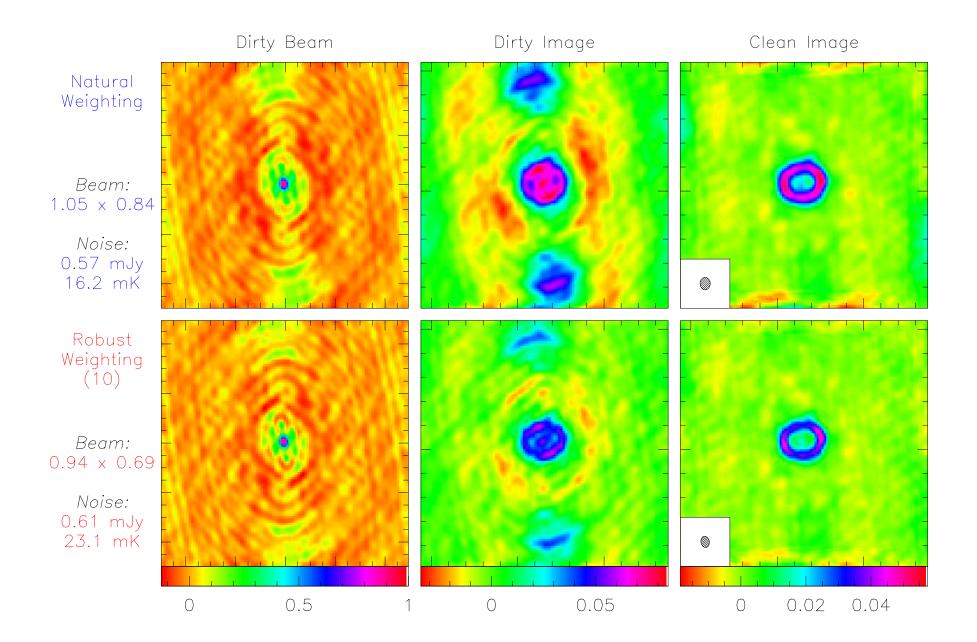
Robust Weighting: I. Definition

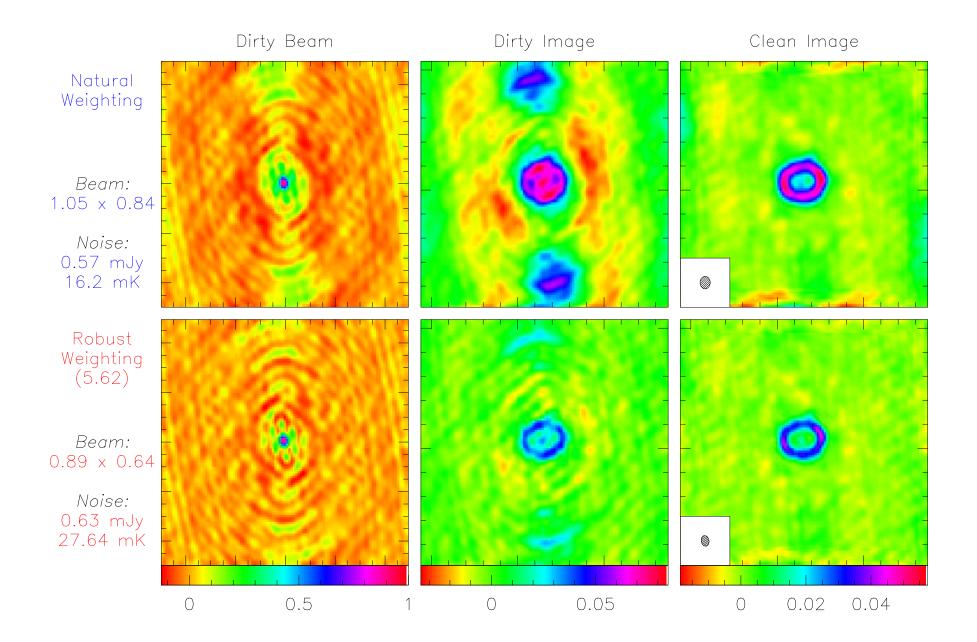
Definitions:

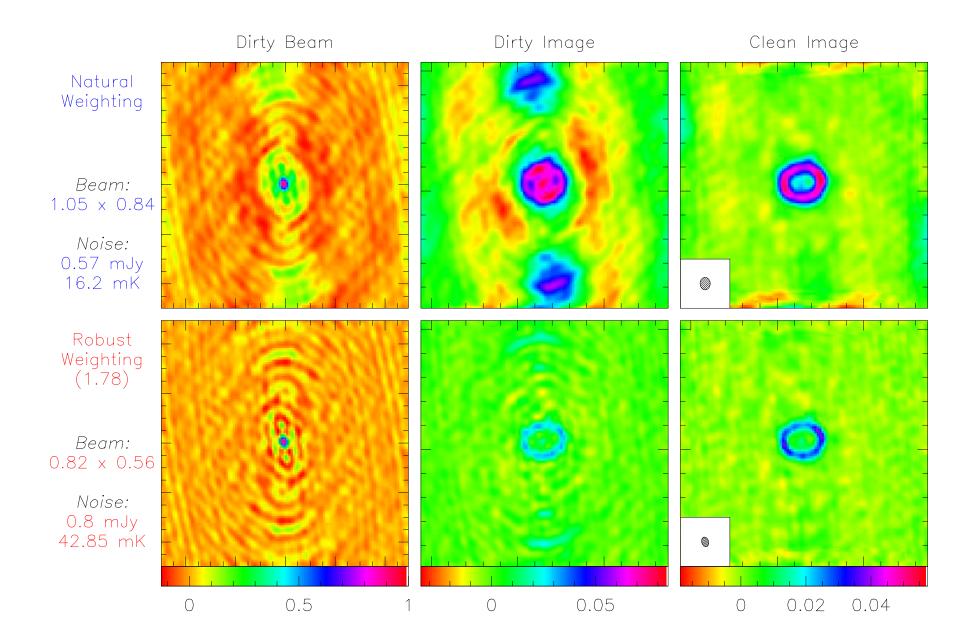
• Natural =
$$\sum_{(u,v)\in Cell} S$$
;
• $\sum_{(u,v)\in Cell} W.S = \begin{cases} Constant & \text{if (Natural } \geq Threshold); \\ Natural & else; \end{cases}$

• In practice, the cell size is 0.5D.









Robust Weighting: III. Definition and Properties

Definitions:

• Natural =
$$\sum_{(u,v)\in Cell} S$$
;
• $\sum_{(u,v)\in Cell} W.S = \begin{cases} Constant & \text{if (Natural } \leq Threshold); \\ Natural & else; \end{cases}$

• In practice, the cell size is 0.5D.

Properties:

- Increase the resolution;
- Lower the sidelobes;
- Degrade point source sensitivity.

Unfortunately: GILDAS implementation gives it the name of "uniform" weighting!

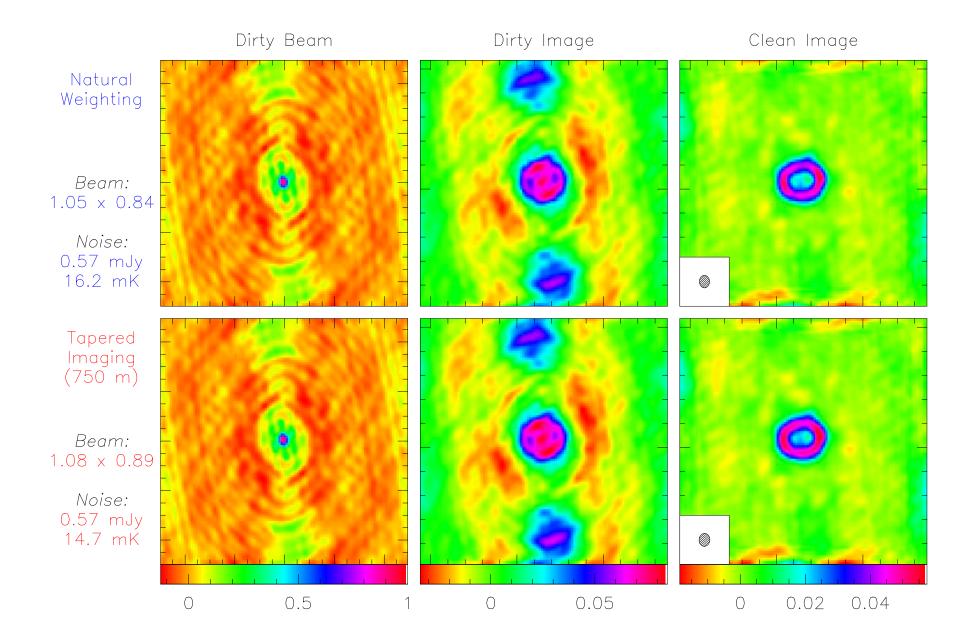
Tapering: I Definition

Definition:

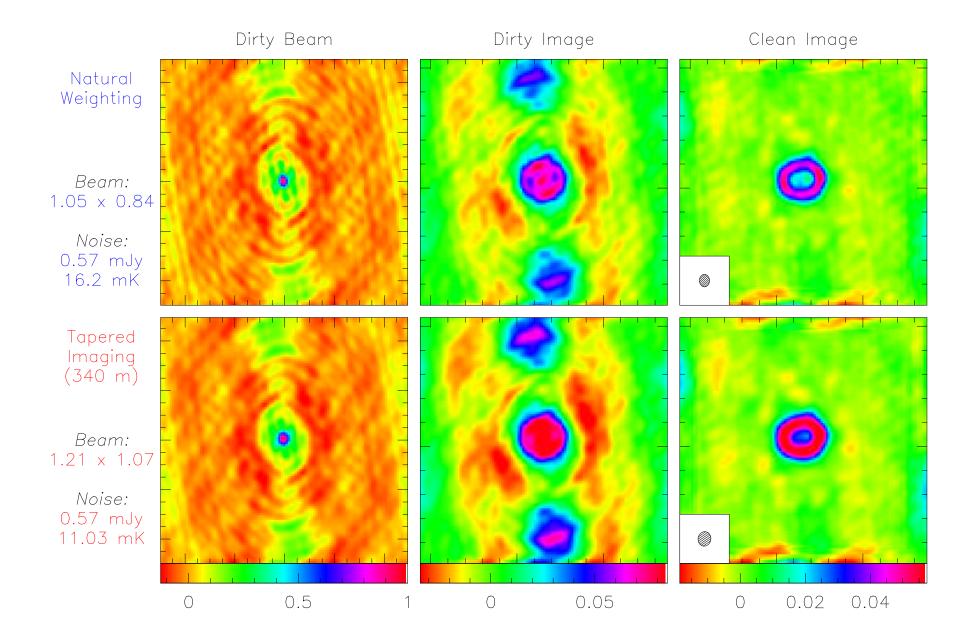
• Apodization of the uv coverage in general by a Gaussian; • $W = \exp\left\{-\frac{\left(u^2 + v^2\right)}{t^2}\right\}$ where t = tapering distance.

 \Rightarrow Convolution (*i.e.* smoothing) of the image by a Gaussian.

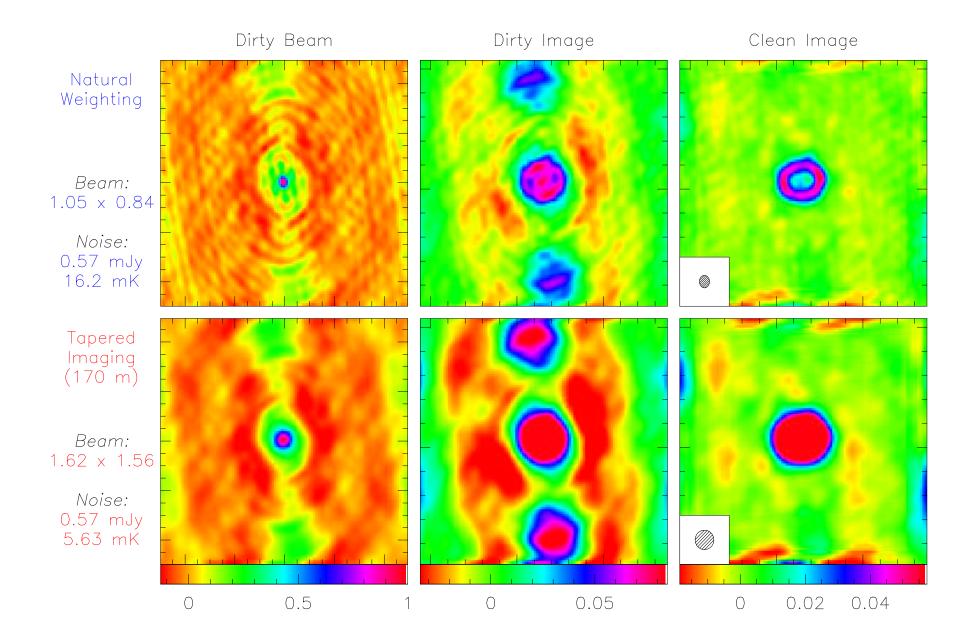
Tapering: II. Examples



Tapering: II. Examples



Tapering: II. Examples



Tapering: III. Definition and Properties

Definition:

• Apodization of the uv coverage in general by a Gaussian;

•
$$W = \exp\left\{-\frac{\left(u^2 + v^2\right)}{t^2}\right\}$$
 where $t =$ tapering distance.

 \Rightarrow Convolution (*i.e.* smoothing) of the image by a Gaussian.

Properties:

- Decrease the resolution;
- Degrade point source sensitivity;
- Increase sensitivity to "medium size" structures.

Inconvenient: Throw out some information.

⇒ To increase sensitivity to extended sources, use compact arrays not tapering.

Weighting and Tapering: Summary

	Robust	Natural	Tapering
Resolution	High	Medium	Low
Side Lobes		Medium	?
Point Source Sensitivity		Maximum	\searrow
Extended Source Sensitivity		Medium	~

Non-circular tapering + Robust weighting: Sometimes \Rightarrow Better (*i.e.* smaller and more circular) beams.

GILDAS implementation: "UV_STAT WEIGHT" or "UV_STAT TAPER"

Resolution, point/extended source sensitivity as a function of robust threshold or tapering distance.

From Calibrated Visibilities to Images: Summary

Fourier Transform and Deconvolution: The two key issues in imaging.

Stage	Implementation
Calibrated Visibilities	UV_STAT
↓ Fourier Transform	UV_MAP
Dirty beam & image	
\Downarrow Deconvolution	CLEAN
Clean beam & image	
↓ Image analysis	Your Job!
Physical information	
on your source	

Deconvolution: I. Philosophy

$$I_{\text{meas}} = B_{\text{dirty}} * \left\{ B_{\text{primary}} \cdot I_{\text{source}} \right\} + N.$$

Information lost:

- Irregular, incomplete sampling \Rightarrow convolution by B_{dirty} ;
- Noise \Rightarrow Low signal structures undetected.
- \Rightarrow Impossible to recover the intrinsic source structure!

Deconvolution goal: Finding an intensity distribution compatible with the intrinsic source one.

Deconvolution needs:

- Some *a priori* assumptions about the source intensity distribution;
- As much as possible knowledge of
 - B_{dirty} (OK in radioastronomy);
 - Noise properties.

The best solution: A Gaussian $B_{dirty} \Rightarrow No$ deconvolution needed!

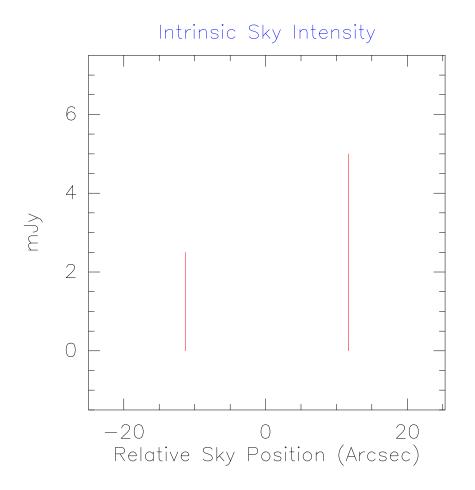
Deconvolution: II. The Basic CLEAN Algorithm

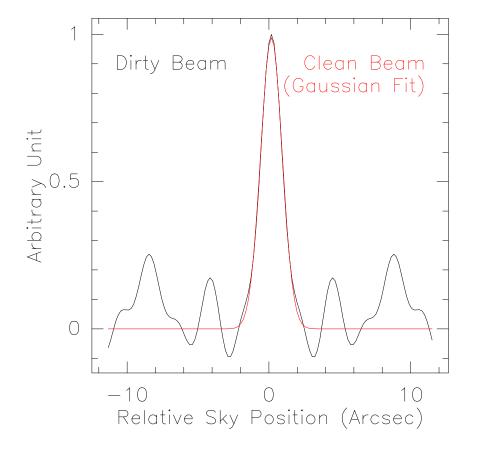
a priori assumption: Source = Collection of point sources.

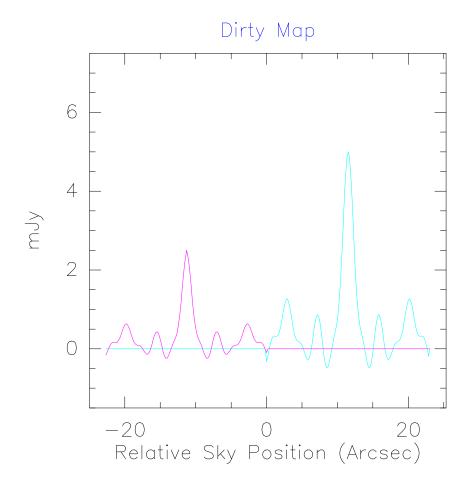
Idea: "Matching pursuit".

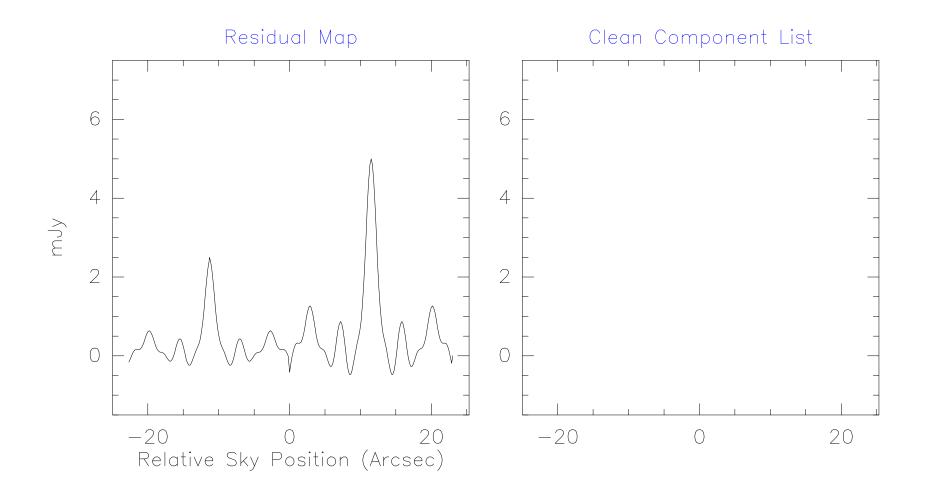
Algorithm:

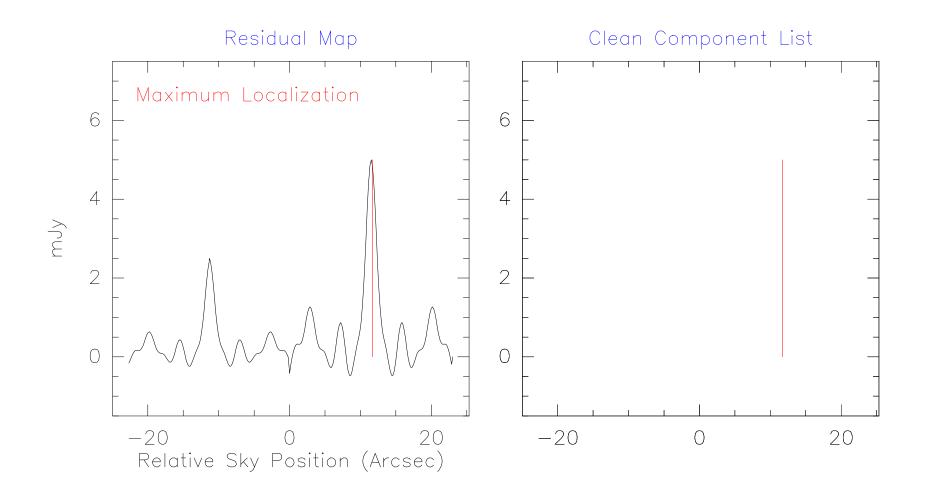
- 1 Initialize
 - the residual map to the dirty map;
 - the Clean component list to an empty (NULL) value;
- 2 Identify pixel of $|I_{max}|$ in residual map as a point source;
- 3 Add γ . I_{max} to clean component list;
- 4 Subtract γ . I_{max} from residual map;
- 5 Go back to point 2 while stopping criterion is not matched;
- 6 Convolution by Clean beam (a posteriori regularization);
- 7 Addition of residual map to permit:
 - Correction when cleaning is too superficial;
 - Noise estimation.



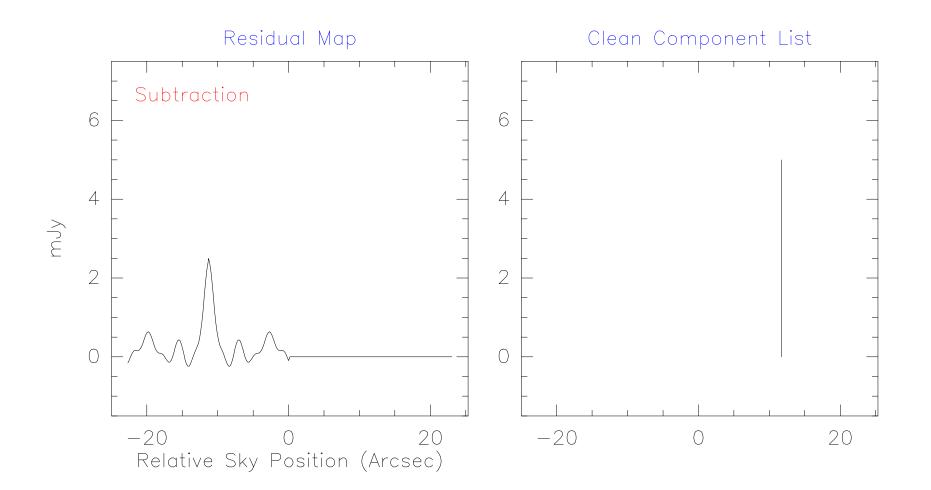


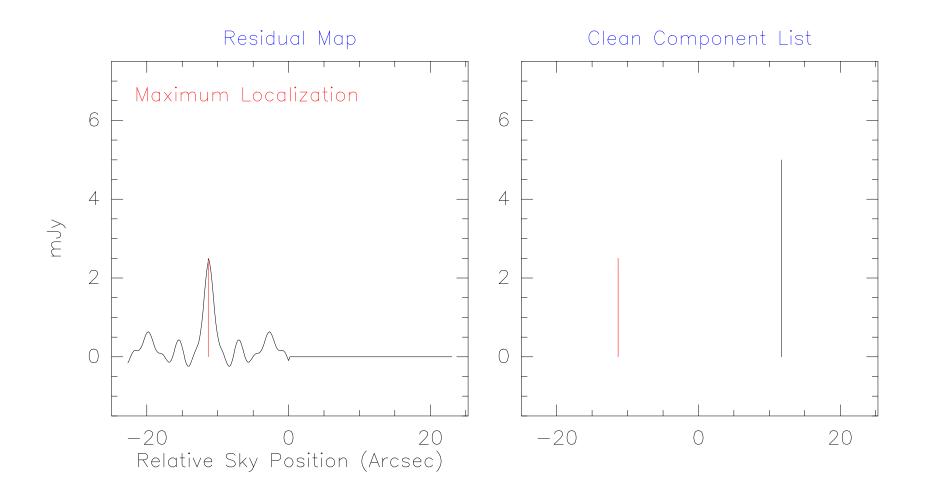


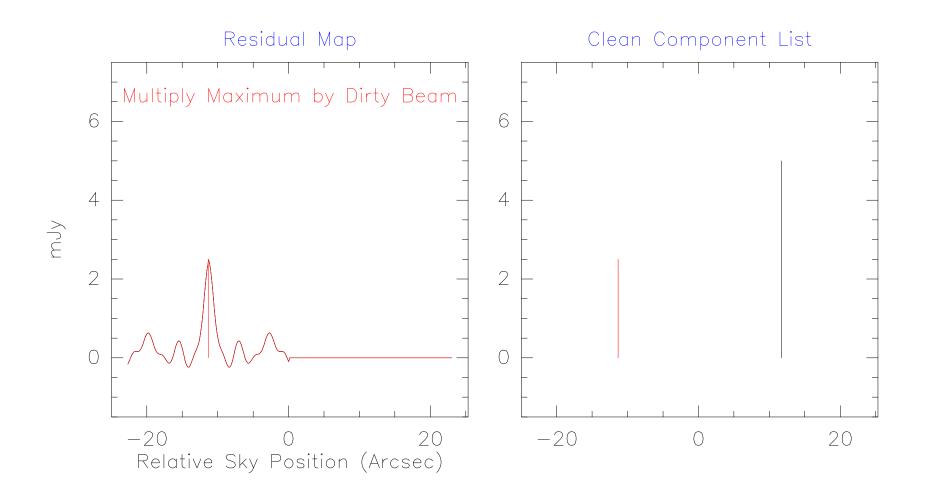


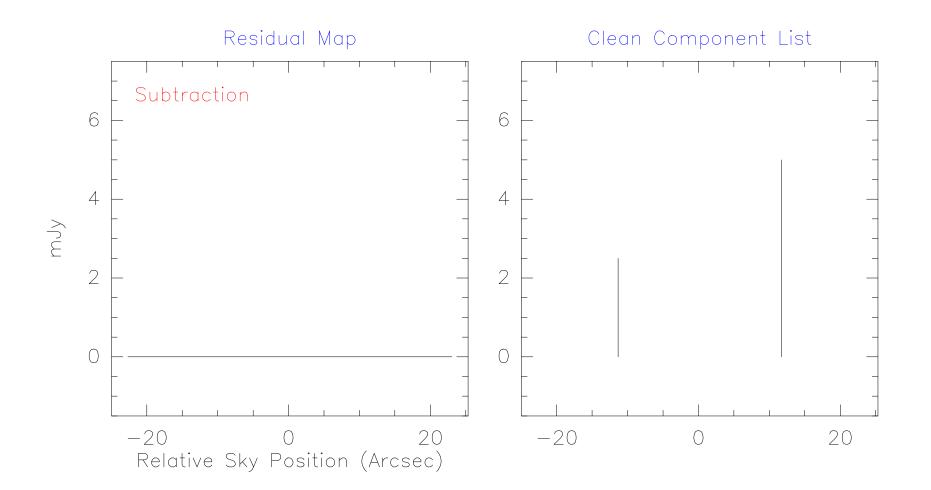


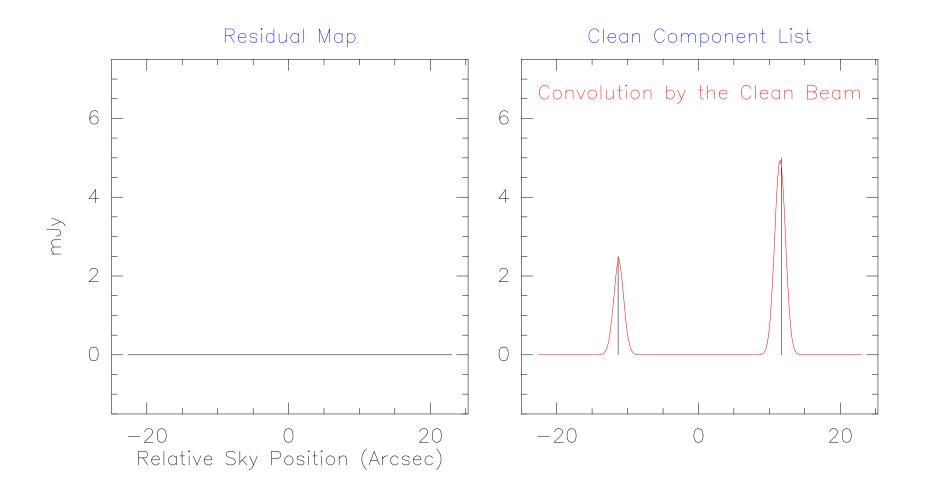


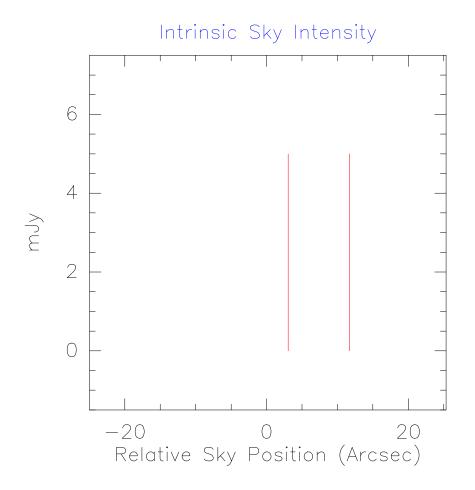


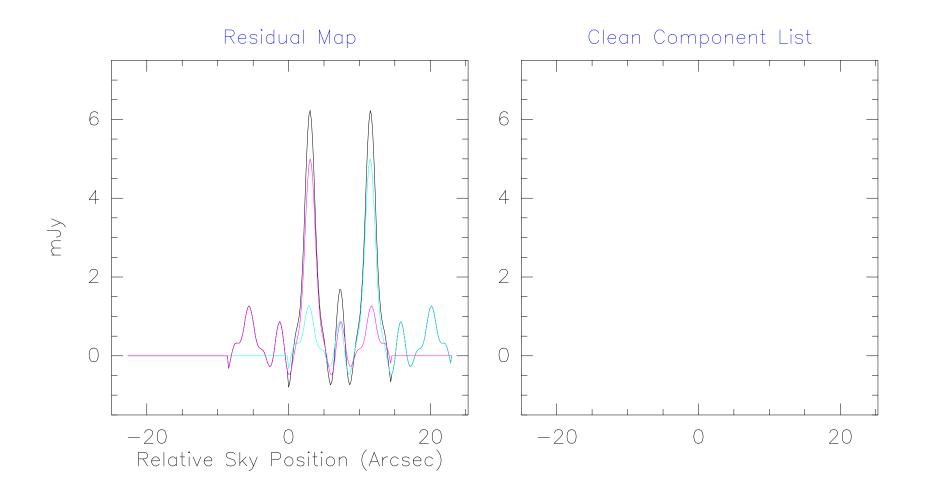


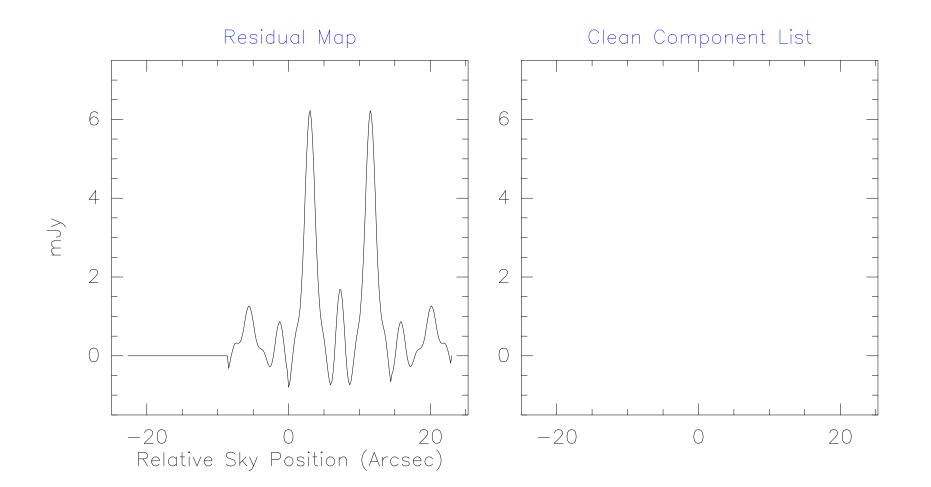


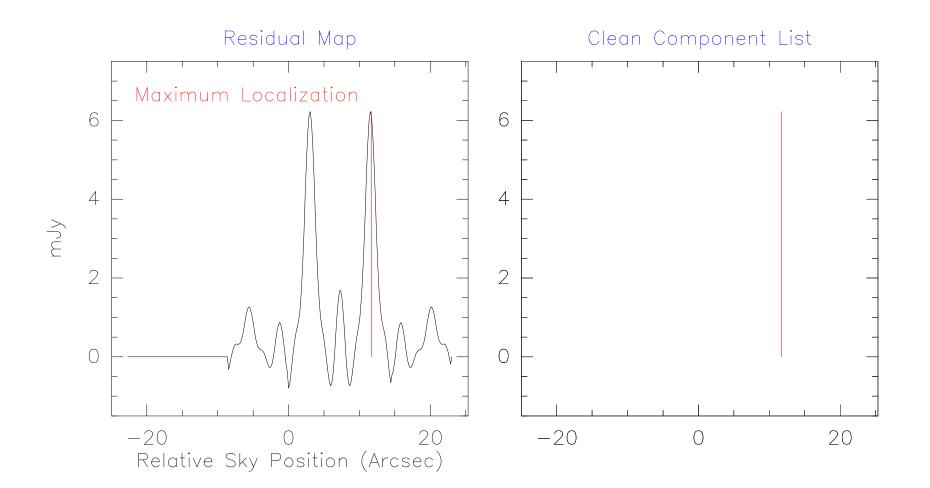


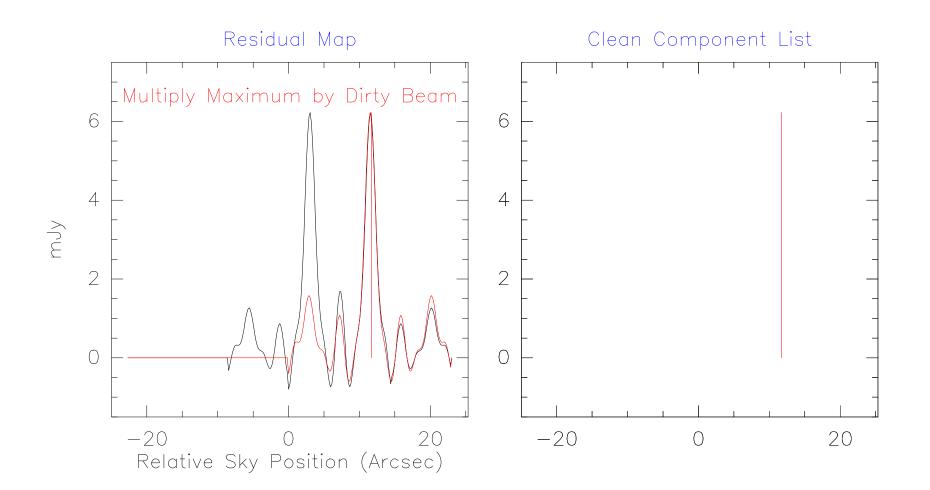


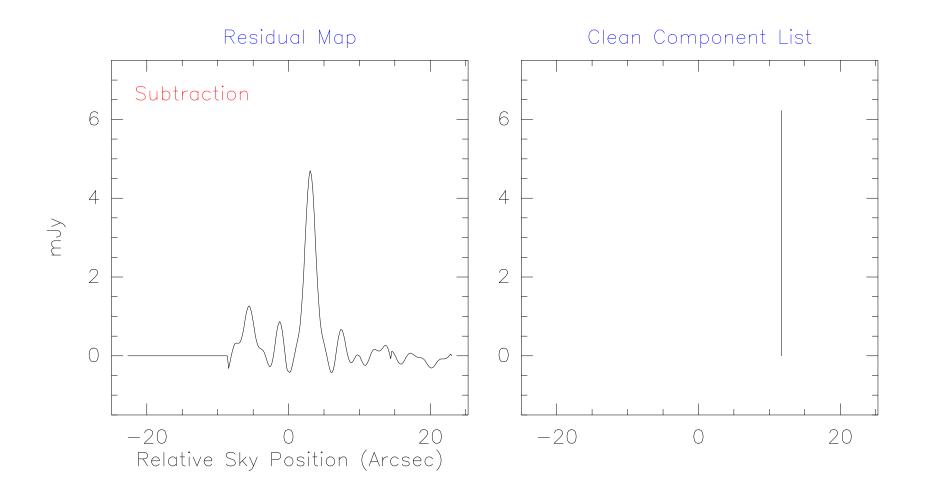


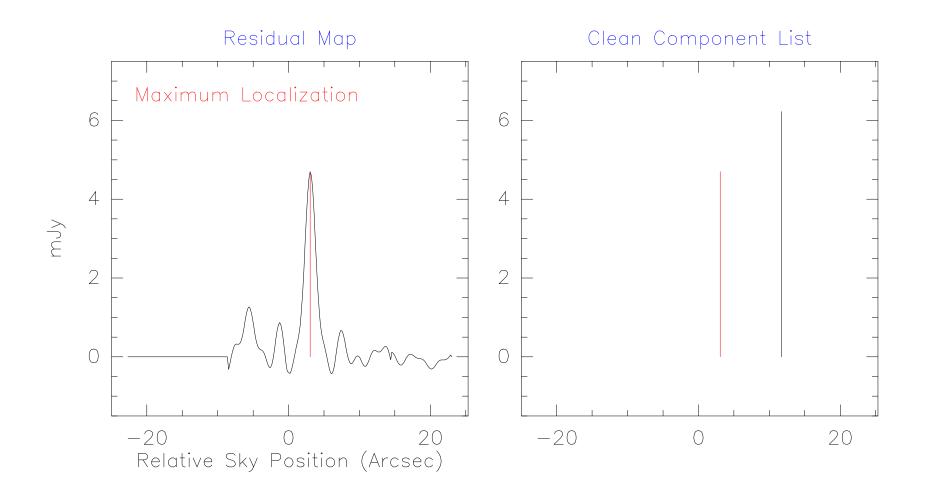


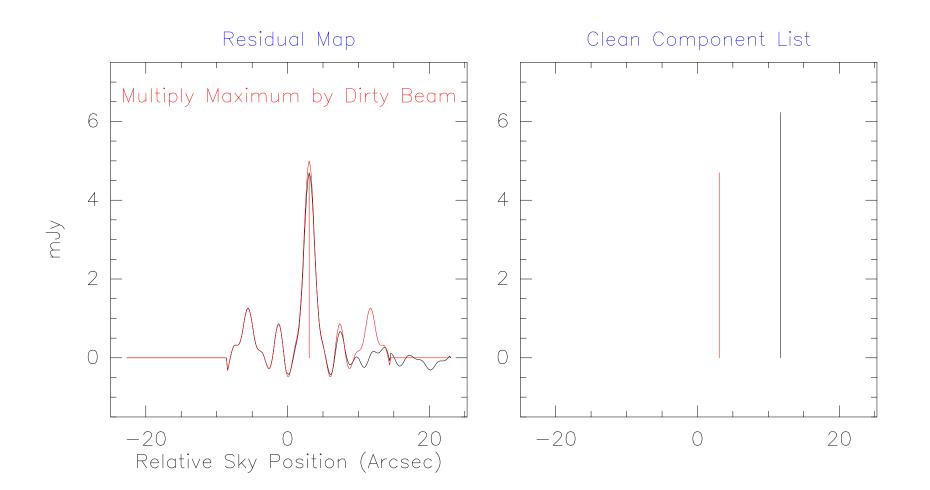


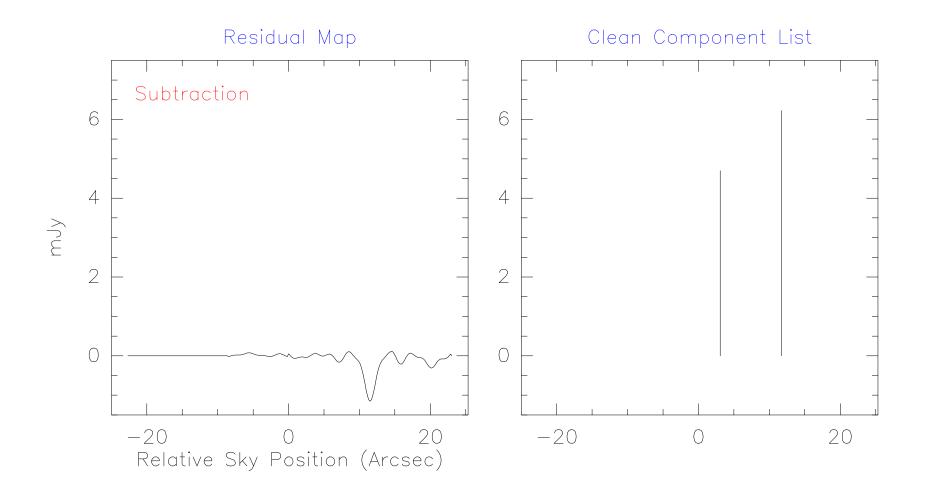


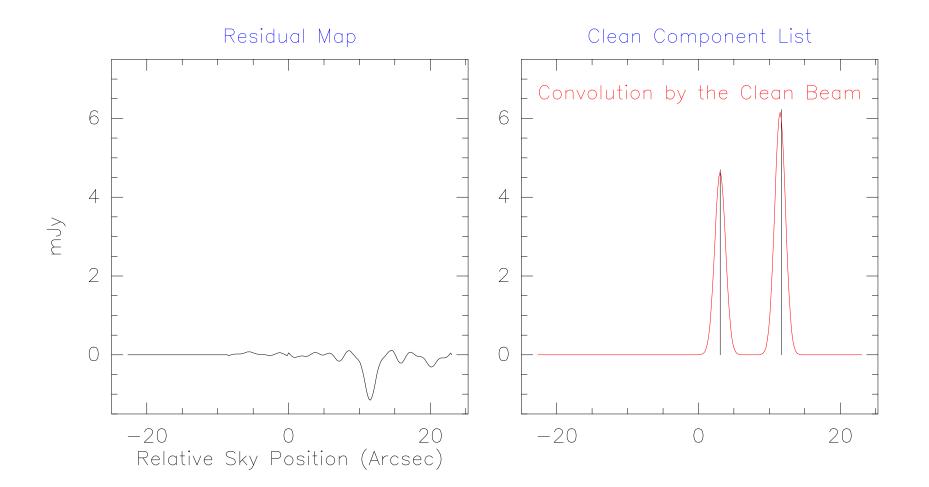


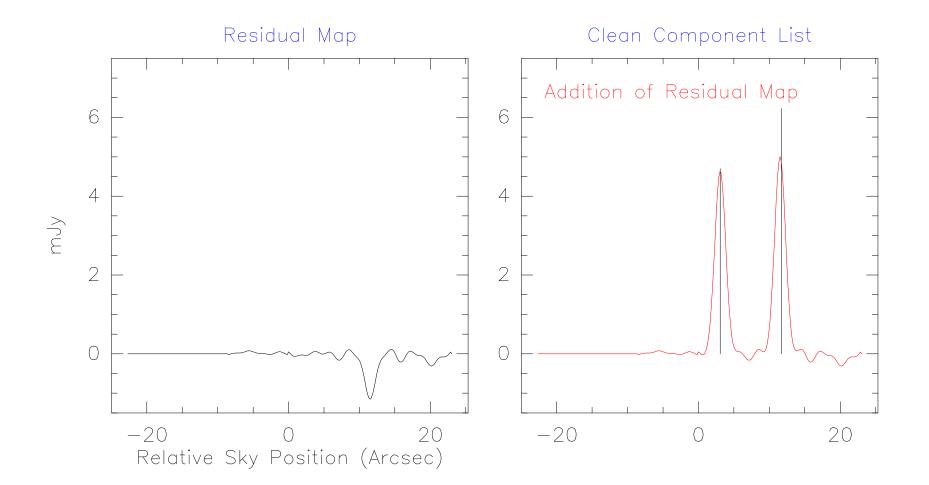


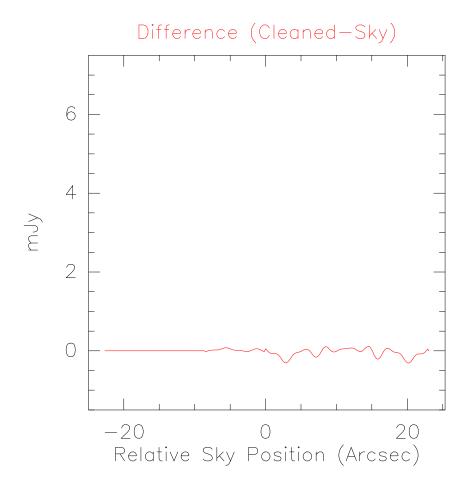










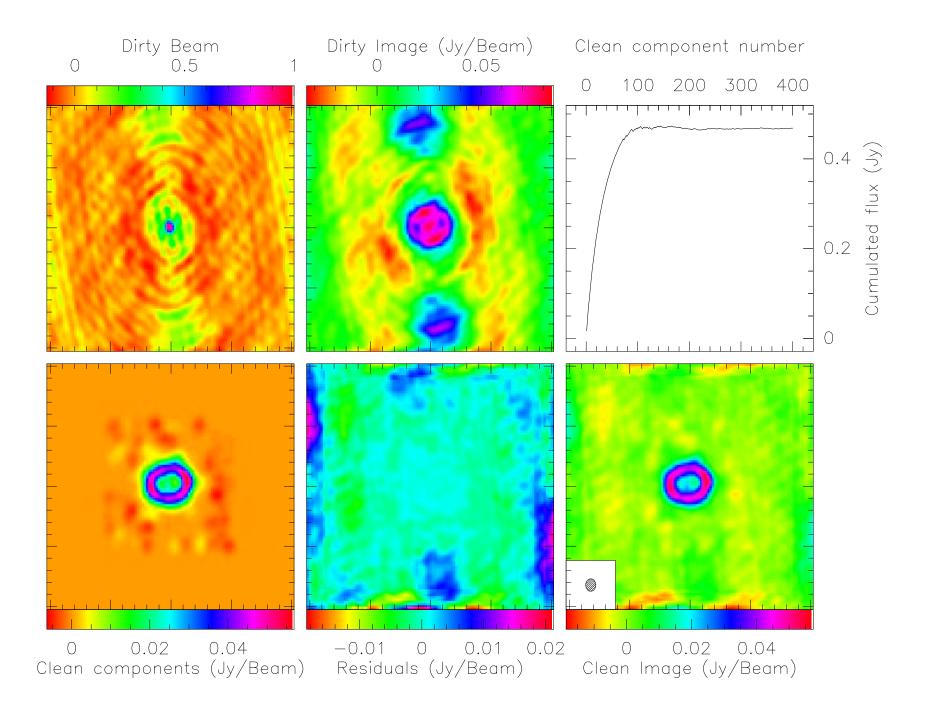


Deconvolution:

IV. Little secrets of the Basic CLEAN algorithm

- Stopping criterions:
 - Total number of Clean components;
 - $|I_{max}| <$ fraction of noise (when noise limited);
 - $|I_{max}| <$ fraction of dirty map max (when dynamic limited).
- Clean beam:
 - In general, Gaussian;
 - Size should match the synthesized beam size (else flux density estimates will be incorrect): sometimes difficult;
- Others:
 - Good results when $\gamma \sim 0.1 0.3$ (Loop gain);
 - Needs negative clean components;
 - Only the inner quarter of the dirty image is correctly cleaned;
 - Too deep Cleaning \Rightarrow Divergence.

Deconvolution: V A True Example



Conclusion

Fourier Transform and Deconvolution: The two key issues in imaging.

Stage	Implementation
Calibrated Visibilities	UV_STAT
↓ Fourier Transform	UV_MAP
Dirty beam & image	
\Downarrow Deconvolution	CLEAN
Clean beam & image	
↓ Image analysis	Your Job!
Physical information	
on your source	

There are tools to help you in the image analysis: "go bit", "go noise", "go view", "go moment"... (cf. Lecture by F. Gueth).

Mathematical Properties of Fourier Transform

1 Fourier Transform of a product of two functions= convolution of the Fourier Transform of the functions:

If
$$(F_1 \rightleftharpoons^{\mathsf{FT}} \tilde{F_1} \text{ and } F_2 \rightleftharpoons^{\mathsf{FT}} \tilde{F_2})$$
, then $F_1.F_2 \rightleftharpoons^{\mathsf{FT}} \tilde{F_1} * \tilde{F_2}$.

- 2 Sampling size $\stackrel{\mathsf{FT}}{\rightleftharpoons}$ Image size.
- 3 Bandwidth size $\stackrel{\mathsf{FT}}{\rightleftharpoons}$ Pixel size.
- 4 Finite support $\stackrel{\mathsf{FT}}{\rightleftharpoons}$ Infinite support.

Photographic Credits

- R. N. Bracewell, "The Fourier Transform and its Applications".
- J. D. Kraus, "Radio Astronomy".