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Scientific Analysis of a mm Interferometer Output

mm interferometer output:

Calibrated visibilities in the uv plane (' the Fourier plane).

2 possibilities:

• uv plane analysis (cf. Lecture by S. Muller):

Always better . . . when possible!

(in practice for “simple” sources as point sources or disks)

• Image plane analysis:

⇒ Mathematical transforms to go from uv to image plane!

Goal: Understand effects of the imaging process on

• The resolution;

• The field of view (single pointing or mosaicing, cf. Lecture by

F. Gueth, tomorrow);

• The reliability of the image (cf. this lecture and next one);

• The noise level and repartition (cf. lecture by S.Guilloteau);



From Calibrated Visibilities to Images:
I. Comparison Visibilities/Source Fourier Transform

Vij(bij) = 2D FT
{
Bprimary.Isource

}
(bij) +N

• Primary Beam

⇒ Distorted source information.

• Noise ⇒ Sensitivity problems.

• Irregular, limited sampling

⇒ incomplete source information:

– Support limited at:

∗ High spatial frequency

⇒ limited resolution;

∗ Low spatial frequency ⇒ prob-

lem of wide field imaging;

– Inside the support, incomplete

(i.e. Nyquist’s criterion not re-

spected) sampling ⇒ lost of in-

formation.



From Calibrated Visibilities to Images:

II. Effect of Irregular, Limited Sampling

Definitions:

• V = 2D FT
{
Bprimary.Isource

}
;

• Irregular, limited sampling function:

– S(u, v) = 1 at (u, v) points where visibilities are measured;

– S(u, v) = 0 elsewhere;

• Bdirty = 2D FT−1 {S};

• Imeas = 2D FT−1 {S.V }.

Fourier Transform Property #1:

Imeas = Bdirty ∗
{
Bprimary.Isource

}
.

Bdirty: Point Spread Function (PSF) of the interferometer

(i.e. if the source is punctual, then Imeas = Itot.Bdirty).



From Calibrated Visibilities to Images:
III. Why Deconvolving?

• Difficult to do science

on dirty image.

• Deconvolution ⇒ a clean

image compatible with the

sky intensity distribution.



From Calibrated Visibilities to Images:

IV. Summary

Fourier Transform and Deconvolution:

The two key issues in imaging.

Stage Implementation

Calibrated Visibilities UV STAT

⇓ Fourier Transform UV MAP

Dirty beam & image

⇓ Deconvolution CLEAN

Clean beam & image

⇓ Image analysis Your Job!

Physical information

on your source



Direct vs. Fast Fourier Transform

Direct FT:

• Advantage: Direct use of the irregular sampling;

• Inconvenient: Slow.

Fast FT:

• Inconvenient: Needs a regular sampling ⇒ Gridding;

• Advantage: Quick for images of size 2M × 2N .

⇒ In practice, everybody use FFT.



From Calibrated Visibilities to Images: Summary

Fourier Transform and Deconvolution:

The two key issues in imaging.

Stage Implementation

Calibrated Visibilities UV STAT

⇓ Gridding & FFT UV MAP

Dirty beam & image

⇓ Deconvolution CLEAN

Clean beam & image

⇓ Image analysis Your Job!

Physical information

on your source



Gridding: I. Interpolation Scheme

Convolution because:

• Visibilities = noisy samples of a

smooth function.

⇒ Some smoothing is desirable.

• Nearby visibilities are not

independent.

– V = 2D FT
{
Bprimary.Isource

}
= B̃primary ∗ Ĩsource;

– FWHM(convolution kernel)

< FWHM(B̃primary)

⇒ No real information lost.



Gridding: II. Convolution Equation is Kept Through Gridding

Demonstration:

• Igrid
meas

2D FT
⇀↽ G ∗ (S.V ) ⇔ Igrid

meas = G̃. ˜(S.V );

• Bgrid
dirty

2D FT
⇀↽ G ∗ S ⇔ Bgrid

dirty = G̃.S̃;

⇒ Imeas = Bdirty ∗
{
Bprimary.Isource

}
with Imeas = Igrid

meas/G̃

and Bdirty = Bgrid
dirty/G̃.

Remark: Gridding may be hidden in equations but it is still there.

⇒ Artifacts due to gridding! (cf. next transparencies)



Gridding:

III. Effect of a Regular Sampling (Periodic Replication)

uv Plane Image Plane

Bprimary.Isource

Regular Sampling function

Result for a fine sampling

Result for critical sampling

(Nyquist’s criterion)

Result for a coarse sampling



Gridding: III. Effect of a Regular Sampling (Aliasing)

Aliasing = Folding of intensity outside the image size into the image.

⇒ Image size must be large enough.



Gridding: IV. Pixel and Image Sizes

Pixel size: Between 1/3 and 1/4 of the synthesized beam size

(i.e. more than the Nyquist’s criterion in image plane to ease

deconvolution).

Image size:

• = uv plane sampling rate (FT property # 2);

• Natural resolution in the uv plane: B̃primary size;

⇒ At least twice the Bprimary size (i.e. Nyquist’s criterion in uv

plane).



Gridding: V. Bright Sources in Bprimary Sidelobes

Bright Sources in Bprimary sidelobes

outside image size will be aliased into image.

⇒ Spurious source in your image!

Solution: Increase the image size.

(Be careful: only when needed for efficiency reasons!)



Gridding: VI. Noise Distribution



Gridding: VII. Choice of Gridding function

Gridding function must:

• Fall off quickly in image plane (to avoid noise aliasing);

• Fall off quickly in uv plane (to avoid too much smoothing).

⇒ Define a mathematical class of functions: Spheroidal functions.

GILDAS implementation: In UV MAP

• Spheroidal functions = Default gridding function;

• Tabulated values are used for speed reasons.



Dirty Beam Shape and Image Quality

Bdirty = 2D FT−1 {S}.

Importance of the Dirty Beam Shape:

• Deconvolving a dirty image is a delicate stage;

• The closest to a Gaussian Bdirty is, the easier the

deconvolution;

• Extreme case:

Bdirty = Gaussian ⇒ No deconvolution needed at all!

Ways to improve (at least change) Bdirty shape:

• Increase the number of antenna (costly).

• Change the antenna layout (technically difficult).

• Weight the irregular, limited sampling function S

(the only thing you can do in practice).



Dirty Beam Shape and Number of Antenna:

2 Antenna



Dirty Beam Shape and Number of Antenna:

3 Antenna



Dirty Beam Shape and Number of Antenna:

4 Antenna



Dirty Beam Shape and Number of Antenna:

5 Antenna



Dirty Beam Shape and Number of Antenna:

6 Antenna



Dirty Beam Shape and Super Synthesis



Dirty Beam Shape and Super Synthesis



Dirty Beam Shape and Super Synthesis



Dirty Beam Shape and Super Synthesis



Dirty Beam Shape and Super Synthesis



Dirty Beam Shape and Super Synthesis



Dirty Beam Shape and Super Synthesis



Dirty Beam Shape and Super Synthesis



Dirty Beam Shape and Weighting

Natural Weighting: Default definition of the irregular sampling

function at uv table creation.

• S(u, v) = 1/σ2 at (u, v) points where visibilities are measured;

• S(u, v) = 0 elsewhere;

with σ2(u, v) the noise variance of the visibility.

Introduction of a weighting function W (u, v):

• Bdirty = 2D FT−1 {W.S};

• Robust weighting: W enhance the large baseline contribution;

• Tapering: W enhance the small baseline contribution.



Robust Weighting: I. Definition

Definitions:

• Natural =
∑

(u,v)∈Cell

S;

•
∑

(u,v)∈Cell

W.S =
{

Constant if (Natural ≥ Threshold);

Natural else;

• In practice, the cell size is 0.5D.



Robust Weighting: II. Examples



Robust Weighting: II. Examples



Robust Weighting: II. Examples



Robust Weighting: II. Examples



Robust Weighting: III. Definition and Properties

Definitions:

• Natural =
∑

(u,v)∈Cell

S;

•
∑

(u,v)∈Cell

W.S =
{

Constant if (Natural ≤ Threshold);

Natural else;

• In practice, the cell size is 0.5D.

Properties:

• Increase the resolution;

• Lower the sidelobes;

• Degrade point source sensitivity.

Unfortunately: GILDAS implementation gives it the name of

“uniform” weighting!



Tapering: I Definition

Definition:

• Apodization of the uv coverage in general by a Gaussian;

• W = exp

−
(
u2 + v2

)
t2

 where t = tapering distance.

⇒ Convolution (i.e. smoothing) of the image by a Gaussian.



Tapering: II. Examples



Tapering: II. Examples



Tapering: II. Examples



Tapering: III. Definition and Properties

Definition:

• Apodization of the uv coverage in general by a Gaussian;

• W = exp

−
(
u2 + v2

)
t2

 where t = tapering distance.

⇒ Convolution (i.e. smoothing) of the image by a Gaussian.

Properties:

• Decrease the resolution;

• Degrade point source sensitivity;

• Increase sensitivity to “medium size” structures.

Inconvenient: Throw out some information.

⇒ To increase sensitivity to extended sources, use compact ar-

rays not tapering.



Weighting and Tapering: Summary

Robust Natural Tapering
Resolution High Medium Low

Side Lobes ↘ Medium ?
Point Source Sensitivity ↘ Maximum ↘
Extended Source Sensitivity ↘ Medium ↗

Non-circular tapering + Robust weighting:

Sometimes ⇒ Better (i.e. smaller and more circular) beams.

GILDAS implementation:

“UV STAT WEIGHT” or “UV STAT TAPER”

Resolution, point/extended source sensitivity

as a function of

robust threshold or tapering distance.



From Calibrated Visibilities to Images: Summary

Fourier Transform and Deconvolution:

The two key issues in imaging.

Stage Implementation

Calibrated Visibilities UV STAT

⇓ Fourier Transform UV MAP

Dirty beam & image

⇓ Deconvolution CLEAN

Clean beam & image

⇓ Image analysis Your Job!

Physical information

on your source



Deconvolution: I. Philosophy

Imeas = Bdirty ∗
{
Bprimary.Isource

}
+N.

Information lost:

• Irregular, incomplete sampling ⇒ convolution by Bdirty;

• Noise ⇒ Low signal structures undetected.

⇒ Impossible to recover the intrinsic source structure!

Deconvolution goal: Finding an intensity distribution compatible
with the intrinsic source one.

Deconvolution needs:

• Some a priori assumptions about the source intensity
distribution;

• As much as possible knowledge of

– Bdirty (OK in radioastronomy);

– Noise properties.

The best solution: A Gaussian Bdirty ⇒ No deconvolution needed!



Deconvolution: II. The Basic CLEAN Algorithm

a priori assumption: Source = Collection of point sources.

Idea: “Matching pursuit”.

Algorithm:

1 Initialize

– the residual map to the dirty map;

– the Clean component list to an empty (NULL) value;

2 Identify pixel of |Imax| in residual map as a point source;

3 Add γ.Imax to clean component list;

4 Subtract γ.Imax from residual map;

5 Go back to point 2 while stopping criterion is not matched;

6 Convolution by Clean beam (a posteriori regularization);

7 Addition of residual map to permit:

– Correction when cleaning is too superficial;

– Noise estimation.



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:
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Deconvolution:
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Deconvolution:
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Deconvolution:
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Deconvolution:
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Deconvolution:
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Deconvolution:
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Deconvolution:
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Deconvolution:
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Deconvolution:
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Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:

III. Illustration of the Basic Clean Algorithm



Deconvolution:
IV. Little secrets of the Basic CLEAN algorithm

• Stopping criterions:

– Total number of Clean components;

– |Imax| < fraction of noise (when noise limited);

– |Imax| < fraction of dirty map max (when dynamic limited).

• Clean beam:

– In general, Gaussian;

– Size should match the synthesized beam size (else flux density
estimates will be incorrect): sometimes difficult;

• Others:

– Good results when γ ∼ 0.1− 0.3 (Loop gain);

– Needs negative clean components;

– Only the inner quarter of the dirty image is correctly cleaned;

– Too deep Cleaning ⇒ Divergence.



Deconvolution: V A True Example



Conclusion

Fourier Transform and Deconvolution:

The two key issues in imaging.

Stage Implementation

Calibrated Visibilities UV STAT

⇓ Fourier Transform UV MAP

Dirty beam & image

⇓ Deconvolution CLEAN

Clean beam & image

⇓ Image analysis Your Job!

Physical information

on your source

There are tools to help you in the image analysis:

“go bit”, “go noise”, “go view”, “go moment”. . .

(cf. Lecture by F. Gueth).



Mathematical Properties of Fourier Transform

1 Fourier Transform of a product of two functions

= convolution of the Fourier Transform of the functions:

If (F1
FT
⇀↽ F̃1andF2

FT
⇀↽ F̃2), then F1.F2

FT
⇀↽ F̃1 ∗ F̃2.

2 Sampling size
FT
⇀↽ Image size.

3 Bandwidth size
FT
⇀↽ Pixel size.

4 Finite support
FT
⇀↽ Infinite support.
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