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Assuming identical antennas, we have shown in previous lectures that an interferometer measures the
visibility function

V(u,v) z//B(:U,y)I(:c,y) e 2imuatvy) do dy (15.1)

over an ensemble of points (u;,v;),4 = 1,n, where B(z, y) is the power pattern of the antennas and I(x,y)
the sky brightness distribution.

The imaging process consists in determining as best as possible the sky brightness I(z,y). Since Eq.15.1
is a convolution, the imaging process will involve deconvolution techniques.

Let S(u,v) be the sampling (or spectral sensitivity) function

S(u,v) #0 <= 3Fi € 1,n (u;,v;) = (u,v)
S(u,v) =0 < Vi € 1,n (u;,v;) # (u,v) (15.2)

The spectral sensitivity function S contains information on the relative weights of each visibility, usu-
ally derived from noise predicted from the system temperature, antenna efficiency, integration time and
bandwidth.

Let us define

Iy(z,y) = // S, v) W (u,v) V (u,v) 2 @+ gy, dy (15.3)

where W (u, v) is an arbitrary weighting function. Since the Fourier Transform of a product of two functions
is the convolution of the Fourier Transforms of the functions, I,,(z,y) can be identified with

Ly(z,y) = (B(z,y)I(z,y)) **(Du(z,y)) (15.4)
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where
Dy(z,y) = // S(u,v) W (u, v) €2 @2 +vw) gy dy = SW (15.5)

D, (z,y) is called the dirty beam, and is directly dependent on the choice of the weighting function W, as
well as on the spectral sensitivity function S. I, (z,y) is usually called the dirty image.

Fourier Transform, which allows to directly derive I,, from the measured visibilities V' and spectral
sensitivity function S, and Deconvolution, which allows to derive the sky brightness I from I, are thus
two key issues in imaging (see Eq.15.4).

15.1 Fourier Transform

The first step in imaging is to evaluate the dirty image, using Fourier Transform. Several techniques are
available.

15.1.1 Direct Fourier Transform

The simplest approach would be to directly compute sin and cos functions in Eq.15.4 for all combinations
of visibilities and pixels in the image. This is straightforward, but slow. For typical data set from the
VLA, which contain up to 10° visibilities per hour and usually require large images (1024 x 1024 pixels),
the computation time can be prohibitive. On the other hand, the IRAM Plateau de Bure interferometer
produces about 10* visibilities per synthesis, and only require small images (128 x 128). The Direct Fourier
Transform approach could actually be efficient on vector computers for spectral line data from Plateau de
Bure interferometer, because the sin and cos functions needs to be evaluated only once for all channels.
Moreover, the method is well suited to real-time display, since the dirty image can be easily updated for
each new visibility.

15.1.2 Fast Fourier Transform

In practice, everybody uses the Fast Fourier Transform because of its definite speed advantage. The
drawback of the methods is the need to regrid the visibilities (which are measured at arbitrary points in
the (u,v) plane) on a regular grid to be able to perform a 2-D FFT. This gridding process will introduce
some distortion in the dirty image and dirty beams, which should be corrected afterwards. Moreover, the
gridded visibilities are sampled on a finite ensemble. As discussed in more details below, this sampling
introduces aliasing of the dirty image (and beam) in the map plane.

15.1.3 Gridding Process

The goal of gridding is to resample the visibilities on a regular grid for subsequent use of the FFT. At
each grid point, gridding involves some sort of interpolation from the values of the nearest visibilities.
The visibilities being affected by noise, the interpolating function needs not fit exactly the original data
points. Although any interpolation scheme could a priori be used, such as smoothing spline functions, it
is customary to use a convolution technique to perform the gridding. e

Using a convolution is justified by several arguments. First, from Eq.15.1, V = BI = B xxI. Hence
V is already a convolution of a (nearly Gaussian) function B with the Fourier Transform of I. Nearby
visibilities are not independent. Second, as mentioned above, exact interpolation is not desirable, since
original data points are noisy samples of a smooth function. Third, if the width of the convolution
kernel used in gridding is small compared to B, the convolution added in the gridding process will not
significantly degrade the information. Last, but not least, it is actually possible to correct for the effects
of the convolution gridding.

To demonstrate that, let G be the gridding convolution kernel. Eq.15.3 becomes

IN = G+x(Sx W x V) (15.6)
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We thus have for the image I the following relations

19 =G x (SW *xV) = G x I, (15.7)
and for the dirty beams

DY 2 Gxx(Sx W) DY =G x SW (15.8)
from which we derive the relation

19 DY
X = ¥ 4x(BI 15.9
&= @ (BI) (15.9)

Thus the dirty image and dirty beams are obtained by dividing the Fourier Transform of the gridded
data by the Fourier Transform of the gridding function.

15.2 Sampling & Aliasing

Sampling on a regular grid is equivalent to multiplying by a series of periodically spaced delta functions,
i.e. the so-called shah function III:

() = Y b - kAw (15.10)

k=—o0

The Fourier Transform of the shah function above is the shah function

1 oo
M(zAu) = 5= Y, 6z - Aﬂu) (15.11)

Hence, sampling the visibilities V' results in convolving its Fourier Transform 1% by a periodic shah
function. This convolution reproduces in a periodic way the Fourier Transform of the visibilities V.

If the Fourier Transform of the visibilities V, i.e. the brightness distribution BI, has finite support
AX, the replication poses no problem provided the support is smaller than the periodicity of the shah

function, i.e.
(Au)~! > (AX) Au < (AX) ! (15.12)

If not, data outside (Au)~! are aliased in the imaged area (Au)~1.

In aperture synthesis, finite support is ensured to first order by the finite width of the antenna primary
beam B. However, strong sources in the antenna sidelobes may be aliased if the imaged area is too small.
Moreover, the noise does not have finite support. White noise in the uv plane would result in white noise
in the map plane. In practice, the noise in the uv plane is not completely white. However, it is support
limited (since only a finite region of the wv plane is sampled in any experiment). Accordingly, its Fourier
Transform in the map plane is not support limited. Noise aliasing thus occurs, and produces an increased
noise level at the map edges.

15.3 Convolution and Aliasing

The combination of Gridding and Sampling produces the uv data set

Vp = ﬁx (e 1) X (G #4(S X W x V))(u,0) (15.13)
= III x (G *x(S x W x V))/(Aulv) (15.14)

which analogous with Eq.15.6
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The Fourier Transform of this uv data set is

o~

Vin

Iz Au, yAv) xx(G x (SW xxV)) (15.15)
IIT (G x (SW xx(BI))) (15.16)

Vi is thus the sky brightness multiplied by the primary beam (BI), convolved by the the dirty beam SW ,
then multiplied by the Fourier transform of the gridding function G and periodically replicated (by the
convolution with the Shah function).

Accordingly, aliasing of G in the map domain will thus occur. Note at this stage that, providing aliasing
of G remains negligible, an exact convolution equation is preserved

‘2’ = SW =xBI (15.17)

The gridding function will thus have to be selected to minimize aliasing of G. This criterion will depend
on the image fidelity required. Obviously, if the data is very noisy, aliasing of the G can be completely
negligible.

Furthermore, the weighting function W is usually smooth, while the gridding function G is a relatively
sharp function (since it ensures the re-gridding by convolution from nearby data points). Thus, to first
order G xxW = W, and we could rewrite Eq.15.14 as

Vi =IIxW x (G*x(S x V))/(AulAv) (15.18)

Hence, the weighting can be performed after the gridding. The choice of weighting before or after gridding
is essentially based on computational speed or algorithmic simplicity.

Let us focus on the choice of the gridding function. The gridding function will be selected according
to the following principles:

1. small support, typically one or two cells wide (Au).

2. small aliasing.

3. fast computation.

Points 1 and 2 are contradictory, since a small support for G implies a large extent of G. Some compromise
is required. For simplicity, gridding functions are usually selected among those with separable variables:

G(u,v) = G1(u)G1(v)

although this could break the rotation invariance.
The simplest gridding function is the Rectangular function

Gu) = Aiun(Aiu) (15.19)
G(z) = w (15.20)

where II is the unit rectangle function. Obviously, aliasing will be important, since the sinc function falls
off very slowly.

A better choice could be the Gaussian function
1 2
= —(u/aiu) 15.21
G(u) aAu/T € ( )

G(z) = e (maeaw? (15.22)

By proper selection of a (not too small, not too large), a compromise between computation speed (better
for small «) and aliasing (better for large a) can be found. a = 24/In(4) ~ 0.750 is a standard choice.

N

However, a Gaussian still has fairly significant wings. G should ideally be a rectangular function (1
inside the map, 0 outside). G would be a sinc function, but this falls off too slowly, and would require a
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lot of computations in the gridding. Moreover, the (unavoidable) truncation of G would destroy the sharp
edges of G anyhow. Hence the idea to use an apodized version of the sinc function, the Gaussian-Sinc
function

Gu) = 51n7ru/1iaAu)e_(u/(ﬁAu))z (15.23)
o
G(z) = I(azAu) * (vVaBAue™ (TFrdw)?) (15.24)

It provides good performance for a = 1.55 and g8 = 2.52.

The empirical approaches mentioned above do not guarantee any optimal choice of the gridding func-
tion. A completely different approach is based on the desired properties of the gridding function. We
actually want G to fall off as quickly as possible, but G to be support limited. Mathematically, this defines
a class of functions known as Spheroidal functions. Spheroidal functions are solutions of differential
equations, and cannot be expressed analytically. In practice, this is not a severe limitation since numerical
representations can be obtained by tabulating the gridding function values. Given the limited numerical
accuracy of the computations, the tabulation does not require a prohibitively fine sampling of the gridding
function, and is quite practical both in term of memory usage and computation speed. Tabulated values
are used in the task UV_MAP.

Note that the finite accuracy of the computation may ultimately limit the image dynamic range.

15.4 Error Analysis

We thus succeeded to preserve a convolution equation, with the slight restrictions due to the aliasing and
gridding correction. Let us explore now what errors or systematic effects may appear in the image plane.
First, consider the noise. Aliasing increases the noise level at the map edges (by noise aliasing and then
by the gridding correction since this amounts to divide by the Fourier Transform of the gridding function,
which is unity at the map center, but smaller at the map edges). For example, the noise increases by a
factor (7/2)? at map corners for the Gaussian-Sinc function. Near the map center, the effect is negligible.
Note that for a given field of view, the noise increase can be arbitrarily limited by making a sufficiently
large image, but this has a high computational price.
Concerning errors, it is important to separate two main classes of errors.
Additive errors
The Fourier transform being linear, additive errors result in artificial structure added to the true map, e.g.
- A single spurious visibility will produce fringes in the map
- An additive real term (correlator offset), will produce a point source at the phase tracking center.
Multiplicative errors
A multiplicative term on the visibility distorts the image, since

V(u,v) x e(u,v) ¢ V(z,y) xx&(z,y)

i.e. the map is convolved by the Fourier transform of the error. Calibration errors (in phase or amplitude)
are of this type. Among these, the seeing should not be neglected.
Phase calibration errors result in antisymmetric patterns.

15.5 Weighing and Tapering

There is still a free parameter in the image construction process: the weighting function. At wv table
creation, the sampling function is defined as

1
o2 (u,v)

S(u,v) = (15.25)
where the noise o is computed from system temperature, bandwidth, integration time, and system efficiency
(including quantization and decorrelation).

jITsys
NV 2Avtin,

o(u,v) = (15.26)
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Jr being the antenna temperature to flux density conversion factor:
2k
A

The weights W (u,v) can be freely chosen. The selecting of weights is usually decomposed in two
slightly different processes, called Weighting and Tapering.

‘Weighting deals with the local variations of weights for each grid cell after the gridding process. Since
the original uv coverage is an ensemble of ellipses, the gridding may leave a weight distribution with very
large dispersion. Weighting can be applied to uniformize this distribution.

On the other hand, Tapering consists in apodizing the uv coverage by T'(u,v) = exp(—(u? + v?)/t?))
where ¢ is a tapering distance. This corresponds to smoothing the data in the map plane (by convolution
with a gaussian).

The simplest possibility, called Natural Weighting, without taper is to keep the original spectral
sensitivity function by setting W (u,v) = 1. This can be demonstrated to maximize sensitivity to point
sources (i.e. sources smaller than the synthesized beam). Proper design (and use) of the array can ensure
that the resulting synthesized beam is appropriate, in terms of size (angular resolution matched to the
scientific goal) and shape (lowest possible sidelobes).

If the sources of interest are somewhat extended, tapering can be used to increase brightness sensi-
tivity. Tapering may also have the advantage of lowering the sidelobes. This is usually true for limited
tapering, which reduces the effect of the discontinuity at the outer edge of the uv plane, but is not the case
for strong tapering, where the result becomes critically dependent on the actual sampling of the inner part
of the uv plane. However, tapering is always throwing out some information, namely the long baselines
part of the data set. Hence, it should be used either with moderate tapers, or as a complementary view
on a data set. To increase brightness sensitivity, one should use preferentially compact arrays rather than
tapering.

Uniform Weighting consists in selecting the weights W (u,v) so that the sum of weights > W x S
over a uv cell is a constant function (or zero if no uv data exists in that cell). The size (radius) of the uv
cell is an arbitrary parameter. It can be the cell size resulting from the gridding process, i.e. the inverse
of the field of view, but any other choice is possible. Using half of the dish diameter is well justified, since
the visibilities are convolution of Fourier transform of the sky brightness by the Fourier transform of the
primary beam. Uniform Weighting gives more weight to long baselines than natural weighting (because
you spend less time per uv cell on long baselines than on short baselines for earth synthesis). Uniform
Weighting produces smaller beam. Because it fills the uv plane more regularly, Uniform weighting could
be thought also to produce lower sidelobes. However, because of the discontinuity of the weights at the
edge of the sampled portion of the uwv plane, the inner sidelobes tend to be increased, unless some tapering
is combined with Uniform weighting.

Robust Weighting is a variant of uniform weighting which avoids to give too much weight to a uwv
cell with low natural weight. There are several ways to implement such a scheme. Roughly speaking, if
the sum of natural weights in a cell is less than a threshold, the weighting is unchanged, if it is more, the
weight is set to this threshold. Let S, be the natural weight of a cell, and S; a threshold for such weight.
Robust weighting could be implemented by selecting the weight W as

Sp<Si=W=1

Jr (15.27)

Sp>S=W-= St/Sn (1528)
or a more continuous formula like
1
W=—— (15.29)

2/S;
V1+82/8

Robust weighting combines the advantages of Natural and Uniform weighting, by increasing the res-
olution and lowering the sidelobes without degrading too much the sensitivity. By adjusting the threshold,
it approaches either case (large threshold +— Natural, small threshold «— Uniform).

Weighting and Tapering reduce point source sensitivity by

VO TW? /(Y TW) (15.30)
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15.6 The GILDAS implementation

We have now introduced the basic parameters of the imaging process: gridding, weighting and tapering.
The main imaging task in the GILDAS software is UV_MAP. Before using UV_MAP, it is also recommended to
use the associated task UV_STAT which evaluates the beam sizes, point source and brightness sensitivity
as function of taper or robust weighting parameter.

Although the choice of configurations for the Plateau de Bure interferometer has been performed in
order to optimize the uv coverage for most observing conditions, robust weighting can often offer a better
compromise, unless signal to noise is insufficient. Task UV_STAT also suggests appropriate pixel sizes for
UV_MAP

The imaging task UV_MAP is controlled by the following parameters:

e MAP_SIZE
The number of pixels in each direction. This should be powers of 2.

e MAP_CELL
The pixel size, in arcsecond, in each direction. It should respect proper sampling compared to the
synthesized beam width. In practice, 3 — 4 pixels per beam width are required. Task UV_STAT can
compute the optimum value for this parameter. Note that the imaged area is MAP_SIZE x MAP_CELL

e MCOL
For spectral line data, the first and last channel to be imaged. (0,0) means all data.

e WCOL
The channel from which the natural weights S are taken. UV_MAP produces only one beam for all
channels (by default, there is an alternate option for experts). WCOL = 0 is equivalent to WCOL =
(MCOL[1]+MCOL[2]) /2.

e WEIGHT_MODE
UN for Uniform or NA for Natural weighting. UNiform weighting is actually a Robust weighting in
UV_MAP.

e UV_CELL
When UNiform weighting is used, UV_CELL[1] is the UV cell diameter (in meters), and UV_CELL[2] is
the threshold for robust weighting: 1 corresponds to the mean natural weight of all cells. UV_CELL[1]
should normally be 7.5 m for Plateau de Bure data.

e CONVOLUTION
This is the convolution type for gridding. Choices are offered for test purposes, but CONVOLUTION =
5 (Spheroidal) gives best results.

The other parameters are used to re-center the map (by phase shifting the uv data before imaging)
when needed. This is convenient for Mosaics. UV_MAP performs all the imaging steps presented before:
gridding, weighting, tapering, correction for gridding function, and computes the dirty beam and dirty
image.

Both UV_STAT and UV_MAP are implemented as commands in the MAPPING program, or as tasks avail-
able from the GRAPHIC program. Using one or the other is a matter of personal preference.

15.7 Deconvolution

The first imaging step presented before leads to a convolution equation whose solution is the convolution
product of the sky brightness distribution (apodized by the interferometer primary beam) by the dirty
beam.

To derive the astronomically meaningful result, i.e. ideally the sky brightness, a deconvolution is
required. Deconvolution is always a non linear process, and requires (in one way or another) to impose
some constraints on the solution, or in other words to add some information, to better select plausible
solutions. Such additional constraints can be explicit (e.g. positivity, or user specified finite support) or
qualitative.
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15.7.1 The CLEAN method

The standard deconvolution technique, CLEAN relies on such a qualitative constraint: it assumes that the
sky brightness is essentially a ensemble of point sources (the sky is dark, but full of stars). The algorithm
which derives from such an assumption is straightforward. It is a simple “matching pursuit”

1. Initialize a Residual map to the Dirty map
2. Initialize a Clean component list to zero.
3. Assume strongest feature in Residual map originates from a point source

4. Add a fraction vy (the Loop Gain) of this point source to the Clean component list, remove the same
fraction, convolved with the dirty beam, from the Residual map.

5. If the strongest feature in the Residual map is larger than some threshold, go back to point 3 (each
such step is called an iteration).

6. If the strongest feature is below threshold, of if the number of iterations N, is too large, go to
point 7.

7. Convolve the Clean component list by a properly chosen Clean Beam (this is called the restoration
step).

8. add to the result the Residual map to obtain the Clean Map.

The CLEAN algorithm as a number of free parameters. The loop gain controls the convergence of the
method. In theory, 0 < v < 2, but in practice one should use v ~ 0.1 — 0.2, depending on sidelobe levels,
source structure and dynamic range. While high values of v would in principle give faster convergence,
since the remaining flux is oc (1 — )Nitr if the object is made of a single point source, deviations from an
ideal convolution equation force to use significantly lower values in order to avoid non linear amplifications
of errors. Such deviations from the ideal convolution equation are unavoidable because of thermal noise,
and also of phase and amplitude errors which distort the dirty beam.

The threshold for convergence and number of iterations define to which accuracy the deconvolution
proceeds. It is common practice to CLEAN down to about the noise level or slightly below. However, in
case of strong sources, the residuals may be dominated by dynamic range limitations rather than by noise.

The clean beam used in the restoration step plays an important role. It is usually selected as a 2-D
Gaussian, which allows the convolution to be computed by a simple Fourier transform, although other
choices could be possible. The size of the clean beam is a key parameter. It should be selected to match
the (inner part of) the dirty beam, otherwise the flux density estimates may be incorrect. To understand
this problem, let us note first that the units of the dirty image are undefined. Simply, a 1 Jy isolated
point source appears with a peak value of 1 in the dirty map. This is no longer true (because of sidelobes)
if there is more than one point source, or a fortiori, an extended source. The unit of the clean image is
well defined: it is Jy per beam, which can easily be converted to brightness temperature from the effective
clean beam solid angle and the observing wavelength. Now, assume the source being observed is just
composed of 2 separate point sources of equal flux, and that the dirty beam is essentially a Gaussian. Let
us clean the dirty image in such a way that only 1 of the 2 point sources is actually included in the clean
component list. If we restore the clean image with a clean beam which is, e.g. twice smaller than the
original dirty beam, the final result will undoubtedly be odd. The second source would appear extended
and have a larger flux than the first one. No such problem appears if the clean beam matches the dirty
beam. Admittedly, the above example shows a problem which results from a combination of two effects: an
inappropriate choice for the clean beam, and an insufficient deconvolution. However, the second problem
always exists to some extent, because of noise in the original data set. Hence, to minimize errors, it is
important to match the clean and dirty beams.

Note that in some circumstances, there may be no proper choice. An example is a dirty beam with
narrow central peak on top of a broad “shoulder”. Small scale structures will be properly reconstructed,
but larger ones not.
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The last step in the CLEAN method plays a double role. On one hand, it protects against insufficient
deconvolution. Furthermore, since the residual image should be essentially noise if the deconvolution has
converged, it allows noise estimate on the cleaned image.

15.7.2 Interpretation of CLEAN

If CLEAN converged, the Clean component list is a plausible solution of the measurement equation (within
the noise), but it is not unique... Hence, because of convolution by the clean beam, the clean image is
not a solution. However, besides allowing a reasonable definition of the image unit in case of incomplete
convergence, there are two reasons to convolve by a clean beam. First, convolution by the clean beam
smears out artifacts due to extrapolation beyond the measured area of the uv plane. This is an a posteriori
regularization. Second, the clean components are forced to reside on the grid defined by the image. This
discrete representation has a number of limitations (e.g. necessity of negative clean components, limited
accuracy due to the finite size of the component list), which are reduced by convolution by the clean
beam, because the clean image then has finite resolution and can be properly represented on a discrete
grid provided the Nyquist sampling is preserved.

An important property of CLEAN is that (to first order) only the inner quarter of the dirty image
can be properly cleaned. This is easily understood when dirty beam and dirty images are computed on
the same grid size, since a source at one edge of the inner quarter requires knowledge of the dirty beam
sidelobes beyond the map size to be deconvolved from the opposite edge. However, this also remains true
if one computes the dirty beam on a twice larger grid than the dirty image: more than the inner quarter
can be deconvolved, but because of aliasing, the map edges can never be.

Finally, CLEAN offers a very simple way to impose further constraints on the class of solution which is
acceptable, by allowing definition of a support. This can be the standard (simple or multiple) Clean Box
available in many non interactive implementations, or a user defined mask in interactive implementations.
The search region can even be modified from iteration to iteration to help clean convergence. Such a
flexible support is available inside the MAPPING program. Note however that the Clean Box or support
should not be too limited: cleaning the noise is necessary too (as well as incorporating negative Clean
component).

15.7.3 The CLEAN variants

The original CLEAN method is due to [Hogbom 1974]. Several variants exist.

One of the most popular (CLARK) is due to [Clark 1980], and involves minor and major cycles. In
Minor cycles, an Hogbom CLEAN is performed, but with a truncated dirty beam, and only on the list
of brightest pixels. This search is fast, because of the dirty beam truncation and because of the limited
support. The Clean components identified during the minor cycles are removed at once by a FFT during a
Major cycle. Because removal is done by FFT, slightly more than the inner map quarter can be cleaned.

A second variant, called MX, due to [Cotton & Schwab 1984], is similar to the CLARK method, except
that the Clean components are removed from the uv table at the Major cycle stage (and thus the imaging
process is repeated at each major cycle). This avoid aliasing of sidelobes, allows to clean more than the
inner quarter, but is relatively slow because of the re-imaging at major cycles. Unless disk storage is a
real problem, a faster result of equal quality is obtained by standard Clean with a twice larger map.

The next variant, called SDI (from [Steer et al. 1984]), is again like the CLARK method, but in
Minor cycles, no deconvolution is performed, but only a selection of the strongest components down to
some threshold. Major cycles are identical to those of the CLARK method. Although the principle is
simple, the implementation is not easy because of normalization subtleties in the minor cycle stage. This
method is reasonably well suited for more extended structures, but could become unstable if the threshold
is inappropriate.

The Multi Resolution Clean (MRC, [Wakker & Schwartz 1988]) separates the problem in a smooth
map and a difference map. Since the measurement equation is linear, both maps can be Cleaned (with
Hogbom or Clark method) independently. This is faster than the standard CLEAN because the smooth
map can be compressed by pixel averaging, and only fine structure left in difference map, so fewer Clean
components are required.
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15.7.4 The GILDAS implementation

All the above variants are implemented in the GILDAS software. All of them, except MX, are implemented
both as tasks and as interactive commands in the MAPPING program. The later implementation allows
definition of a flexible support constraint. The default method is CLARK. SDI & MRC are usually not
necessary for Plateau de Bure, because of the small ratio between the field of view (primary beam) and
the resolution (< 30).

MX is implemented only as a task, and not recommended because of its relatively slow speed. Since
Plateau de Bure images are relatively small (128 x 128), it is easier to use a standard clean on larger
images.

The GILDAS software does not include any implementation of the Maximum Entropy Method, MEM.
The main reason is that MEM is not suited for limited uv coverage. But MEM also has some undesirable
properties, among which its attempt to give a unique solution, with no physical justification, the noise
dependent resolution, and the definition of a global criterium for adjustment to data. Furthermore, no
noise estimate is possible on MEM deconvolved images.



