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This lecture presents the principle of the heterodyne interferometer. An heterodyne interferometer is
composed of antennas (described in A.Greve lecture, Chapter 1), receivers (described in B.Lazareff
lecture, Chapter 5), a correlator (described in H.Wiesemeyer lecture, Chapter 6) and an awful lot of
cables and connections. This lecture only describes the basic principles; a more complete description,
including subtleties due to multiple frequency conversions and digital delay lines, is given in R.Lucas
lecture, Chapter 7.

2.1 Basic principle

The antenna produces a Voltage proportional to the linear superposition of the incident electric field
pattern. For a simple monochromatic case:

U(t) = Ecos(2nvt + D) (2.1)
In the receiver, a mixer superimposes the field generated by a 1local oscillator to the antenna output.

ULo(t) = Qcos(2rvrot + @10) (2.2)
The mixer is a non-linear element (such as a diode) whose output is

I(t) = ap + a1 (U(t) + Uro(t)) + ax(U(t) + Uro(t))* + as(U(t) + Uro(t))® + ... (2.3)
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16 CHAPTER 2. MILLIMETRE INTERFEROMETERS

The second order (quadratic) term of Eq.2.3 can be expressed as
I(t) =
+  agF*cos®(2mut + @)
+ 2a2:EQcos(2nvt + ®)cos(2nvrot + Pro)
+  ayQ*cos?(2nvrot + ®10)
+ .. (2.4)
Developping the product of the two cosine functions, we obtain
I(t) =
+ aEQcos(2n(v +vpo)t+ @ + ®10)
+ asEQcos(2n(v —vipo)t + @ — PLo)
+ . (2.5)
There are obviously other terms in 2vyp, 2v, 3vro £ v, etc...in the above equation, as well as terms at

very different frequencies like v, 3v, etc...
By inserting a filter at the output of the mixer, we can select only the term such that

viF — Av/2 < v —vio| < viF + Av/2 (2.6)

where vrp, the so-called Intermediate Frequency, is a frequency which is significantly different from than
the original signal frequency v (which is often called the Radio Frequency vgr).
Hence, after mixing and filtering, the output of the receiver is

I(t) x EQcos(2n(v—vro)t+ @ — @10) (2.7
or
I(t) o« EQcos(2r(vpo —v)t — @+ Pro) (2.8)

ie.
e changed in frequency: v -+ v —vpp or v = vpo — v
e proportional to the original electric field of the incident wave: < E
e with a phase relation with this electric field: ® > ® —®;0 or ® - &0 — P
e proportional to the local oscillator voltage: x @

The frequency change, usually towards a lower frequency, allows to select v;p such that amplifiers and
transport elements are easily available for further processing. The mixer described above accepts simulta-
neously frequencies which are (see Fig.2.1)

e higher than the local oscillator frequency.
This is called Upper Side Band (USB) reception

e lower than the local oscillator frequency.
This is called Lower Side Band (LSB) reception

and cannot a priori distinguish between them. This is called Double Side Band (DSB) reception. Some
receivers are actually insensitive to one of the frequency range, either because a filter has been placed at
the receiver input, or because their response is very strongly frequency dependent. Such receivers are
called Single Side Band (SSB) receivers.

An important property of the receiving system expressed by Eq.2.8 is that the sign of the phase is
changed for LSB conversion. This property can be easily retrieved recognizing that the Frequency v is
the time derivative of the Phase ®. Assume the phase varies linearly with time:

®(t) = 2mnt

1 dd
_ 1 2.9
" 2 dt (2.9)
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Figure 2.1: Relation between the IF, RF and local oscillator frequencies in an heterodyne system

In this case, the signal

I(t) o cos(2mvt + ®(t))
o  cos(2m(v + n)t) (2.10)

is just another monochromatic signal with slightly shifted frequency.

2.2 The Heterodyne Interferometer
Figure 2.2 is a schematic illustration of a 2-antenna heterodyne interferometer.
Let us forget the frequency conversion for some time, i.e. assume Vip = VRF...

The input (amplified) signals from 2 elements of the interferometer are processed by a correlator, which
is just a voltage multiplier followed by a time integrator. With one incident plane wave, the output r(t) is

r(t) =< v1 cos(2mu(t — 74(t)))va cos(2mvt) >= vivs cos(2mvTy(t)) (2.11)
where 7, is obviously the geometrical delay,
74(t) = (b.s)/c (2.12)

The derivation assumes that vi,vs and 7,(¢t) varies slowly compared to the averaging timescale, which
should nevertheless be long enough compared to frequency v.

As 7, varies slowly because of Earth rotation, r(¢) oscillates as a cosine function, and is thus called
the fringe pattern. As we had shown before that v; and vy were proportional to the electric field of the
incident wave, the correlator output (fringe pattern) is thus proportional to the power (intensity) of the
wave.

2.2.1 Source Size Effects

The signal power received from a sky area dfQ in direction s is (see Fig.2.3 for notations) A(s)I(s)dQddv
over bandwidth dv, where A(s) is the antenna power pattern (assumed identical for both elements, more
precisely A(s) = A;(s)A;(s) with A; the voltage pattern of antenna i, and I(s) is the sky brightness
distribution

dr = A(8)I(s)dQdv cos(2mvy) (2.13)

T dv A(8)I(8) cos(2mvb.s/c)df (2.14)

Sky

Two implicit assumptions have been made in deriving Eq.2.14. We assumed incident plane waves, which
implies that the source must be in the far field of the interferometer. We used a linear superposition of the
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Figure 2.2: Schematic Diagram of a two-element interferometer

Figure 2.3: Position vectors used for the expression of the interferometer response to an extended source,
schematically represented by the iso-contours of the sky brightness distribution. sg is the tracking center
of the interferometer, s the source vector, and d2 a solid angle around the source.
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incident waves, which implies that the source must be spatially incoherent. These assumptions are quite
valid for most astronomical sources, but may be violated under special circumstances. For example VLBI
observations of solar system objects would violate the first assumption, while observations of celestial
masers could violate the second one (if they were coherent as laboratory lasers, but observations have
revealed astronomical masers are in fact incoherent).

When the interferometer is tracking a source in direction s,, with s = s, + &

r = dvcos(2nvb.s,/c) A(e)I(o) cos(2mvb.o [c)d
Sky

— dvsin(2nvb.s,/c) A(o)I(o)sin(2rvb.o/c)d (2.15)
Sky

We define the Complex Visibility
V:W%@V:/ A(o)I(o)el~2imvba/e) g (2.16)
Sky
which resembles a Fourier Transform...

We thus have

r = dv(cos(2mvb.s,/c)|V|cos(Py) — sin(2nvb.s,/c)|V|sin(Py))
= dv|V|cos(2nvrg — Py) (2.17)
i.e. the correlator output is proportional to the amplitude of the visibility, and contains a phase relation

with the visibility.

2.2.2 Finite Bandwidth
Integrating over dv,
1 vo+Av/2
R= —/ |V | cos(2rnvrg — Dy )dv (2.18)
AV 0—AI//2
Using v =19 +n

Av/2
R = L / |V| COS(27TVOTG —dy + 27ng)dn (2'19)
Av Av/2

Av/2
= [/ |V| cos(2mvpTe — @y ) cos(2mnTy)dn

Av/2
Av/2
- V|sin(2rvgrg — Py ) sin(2mrnt, )dn (2.20)
Av/2 I

= [V]cos(@mvore - By) fsin(2mnm, )X,

= 3z, |VIcos@mrora v) [sin(2mn7y) A, 2,

1 . Av 1
+E|V| sin(2rvgTe — Py) [cos(2wm-g)]7A/V2/2 gy (2.21)

in(rA

= V] cos(@rryrg — By) SRTAVT) (2.22)

TAVT,

The fringe visibility is attenuated by a sin(z)/z envelope, called the bandwidth pattern, which falls off
rapidly. A 1% loss in visibility is obtained for |Av7,| ~ 0.078, or with Av = 500MHz and a baseline length
b = 100m, when the zenith angle 6 (defined in Fig.2.3) is 2 arcmin only. Thus, the ability to track a source
for a significant hour angle coverage requires proper compensation of the geometrical delay when a finite
bandwidth is desired.
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Figure 2.4: 2-element heterodyne interferometer with delay tracking after frequency conversion

2.3 Delay Tracking and Frequency Conversion

To compensate for the geometrical delay variations, delay lines with mirrors (as in optics...) would be
completely impractical given the required size of the mirrors. The compensating delay is thus performed
electronically after one (or several) frequency conversion(s), as illustrated in Fig.2.4. This can be imple-
mented either by switching cables with different lengths, or in a more sophisticated way, by using shift
memories after digital sampling of the signal in the correlator. Apart for a few details (see R.Lucas lecture,
Chapter 7), the principle remains identical.

In the case presented in Fig.2.4, for USB conversion, the phase changes of the input signals from
antenna 1 and 2 before reaching the correlator are respectively

¢, = 2nv7Tg = 27T(VLO +I/[F)TG (223)
q>2 = 271'1/7'_[ + q’LO (224)

Introducing AT = 7, — 77 as the delay tracking error, the correlator output is

r = Ao|V]cos(®1 — By — Py)
USB r = A,|V|cos2n(vrora + virAT) — @y — &10)
LSB r = AO|V| COS(QW(VL()TG — I/IFAT) — <I)V — (I)LO) (2.25)

When the two sidebands are superposed, we can just sum the USB and LSB outputs, which yields (after
usual re-arrangement of the cosine expressions)

DSB r = 2A,|V]cos(2n(vrorg — Py — @Lo)) cos(2nvrr AT) (2:26)

This shows that the amplitude is modulated by the delay tracking error. The tolerance can be exceedingly
small. For example, at Plateau de Bure, the IF frequency vir is 3 GHz, and a 1 % loss is obtained as
soon as the delay tracking error would be 7.5 picoseconds, i.e. a geometrical shift of 2.2 mm only. Due
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to Earth rotation, the geometrical delay changes by such an amount in 0.1 s for a 300 m baseline. Hence,
delay tracking would have to be done quite fast to avoid sensitivity losses. To avoid this problem, it is
common to use sideband separation. The delay tracking error should then be kept small compared to
the bandwidth of each spectral channel, A7¢ << 1/Awv, and the delay can then be adjusted much less
frequently.

2.4 Fringe Stopping and Complex Correlator

With the Earth rotation, the cosine term of Eq.2.22 modulates the correlator output quasi-sinusoidaly
with a naturael fringe rate of

I/Lod’rg/dt ~ QeartthLO/c (2.27)

which is of order of 10 Hz for b= 300 m baselines and vpo = 100 GHz. Note that the fringe rate only
depends on the effective angular resolution (bvpo/c ~ b/ is the angular resolution, 2" in the above
example).

The fringe rate is somewhat too high for simple digital sampling of the visibility. An exception is
VLBI (because there is no other choice), although the resolutions are < 1mas. The usual technique is
to modulate the phase of the local oscillator ®1o such that ®.0(t) = 2rvro7,(t) at any given time.
Then Eq.2.25 is reduced to

rr = A0|V|COS(:|:27FVIFAT — ‘iv) (2.28)

(with the + sign for USB conversion, and the — sign for LSB conversion), is a slowly varying output, which
would be constant for a point source at the reference position (or delay tracking center). This process
is called Fringe Stopping, since it stops the fringe pattern modulation. After fringe stopping, we can no
longer measure the amplitude |V| and the phase ®y separately, since r, is now a constant for a point
source. A modulation of the delay tracking could be used to separate |V| and ®y. Instead, it is more
convenient and effective to use a second correlator, with one signal phase shifted by 7 /2. Its output is

r; = AO|V|Sin(:|:27TV[FAT — q)v) (229)

With both correlators, we measure directly the real r, and imaginary r; parts of the complex visibility r.
The device is thus called a “complex” correlator.

Note: From Eq.2.28, a delay tracking error A7 appears as a phase slope as a function of frequency, with

<I>(1/1F) = :EZWV[FAT (2.30)

2.5 Fourier Transform and Related Approximations

The Complex Visibility is

V= |V|eiq>v — A(U)I(U)e(fﬁwub.a/c)dﬂ (231)
Sky

Let (u,v,w) be the coordinate of the baseline vector, in units of the observing wavelength v, in a frame of
the delay tracking vector sg, with w along s¢. (z,y, 2) are the coordinates of the source vector s in this
frame. Then

vb.sfe = wur+vy+wz
vb.sgfc = w
z = \1—a2—y?
and do = TW _ dedy (2.32)

z /1— 22 — 2
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Thus,
Hoo peo i 2_ 42 d.’L’dy
V(u, v, w) — / A(Z‘, y)[(.%’, y)e—Zur(u:c-i-vy-i-UJ(\/l—z —y2-1)) ﬁ (233)
—0o0 —0o0 — xrc — y

with I(z,y) = 0 when 22 + 9% > 1.

If (z,y) are sufficiently small, we can make the approximation

1
(V1-22—9y2-1Dw= 5(.7:2 + 9w ~0 (2.34)

and Eq.2.33 becomes

V(u,v) // Al (z, ) I(z, y)e 2im(ueten) g —im(*+y*)w gy gy, (2.35)

A(z,y)

V1—a? —y?

i.e. basically a 2-D Fourier Transform of AI, but with a phase error term 7(z? + y?)w. Hence, on limited
field of views, the relationship between the sky brightness (multiplied by the antenna power pattern) and
the visibility reduces to a simple 2-D Fourier transform.

There are other approximations related to field of view limitations. Let us quantify these approxima-
tions.

with  A'(z,y) (2.36)

e 2-D Fourier Transform
We can further neglect the phase error term in Eq.2.36, if the condition

Im(2? +y*)w| << 1 (2.37)
is fulfilled. Now, note that
bmax i

~

A 0.

where 6, is the synthesized beam width. Thus, if 6, is the field of view to be synthesized, the
maximum phase error, obtained at the field edges 6, /2, is

W < Wiax ™~ (2.38)

762

Ad = 46,

(2.39)

Using A¢ < 0.1 radian (6°) as an upper limit (note that this is the maximum phase error, i.e. the
mean phase error is much smaller) result in the condition (with all angles in radian...):

f; < %\/0_5 (2.40)

¢ Bandwidth Smearing
Assume u, v are computed for the center frequency vy. At frequency vg, we have

V(u,v) = Al(z,y) (2.41)

The similarity theorem on Fourier pairs give
140} o Vo 14 v
V(i—u,—v) =(—)I(—z,— 2.42
(B, 20) = (2)*L( =z, —y) (2.42)
Averaging over the bandwidth Av, there is a radial smearing equal to

~ ﬂ\/502 +y2 (2.43)

Yo



2.6. ARRAY GEOMETRY & BASELINE MEASUREMENTS 23
Config. Resolution | Frequency | 2-D | 0.5 GHz 1 Min Time | Primary
(GHz) Field | Bandwidth | Averaging Beam
Compact | 5" 80 GHz 5 80" 2! 60"
Standard | 2" 80 GHz 3.5 30" 45" 60"
Standard | 2" 220 GHz 3.5 1.5/ 45" 24"
High 0.5" 230 GHz 1.7 22" 12" 24"

Table 2.1: Field of view limitations as function of angular resolution and observing frequency for the
Plateau de Bure interferometer.

and hence the constraint

91/0
v z2 2<0.1=
r°+y* < Ay

(2.44)

if we want that smearing to be less than 10% of the synthesized beam.

e Time Averaging
Assume for simplicity that the interferometer observes the Celestial Pole. The baselines cover a
sector of angular width Q,At, where 2, is the Earth rotation speed, and At the integration time.
The smearing is circumferential and of magnitude Q,At\/2? + y2, hence the constraint

0
Vrz+y2<01—

Q. At

(2.45)

For other declinations, the smearing is no longer rotational, but of similar magnitude.

To better fix the importance of such approximations, the relevant values for the Plateau de Bure
interferometer are given in Table 2.1. Note that these fields of view correspond to a maximum phase error
of 6° only, or to a (one dimensional) distortion of a tenth of the synthesized beam, and thus are not strict
limits. In particular, atmospheric errors often results in larger errors (which are independent of the field
of view, however).

2.6 Array Geometry & Baseline Measurements

The uv coverage

Using a Cartesian coordinate system (X,Y, Z) with Z towards the pole, X towards the meridian, and YV
towards East, the conversion matrix to u, v, w is

u 1 sin(h) cos(h) 0 X
v | == | —sin(d)cos(h) sin(d)cos(h) cos(d) Y (2.46)
w cos(d) cos(h)  —cos(d)sin(h) sin(d) Z
where h,d are the hour angle and declination of the phase tracking center.
Eliminating h from Eq.2.46 gives the equation of an ellipse:
2 1 (2= 21N cos(9) 2 X4y (2.47)
sin(4) A2 '

The uv coverage is an ensemble of such ellipses. The choice of antenna configurations is made to cover the
uv plane as much as possible.
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Baseline measurement

Assume there is a small baseline error, (AX, AY, AZ). The phase error is

= cos(d) cos(h)AX — cos(d) sin(h)AY + sin(6)AZ (2.49)

Hence, if we observe N sources, we have for each source
Ok = ¢o + cos(dx) cos(hg)AX — cos(dx) sin(hg)AY + sin(dx)AZ (2.50)

i.e. a linear system in (AX,AY,AZ), with N equations and 4 unknown (including the arbitrary phase
¢0). This can be used to determine the baselines from phases measured on a set of sources with known
positions hyg, df.

From the shape of Eq.2.49, one can see that the determination of AX, AY requires large variations in
h, preferably at declination § ~ 0, while that of AZ requires large variations in §. However, ¢y, in Eq.2.50
is multi-valued (the 27 ambiguity...). Retaining the function in the [—m,n[ interval only, the system to
solve is in fact

mod(po + cos(dy) cos(hr)AX — cos(dy) sin(hy)AY + sin(6x)AZ — ¢p +7,27) — 7= 0 (2.51)

which is a linear system of equations only if AX, AY, AZ are small enough so that the shifted modulo
function is the identity. Baseline determination usually proceeds through a “brute force” technique, by
making a grid search (with 7 phase steps) around the most likely values for X,Y, Z.



