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20.1 Introduction and Basic Formalism

Modern astrometry aims at improving our knowledge of celestial body positions, motions and distances to
a high accuracy. The quest for accuracy began in the early days of astronomy and is still continuing in the
optical domain with most sophisticated instruments (automated meridian circles, the Hipparcos satellite
or future astrometric space missions) as well as in the radio domain (connected-element interferometers
and VLBI). New instrumental concepts or calibration procedures and increased sensitivity are essential to
measure highly accurate positions of stars and radio sources. Positions accurate to about one thousandth
to one tenth of an arcsecond have now been obtained for hundreds of radio sources and for about 100 000
to one million stars in the Hipparcos and Tycho catalogues respectively.

In this lecture we are concerned with some basic principles of position measurements made with syn-
thesis radio telescopes and with the IRAM interferometer in particular. More details on interferometer
techniques can be found in the fundamental book of [Thompson et al. 1986]. The impact of VLBI in
astrometry and geodesy is not discussed here. (For VLBI techniques see [Sovers et al. 1998].)

We first recall that measuring a position is a minimum prerequisite to the understanding of the physics
of many objects. One example may be given for illustration. To valuably discuss the excitation of compact
or masing molecular line sources observed in the direction of late-type stars and HII regions sub-arcsecond
position measurements are required. This is because the inner layers of circumstellar envelopes around
late-type stars have sizes of order one arcsecond or less and because several compact HII regions have
sizes of one to a few arcseconds only. Position information is crucial to discuss not only the respective
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234 CHAPTER 20. BASIC PRINCIPLES OF RADIO ASTROMETRY

importance of radiative and collisional pumping in these line sources but also the physical asssociation
with the underlying central object.

The output of an interferometer per unit bandwidth at the observing wavelength A is proportional to
the quantity

R= / A(R)I(E) cos(2nB.k/\)dQ (20.1)

where & is the unit vector toward the observed source, A is the effective antenna aperture, I the source
brightness, and B the baseline vector of the interferometer. For an extended source one refers the obser-
vations to the reference direction ko and supposing that the radiation comes from a small portion of the
sky we have k = ko + & where & is the position vector describing the source coordinates. (Since both Ko
and k are unit vectors we obtain k.6t = 0.) The interferometer output is given by

R =1V cos(2rB.kg/\ + ¥) (20.2)

where

Vexp(i®) = / A(3)1(3) exp(i2mh.3)dS2 (20.3)

is the complex source visibility and I;(u, v) is the baseline vector projected on a plane normal to the tracked
direction. The exact definition of the baseline coordinates v and v is given in Section 20.3.

The astrometry domain corresponds to those cases where the source visibility amplitude is equal to 1
(point-like sources) and the phase provides the source position information.

20.2 The Phase Equation

The most important measurement for radio astrometry is that of the actual fringe phase of a connected-
element interferometer (or similarly the group delay in VLBI). Let 6 be the angle between the reference
direction and the meridian plane of a given interferometer baseline. The phase is then defined by

¢r = 2mBsin(6) /A (20.4)
If the point-like source of interest is offset by A8 from the reference direction the total phase is
¢ =2nBsin(d + AB) /A = ¢, + 2mB cos(0)AG/ A (20.5)

It is thus clear that measuring an angle or an offset position on the celestial sphere becomes possible only
when all phase calibration problems have been understood and solved.
Accounting for uncertainties in the baseline and source position vectors the actual phase is

-

¢ = 20 (B + 6B).(ko + 6k) /A (20.6)

where B is a first approximation of the baseline, ko the tracking direction; B+ 68 and ko + 6k are the true
baseline and source position vectors, respectively. The reference phase is given by

br = 20B.ko /A (20.7)
and, neglecting the term involving (55.(513, we obtain

¢ — ¢ = 21 (B.OF + 0B.ko) /A (20.8)
We consider all vector projections in the right-handed equatorial system defined by the unit vectors a;

(H=6h,0=0),a2 (H=0h,d§=0),a3 (6 =90°). (Note that this system is not the Cartesian coordinate
system used in [Thompson et al. 1986].) H and ¢ are the hour angle and declination, respectively. In the
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equatorial system the baseline vector B has components (Boo, Be, Bs) and the components of the reference
position Ko are given by (cos(8) sin(H), cos(8) cos(H), sin(d))

The two limiting cases 5k = 0, and sB=0 correspond to those where we either calibrate the baseline
or determine the exact source position.

In the first case the source coordinates are perfectly known and by comparing the observed phase
¢ with the reference phase ¢, one determines 6B and hence the true baseline B + 6B. The reference
sources observed for baseline calibration are bright quasars or galactic nuclei whose absolute coordinates
are accurately known. The most highly accurate source coordinates are those of the radio sources used
to realize by VLBI the International Celestial Reference Frame (ICRF); distribution of coordinate errors
are below one milliarcsecond. However, the ICRF catalogue is insufficient for phase and baseline cal-
ibrations of millimeter-wave arrays because most sources are not bright enough in the millimeter-wave
domain. The IRAM calibration source list is thus a combination of several catalogues of compact radio
sources. Today, the Plateau de Bure Interferometer catalogue of calibration sources is based mostly on
compact radio sources from the Jodrell Bank — VLA Astrometric Survey (JVAS - [Patnaik et al 1992],
[Browne et al. 1998], [Wilkinson et al. 1998]).

20.3 Determination of Source Coordinates and Errors

Once the baseline is fully calibrated (65 = 0) the exact source coordinates are known from the Sk vector
components. These components are formally deduced from the differential of k9. In the right-handed
equatorial system defined in Section 20.2 we obtain

6k = (—sin(6)sin(H)AS — cos(d) cos(H)Aa, (20.9)
—sin(d) cos(H)AS + cos(d) sin(H)Aa,
cos(0)Ad)
where Aa and Ad are the right ascension and declination offsets in the equatorial system (Aa = —AH).
The phase difference is then a sinusoid in H
(Qé;i))\ = B.6k = Cy sin(H) + Cy cos(H) + C (20.10)
w
where
C; = —Bysin(d)A§ + Bs cos(d)Aa (20.11)
Cy = —Bssin(d)Ad — By cos(d)Aa (20.12)
Cs = B3cos(6)Ad + ¢ins (20.13)

and C3 contains the instrumental phase @jys.

Measurement of the phase at time intervals spanning a broad hour angle interval allows us to determine
the three unknowns Cp, Cs, and C3, and hence Aa and Ad and the exact source position. Note that for
sources close to the equator, C; and C, alone cannot accurately give Ad. In the latter case, C'; must
be determined in order to obtain Ad; this requires to accurately know the instrumental phase and that
the baseline is not strictly oriented along the E-W direction (in which case there is no polar baseline
component).

A synthesis array with several, well calibrated, baseline orientations is thus a powerful instrument to
determine 8k. In practice, a least-squares analysis is used to derive the unknowns Aa and Ad from the
measurements of many observed phases ¢; (at hour angle H;) relative to the expected phase ¢,. This is
obtained by minimizing the quantity X(Ag¢, — (Cy sin(H;) + Cs cos(H;) + C3))? with respect to Cq, Ca,
and Cs where A¢} = (¢; — ¢r)A\/27. A complete analysis should give the variance of the derived quantities
Aca and A§ as well as the correlation coefficient.

Of course we could solve for the exact source coordinates and baseline components simultaneously.
However, measuring the baseline components requires to observe several quasars widely separated on the
sky. At mm wavelengths where atmospheric phase noise is dominant this is best done in a rather short
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observing session whereas the source position measurements of often weak sources are better determined
with long hour angle coverage. This is why baseline calibration is usually made in separate sessions with
mm-wave connected-element arrays.

The equation giving the source coordinates can be reformulated in a more compact manner by using
the components v and v of the baseline projected in a plane normal to the reference direction. With v
directed toward the north and u toward the east, the phase difference is given by

(¢ — ¢r) = 2m(ucos(d)Aa + vAD) (20.14)

Comparing this formulation to the sinusoidal form of the phase difference we obtain

u = (=Bicos(H)+ Bysin(H))/A (20.15)
= (Bscos(d) — sin(d)(By sin(H) + Bz cos(H))) /A (20.16)

Transforming the B » 3 into a system where the baseline is defined by its length B = (B? + B3 + B2)%% and
the declination d and hour angle h of the baseline vector (defined as intersecting the northern hemisphere)
we obtain

B1 = Bcos(d) sin(h), Ba = B cos(d) cos(h), Bs = Bsin(d) (20.17)
and

u = (cos(d)sin(H — h))B/X (20.18)
= (cos(0) sin(d) — sin(6) cos(d) cos(H — h))B/A

which shows that the locus of the projected baseline vector is an ellipse.

In order to derive the unknowns Aa and AJ the least-squares analysis of the phase data is now
performed using the components u;,v; derived at hour angle H;. In the interesting case where the phase
noise of each phase sample is constant (this occurs when the thermal noise dominates and when the
atmospheric phase noise is “frozen”) one can show that the error in the coordinates takes a simple form.
For a single baseline and for relatively high declination sources the position error is approximated by the
equation

Oa5 = A0 ~04/(2m\/np(B/ X)) (20.19)

where 0, is the phase noise and n, the number of individual phase measurements. This result implies (as
expected a priori) that lower formal uncertainties are obtained with longer observing times and narrower
synthesized beams. Of course the position measurements are improved with several independent interfer-
ometer baselines; the precision improves as the inverse of the square root of n(n — 1)/2 for n antennas in
the array.

We have shown that for a well calibrated interferometer the least-squares fit analysis of the phase
in the (u,v) plane can give accurate source coordinates. However, the exact source position could also
be obtained in the Fourier transform plane by searching for the coordinates of the maximum brightness
temperature in the source map. The results given by this method should of course be identical to those
obtained in the (u,v) plane although the sensitivity to the data noise can be different.

Finally, it is interesting to remind that the polar component of the baseline does not appear in the
equation of the fringe frequency which is deduced from the time derivative of the phase. There is thus less
information in the fringe frequency than in the phase.

20.4 Accurate Position Measurements with the IRAM Interfer-
ometer
Let us start with two general and simple remarks. First, the phase equation in Section 20.2 or the least-

square analysis of the uv data in Section 20.3 show that higher position accuracy is achieved for smaller
values of the fringe spacing A/B. Thus, for astrometry it is desirable to use long baselines and/or to go to
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short wavelengths. However, the latter case implies that the phases are more difficult to calibrate espe-
cially at mm wavelengths where the atmospheric phase fluctuations increase with long baselines. Second,
sensitivity is always important in radio astrometry. For a point-like or compact source the sensitivity of
the array varies directly as D?(n(n—1))°%5 where D is the antenna diameter and n the number of antennas.
Thus, the detection speed varies as D*n(n — 1) and big antennas are clearly advantageous [Baudry 1996].

Comparison of the IRAM 5-element array with one of its competitors, the Owens Valley Radio Obser-
vatory array (OVRQO) with 6x10.4m, gives a ratio of detection speed of 1 over 0.36 at 3mm and 1 over
0.65 at 1.3mm in favour of the Plateau de Bure array (see Table 1 below where the two entries correspond
to 3mm and 1 mm; system temperatures have been adopted according to advertised array specifications
[June 2000]; sensitivity and speed are defined in Table 1). (Note also that the sixth antenna in the Bure
array will increase its detection speed by 50%.) For comparison we include in Table 1 the BIMA array
located in California and the Nobeyama array in Japan (NMA). In addition, it is interesting to note that
the large dishes of the IRAM array are well adapted to quick baseline and phase calibrations; this is
another clear advantage of the IRAM interferometer in astrometric observations.

Table 1. Comparison of Sensitivity and Speed of mm-wave Interferometers

BIMA IRAM NMA OVRO
Antennas 9 5 6 6
Baseline (m) 2000 400 400 480
Sensitivity  0.31 0.26 1.00 1.00 0.42 0.06 0.36 0.65
Speed 0.10 0.07v 1.00 100 0.18 — 0.13 042
Sensitivity = % "syz("A), Speed = [% "y"(T%l)]2

20.4.1 Absolute positions

To illustrate the potential of the IRAM array for astrometry we consider here observations of the SiO
maser emission associated with evolved late-type stars. Strong maser line sources are excited in the
v=1,J =2—1 transition of SiO at 8 GHz and easily observed with the sensitive IRAM array. Because
of molecular energetic requirements (the vibrational state v = 1 lies some 2000 K above the ground-state)
the SiO molecules must not be located too much above the stellar photosphere. In addition, we know
that the inner layers of the shell expanding around the central star have sizes of order one arcsecond
or less. Therefore, sub-arcsecond position accuracy is required to locate the SiO sources with respect
to the underlying star whose apparent diameter is of order 20-50 milliarcseconds. For absolute position
measurements one must primarily:

o select long baselines to synthesize small beamwidths,

o make a highly accurate baseline calibration observing several quasars selected for their small position
errors,

o observe at regular intervals two or more quasars (phase calibrators) in the field of each program star
in order to determine the instrumental phase and to correct for atmospheric phase fluctuations,

o observe the program star over a long hour angle interval, and use the best estimate of the stellar
coordinates (corrected for proper motion).

Our first accurate radio position measurements of SiO masers in stars and Orion were performed
with the IRAM array in 1991/1992. We outline below some important features of these observations
[Baudry et al. 1994]. We used the longest E-W baseline available at that time, about 300 m, thus achieving
beams of order 1.5 to 2 arcseconds. The RF bandpass calibrations were made accurately using strong
quasars only. To monitor the variable atmosphere above the array and to test the overall phase stability,
we observed a minimum of 2 to 3 nearby phase calibrators. Prior to the source position analysis we
determined accurate baseline components; for the longest baselines the r.m.s. uncertainties were in the
range 0.1 to 0.3 mm. The positions were obtained from least-square fits to the imaginary part of the
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calibrated visibilities. (Note that the SiO sources being strong, working in the (u,v) or image planes is
equivalent.)

The final position measurement accuracy must include all known sources of uncertainties. We begin
with the formal errors related to the data noise. This is due to finite signal to noise ratio (depending
of course on the source strength, the total observing time and the general quality of the data); poorly
calibrated instrumental phases may also play a role. In our observations of 1991/1992 the formal errors
were around 10 to 30 milliarcseconds. Secondly, phase errors arise in proportion with the baseline error 5B
and the offset between the unit vectors pointing toward the stellar source and the nearby phase calibrator.
This phase error is 6(¢—¢,) = (65.(kquasar —k0))27/A. Typical values are 6B ~ 0.2 mm and dk ~ 10° —20°
corresponding to phase errors of 3° to 7°, that is to say less than the typical baseline residual phases. A
third type of error is introduced by the position uncertainties of the calibrators. This is not important
here because the accuracy of the quasar coordinates used during the observations were at the level of one
milliarcsecond.

The quadratic addition of all known or measured errors is estimated to be around 0.07"" to 0.10”. In
fact, to be conservative in our estimate of the position accuracy we measured the positions of nearby
quasars using another quasar in the stellar field as the phase calibrator. The position offsets were around
0.1" t0 0.2" depending on the observed stellar fields; we adopted 0.1” to 0.2" as our final position accuracy
of SiO sources. The SiO source coordinates are derived with respect to baseline vectors calibrated against
distant quasars. They are thus determined in the quasi-inertial reference frame formed by these quasars.

Finally, it is interesting to remind a useful rule of thumb which one can use for astrometry-type projects
with any connected-element array provided that the baselines are well calibrated and the instrumental
phase is stable. The position accuracy we may expect from a radio interferometer is of the order of
1/10th of the synthesized beam (1/20th if we are optimistic). This applies to millimeter-wave arrays when
the atmospheric fluctuations are well monitored and understood. With baseline lengths around 400 m
the TRAM array cannot provide position uncertainties much better than about 0.05 — 0.1" at 86 GHz.
Extensions to one kilometer would be necessary to obtain a significant progress; the absolute position
measurements could then be at the level of 50 milliarcseconds which is the accuracy reached by the best
optical meridian circles.

20.4.2 Relative Positions and Self-calibration Techniques

We have measured with the IRAM array the absolute position of the SiO emission sources associated with
each spectral channel across the entire SiO emission profile. Any spatial structure related to the profile
implies different position offsets in the direction of the star. Such a structure with total extent of about 50
milliarcseconds is observed in several late-type stars. This is confirmed by recent VLBI observations of SiO
emission in a few stars. VLBI offers very high spatial resolution but poor absolute position measurements
in line observations.

The best way to map the relative spatial structure of the SiO emission is to use the phase of one
reference feature to map all other features. This spectral self-calibration technique is accurate because all
frequency-independent terms are cancelled out. The terms related to the baseline or instrumental phase
uncertainties as well as uncalibrated atmospheric effects are similar for all spectral channels and cancel
out in channel to channel phase differences. By making the difference

(¢(v) = d(vrer))(\/2m) = B.5k(v) — B.ok(vrey) (20.20)

where the SiO reference channel is at frequency v,.y we obtain a phase difference equation whose solution
gives the coordinate offsets Aa(v) and Ad(v) relative to channel vp.;. The main limitation in such
self-calibration techniques comes from the thermal noise and the achieved signal to noise ratio SNR. In
this case [Reid et al. 1988] showed that the one sigma position uncertainty or angular uncertainty Af is
approximately given by the equation

A§ = 0.5(\/B)/SNR (20.21)

Common practice with connected-element arrays shows that selection of a reference channel is not critical;
it must be strong in general. Self-calibration proved to be successful with the IRAM array in several stars
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and Orion where we have obtained accurate relative maps of SiO emission. Detailed and accurate relative
maps were also obtained for the rare isotope 2SiO emission which is nearly 2 orders of magnitude weaker
than that of the main isotope [Baudry et al. 1998]. A relative position accuracy of 2 to 5 milliarcsec was
obtained in the Orion spot map of 28SiO emission (Fig. 20.1).
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Figure 20.1: Spot map of 22Si0 v = 1,J = 2 — 1 emission observed on August 1995 in the direction of
Orion IRc2 [Baudry et al. 1998]. The right ascension and declination offsets are in arcsec. Each small
open square marks the center of an individual channel. The diameter of each circle, given every 3 channels,
is proportional to the line intensity. The two main ridge of 22SiQ emission cover —1 — —10 (southern
ridge) and 12 — 20 kms™1.

The relative spot maps obtained with connected-element arrays do not give the detailed spatial extent
of each individual channel. This would require a spatial resolution of about one milliarcsecond which
can only be achieved with VLBI techniques. Note however that VLBI is sensitive to strong emission
features while the IRAM array allows detection of very weak emission; thus the two techniques appear to
be complementary.

With SiO spatial extents of about 50 milliarcseconds and absolute positions at the level of 0.1 arcsecond
it is still difficult to locate the underlying star. We have thus attempted to obtain simultaneously the
position of one strong SiO feature relative to the stellar photosphere and the relative positions of the
Si0 sources using the 1 and 3 mm receivers of the IRAM array. This new dual frequency self-calibration
technique is still experimental but seems promising.

20.5 Sources of Position Uncertainty

We have given evidence that extended baselines are best for accurate position measurements. In addition,
as long as sensitivity is not an issue and that observed sources are not resolved by the array, the outermost
stations should always be preferred (Section 20.4). The great asset of the IRAM array is clearly sensitivity
coupled with resolving power, although atmospheric fluctuations and instrumental limitations may limit
the accuracy of position measurements.

We further discuss below the boundary conditions or requirements in astrometric observations. Table
2 at the end of this section summarizes the limitations with respect to the IRAM array.
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20.5.1 Known Limitations

Among several practical limitations it is worth mentioning: wind effects, thermal effects in the antenna
structure (including de-icing instabilities), the influence of refraction effects, imperfections in subreflector
displacements, imperfections in the azimuth and elevation bearings of the antennas and, not least, un-
certainties in the “crossing point" of the azimuth and elevation axes. These imperfections, and in fact
the resulting differential effects of each antenna pair in the array, have adverse effects on the visibility
phase measurements; however, many of them can be removed to a large extent by phase calibration (a
posteriori), and thus will not be discussed further.

In order to make the reader more aware of these questions, we just mention that the large-scale
uneveness of the azimuth bearings gives rise, in places, to optical path deviations of about 40 um which
translate into position offsets of 0.04"” with 200 m baselines. Likewise, position uncertainties result from
imperfections in the “crossing point" of the azimuth and elevation (nodal point) of each antenna in the
array (see Chapter 6). Slow drifts in the focal position are also corrected to first order by the calibration
procedure. Only large and rapid focal drifts are problematic if not recognized as such in the phase of a
reference calibrator.

20.5.2 Practical Details

We elaborate here on some properties of the IRAM array related to inaccuracies in the determination of
baseline lengths, and we briefly discuss how atmospheric phase noise and source strength can limit the
accuracy of position measurements.

o Baselines: are easily measured with the IRAM interferometer on Plateau de Bure with a precision
of a few degrees or a small fraction of one millimetre. As a reference, good winter conditions allow
us to measure baselines at 86 GHz, using a number of quasars well-distributed in hour-angle and
declination, with uncertainties of 5° — 8° in the D configuration (the most compact one at IRAM)
and 10° — 20° in the A configuration. But even the most accurate baseline measurement will be
limited in precision. Residual uncertainties in the baselines will finally produce phase errors that scale
with Ak = Equasar — Ksource, the distance between a calibration quasar and the source. Combining
the different forms of the phase equation defined in Section 20.2, we can then derive a rough estimate

of the mean uncertainty in the absolute position of a source from
AQ ~ (6B - AE)/B ~ (6¢/27) (A\/B) ~ (6¢/27) 65 (20.22)

where d¢ is the phase error due to inaccuracies in the baselines. This formula is convenient, as
it associates uncertainties in the knowledge of the baseline length at a given frequency with 6p,
the synthesized beam. For instance, observations at 86 GHz in the D configuration with baseline
phase residuals d¢ between 2° and 5° (i.e. assuming baseline errors, 8 = 0.2 mm, and typical phase
calibrator distances, Ak =5° — 15°) appear to have position uncertainties smaller than 0.20"”. See
Subsection 20.4.2 for suggestions to improve these uncertainties.

o Atmospheric phase fluctuations are among the most important limitations that affect the ac-
curacy of position measurements. Poor seeing conditions imply phase decorrelation which in turn
implies reduced flux density sensitivity and larger apparent source sizes (see Chapters 9 and 10).
When the atmospheric phase noise dominates, phase decorrelation can be estimated by least-square
fitting in time the phase profile of a reference calibrator. Under the assumptions made at the end
of Section 20.3 or assuming here that the atmospheric phase fluctuations remain unchanged, namely
0 is similar for each phase sample, we can estimate the mean angular uncertainty from

A6 ~ 04/ (2m\ /iy (B/N)) = 04 05/ (27 /) (20.23)

where n, is the number of phase samples. The size of the associated “seeing disk" is defined as
(04/2m)v/81In26p. For instance, measuring mean atmospheric phase fluctuations o4 ~ 10° at 86 GHz
on a 60 m baseline is equivalent to observe in ~ 0.78" seeing conditions (which is small since 6p ~
A/B ~ 12" and corresponds to a small fraction of the synthesized beam). Observations at the same
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frequency, on the same baseline and with similar atmospheric conditions will then provide a position
accuracy of order Af ~ 0.33"/,/n, (or 3% of 85 ~ 12").

o Source strength and finite signal to noise ratio is another important limitation to astrometric
accuracy. While reference calibrators have to provide enough sensitivity for rapid detection, detection
of program sources may require hours of integration. In addition, observed sources are sometimes
resolved out with extended configurations. Therefore, the interesting astrometric case described in
Section 20.4 where spectral sources are rather easily detected may not be common in mm-wave
astronomy. As mentioned in Section 20.4.2 we can use the result of [Reid et al. 1988] to estimate
the one sigma position uncertainty

Af =05~ (05/2)(0s/S) = 05/(2 - SNR) (20.24)

where og is the noise in the map and S the source flux density. With the IRAM array in the D
configuration, a source at mean declination (e.g. 30° —40°) detected with a signal-to-noise SNR ~ 5,
cannot be located with a precision better than 10% of 6p (e.g. 0.25" at 230 GHz). Uncertainties
in declination measurements will obviously be larger for southern sources owing to the elongation of
the synthesized beam.

On the other hand, astrometric observations of bright sources such as the SiO line sources presented
in Section 20.4 are not limited by SNR issues in general, but by the accuracy of the bandpass
calibration. While delay calibration (see Chapter 5) already removes the bulk of the phase gradient
across the band selected for observations, residual variations can only be removed by observing strong
calibrators. Using the classical radiometric equation, bandpass calibration requires the following;:

AtY = (S -05)*/(C - oc)*At° (20.25)

In this expression, S and C are the flux densities of the source and calibrator, og and o¢ the
respective r.m.s. noise levels, and At® and At® the integration times on the source and calibrator.
For instance, a 1 sec integration on a 15 Jy calibrator like 3C273 (at the time of writing, the strongest
calibrator at 86 GHz available in the northern sky) is sufficient for bandpass calibration in the case
of a 5o—detection of a 2mJy source. (In practice, however, several seconds integration would be
better.) On the other hand, a 10 min integration on the same calibrator would just be sufficient to
meet the minimum requirement (0g = o¢) to calibrate 1 min observations of a 50 Jy strong source.

There are a few other issues which we list below. They are worth mentioning although there is little
implication for observations with the IRAM array. (For other effects such as bandwidth smearing and
visibility averaging, we recommend reading the book of [Thompson et al. 1986]; see Chapter 6.)

o Pointing offsets is a potential source of position errors. Ideally, the phase of the incoming wavefront
does not depend on pointing offsets across the Airy (or diffraction) pattern. However, imperfections
in the optical system may result in differences in the Airy pattern from an antenna to another in the
array (although all antennas are of comparable quality). Experience at 86 GHz shows, that rather
strong phase differences (up to 10°) may appear when antennas are individually offset from the
target position by a distance equal to half the primary beamwidth (HPBW).

o Primary beam attenuation produces a radial displacement for off-axis targets. It needs to be
corrected for targets at large angular distances (~ HPBW/2) from the phase tracking center of the
interferometer.

o Gravitational Lensing by the Sun introduces positional offsets ~ Mg /Dg (/1 + cos8/+/1 — cos8)
which are negligible for targets outside the Sun avoidance region of the IRAM antennas (0 > 45°).
For instance A ~ 0.1" at ~ 5° from the Sun limb.

A summary of the main practical position uncertainties for the IRAM array is given in Table 2 in arc
second or in terms of the synthesized beam 6p; B is the baseline length in meter. Only instrumental errors
are removed to first order by calibration.
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Table 2. Plateau de Bure Interferometer — Main Sources of Position Uncertainty

TELESCOPE* A6 Calibration
Focus Offset < 0.20" - (100/B) Yes
Axes Non-Intersection < 0.10” - (100/B) Yes
AzE] Bearings < 0.08" - (100/B) Yes
OBSERVATION

Atmospheric Seeing! < 0.06-6p No
Calibrator Distance! < 0.02-0p No
Pointing Offset < 0.02-6p Partially
Source Intensity < (0.5/SNR) - 05 No

t Upper limits are illustrative for astrometric observations in limiting conditions. See text for more details.
* Instrumental values are all calibrated out to first order.



