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6.1 Introduction

As we already learned in the lecture on radio interferometry by S. Guilloteau (Chapter 2), the interferometer
measures the complex cross-correlation function of the voltage at the outputs of a pair of antennas (4, ).
This quantity, R;;(7) is defined as

Ryj(r) = (vi(t)v; (t + 7)) (6.1)

(the brackets indicate the time average, see Appendix A). The cross-correlation function is related to the
visibility function V' = |V|exp (ipsky) by

Rij = Ao|V|Avr cos (271w Te — Pskv) (62)

where Ag is the collecting area of the antenna. Eq.6.2 only holds for a quasi-monochromatic signal,
Avp < v (i-e. the bandpass may be represented by a d-function). The signal phase varies with time
due to source structure and atmospheric perturbations (expressed by ¢sxv), and due to the geometric
delay 7. The timescale that is needed to fully sample a spectral line, given by the sampling theorem (see
below), is much shorter. Here are examples of the different timescales:

1. timescale for phase variation by 1° due to source structure (for a point source at 100 GHz with
Aa = 10" offset from phase reference center, east-west baseline of 180 m during transit): 10 min

2. timescale for phase variation due to atmospheric perturbations: (depending on atmospheric condi-
tions and baseline length): 1sec — several hours

3. sampling time step for a 80 MHz bandwidth: 6.25ns
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4. maximum time lag needed for a 40 kHz resolution: 25us

The sampling time step in the above example is that short that the signal will be dominated by noise.
Any deterministic contribution will show in the correlation products. We have to assume that the noise is
due to a stationary random process (within a time interval given by the maximum time lag).

In the following, I will discuss digital techniques to evaluate Rjj(7). Analog methods of signal processing
are highly impractical in radio interferometry, for mainly two reasons:

1. In time domain, high precision is needed.

2. The signal needs to be identically copied, in order to cross-correlate the output of one antenna with
the outputs from all other antennas. This can be more easily done with digital techniques, than with
analog ones.

The first signal processing steps are analog, beginning with the mixing in the heterodyne receivers. For
reasons that will become clear later (see R. Lucas, Chapter 7), only the case of single-sideband reception is
considered. The sidebands may be separated by a periodic phase shift of 7/2 applied to the local oscillator.
The signals are demodulated in two different ways by the correlator. At the entry of the correlator, filters
are inserted, that are used to select the intermediate frequency bandpass. The following signal processing
steps are digitally implemented, and are performed within the correlator:

1. Sampling the signal: in order to digitize the signal, it needs to be sampled. Bandwidth-limited signals
(i.e. containing frequencies between zero and Av) may be sampled without loss of information if the
samples are taken at time intervals At < 1/(2Av).

2. In order to numerically compute the cross correlation function, the signals have to be discretized.
The data are affected by such a quantization, but may be corrected for it. However, the loss of
information cannot be recovered and degrades the correlator sensitivity.

3. Delay compensation: the geometric delays are eliminated for signals received from the direction of
the pointing center. Remaining delays are due to source structure.

4. Until now, everything is done in the time domain. However, for spectroscopic applications, the
desired output is the cross power spectral density, and not the cross correlation function. These
quantities are Fourier-transform pairs (Wiener-Khintchine theorem) !. The transformation can be
efficiently done by a processor performing a Fast Fourier Transform.

The plan of this lecture is as follows: after the basic theory, I will talk about the correlator in practice. Both
the intrinsic limitations and system-dependent performance will be discussed. For further reading, the book
of [Thompson et al. 1986] (chapters 6 — 8), and the introduction by [D’Addario 1989] are recommended.
Finally, as an example, the current correlator system on Plateau de Bure will be presented.

6.2 Basic Theory

The “heart” of a correlator consists of the sampler and the cross-correlator. Eq.6.2 represents an over-
simplified case, because the bandwidth of the signals is neglected. The correlator output is rather modified
by the Fourier transform of the bandpass function. For the sake of simplicity, let us assume an idealized
rectangular passband of width Ay, for both antennas, centered at the intermediate frequency vy, i.e.

. — |17, _ | Ho, |v—vg|<Avg/2
Hi()| = |Hi(v)] = { oyl < Qo

(6.3)

INote that the Fourier transform of a time series is not defined. However, in this context, we only work with finite sections
of a time series.



6.2. BASIC THEORY 75

Real
(cosine)
amplified 1 .
output
signals from two - Multiplier Integrator —
antennas > Compensating
delay
Imaginary
(sine)
output
/2 Multiplier Integrator —
phase—shift i—
network
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Figure 6.2: Architecture of a complex spectroscopic cross correlator.
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(this assumption will be relaxed later). The correlator response to this bandpass is the Fourier transform
of the cross power spectrum H;(v)H;(v)*, which is shown in Fig. 6.3:

sin (mAvyT)

o0
/ Hi(l/IF)Hj* (vir) exp 2TV T)dVy = HgAI/IF exp (127 vpT) (6.4)
0

TAVET

The correlator output consists of an oscillating part, and a sin (x)/z envelope (a sinc function). If the
delay 7 becomes too large, the sensitivity will be significantly decreased due to the sinc function (see
Fig.6.3). Strictly speaking, this is the response to the real part of the bandpass, which is symmetric with
respect to negative frequencies. The imaginary part of the bandpass is antisymmetric with respect to
negative frequencies, thus the correlator response is different. The separation of real and imaginary parts
in continuum and spectroscopic correlators will be discussed below.

This example shows that accurate delay tracking (fringe stopping) is needed, if the bandwidth is not
anymore negligible with respect to the intermediate frequency. In other words, the compensating delay 7y
needs to keep the delay tracking error AT = 75 — 71 at a minimum. The offset kAt introduced in correlator
channel k needs to be applied with respect to a fixed delay. In the following, the correlator response to a
rectangular bandpass will be expressed by the more general instrumental gain function Gj;(7), defined by

Ap /000 Hi(v)H; (v) exp (2mivT)dv = Gij(7) exp (2mivieT) (6.5)

Gij(1) = |Gij(7)| exp (i®q) is a complex quantity, including phase shifts due to the analog part of the
receiving system (amplificators, filters)2. After fringe stopping, the single-sideband response of correlator
channel k becomes (for details, see R. Lucas, Chapter 7)

Ri;(kAt) = |V]|Gs5|Re {exp (£2mive (T + kKAL) — ipsky £i9e)}
[V||Gs;] cos (£27ve (T + kAL) — sy £ ©c) (6.6)

where the plus sign refers to upper sideband reception, and the minus sign refers to lower sideband
reception. From Eq. 6.6, we immediately see that the residual delay error (due to a non-perfect delay
tracking) enters as a constant phase slope across the bandpass (with opposed signs in the upper and lower
sidebands). The effect of such a phase slope on sensitivity will be discussed later. In order to determine
the phase of the signal, the imaginary part of R;;(7) has to be simultaneously measured. In a continuum
correlator (Fig.6.1), a /2 phase shift applied to the analog signal yields the imaginary part. The signals
are then separately processed by a cosine and a sine correlator 3. In other words: the pattern shown in
Fig. 6.3 is measured in the close vicinity of two points, namely at the origin, and at a quarter wave later,
i.e. at 7 = 1/(4vy). Note, however, that due to the sinc-envelope, the decreasing response function cannot
be neglected if the bandwidth is comparable to the intermediate frequency.

In a spectroscopic correlator (Fig. 6.2), the imaginary part can be entirely deduced from the digitized
signal: if Ng, is the number of complex spectral channels, 2N¢, time lags are used, covering delays from
—NehAt to (Nen —1)At. The correlator output is a real signal with even and odd components (with respect
to time lags of opposed signs). The N complex channels of the Fourier transform at positive frequencies
yields the cross-power spectrum:

ris(ve) = rij(kovee) = / Riy(t) exp (2miveet)dt (6.7)
Nen—1

= S (u(tylt + 7+ LAL) exp (2rilk/2N) (6.8)
l=—Ncn

(for channel k of a total of Ng, complex channels, spaced by dvr). The last expression represents the dis-
crete Fourier transform. According to the symmetry properties of Fourier transforms, the even component
of the correlator output becomes the real part of the complex spectrum, and the odd component becomes
the imaginary part. The Fourier transform is efficiently evaluated using the Fast-Fourier algorithm. In
practice, it is rather the digital measurement of the cross-correlation function that is non-trivial. It will
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Figure 6.3: Left: Correlator output (single-sideband reception) for a rectangular passband with Avyg /vy =
0.2. Due to the signal phase ¢sxy, the oscillations move through the sinc envelope by @sky/27vr. The
shift may also be due to the phase of the complex gain (in this case, the shift would be in opposed sense
for USB and LSB reception). Right: Sensitivity degradation due to a delay error A7 (with respect to the
inverse IF bandwidth). The effect is due to the fall-off of the sinc envelope.

be discussed in detail in Section 6.3.3. The ensemble of cross-power spectra r;;(vir), after tracking the
source for some time, becomes (after calibration and several imaging processes) a channel map.

6.3 The Correlator in Practice

In order to numerically evaluate the cross-correlation function Rjj, the continuous signals entering the cross
correlator need to be sampled and quantized. According to Shannon’s sampling theorem [Shannon 1949],
a bandwidth-limited signal may be entirely recovered by sampling it at time intervals At < 1/(2Awvr)
(also called sampling at Nyquist rate). The discrete Fourier transform of the sufficiently sampled cross-
correlation function theoretically yields the cross-power spectrum without loss of information. However,
in practice, two intrinsic limitations exist:

e In order to discretize a signal, it is not only sampled, it also has to be quantized. The cross-
correlation function, as derived from quantized signals, does not equal the cross-correlation function
of continuous signals. Moreover, the sampling theorem does not hold anymore for quantized signals.
The reasons will become clear below.

e Eq.6.7 theoretically extends from —oo to +00. In practice (Eq. 6.8), only a maximum time lag can
be considered: limited storage capacities and digital processing speed are evident reasons, another
limiting factor are the different timescales mentioned before. The abrupt cutoff of the time window
affects the data.

These “intrinsic” limitations are discussed in Sections 6.3.1 and 6.3.2. The system-dependent performance
will be addressed in Section 6.3.3.

2Because T is restricted to a maximum time lag, this instrumental gain factor does not describe long-term variations.
3For the sake of completeness, it should be mentioned that this is a special case of the so-called Hilbert transform, which
property is to change signal phases by 7/2, but to leave amplitudes unchanged.
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6.3.1 Digitization of the input signal and clipping correction

As already mentioned, sampling at the Nyquist rate retains all information. However, quantizing the input
signal leads to a loss of information. This can be qualitatively understood in the following way: in order
to reach the next discrete level of the transfer function, some offset has to be added to the signal. If the
input signal is random noise of zero mean, the offset to be added will also be a random signal of zero
mean. In other words, a “quantization” noise is added to the signal, that leads to a loss of information. In
addition, the added noise is not anymore bandwidth limited, and the sampling theorem does not apply:
oversampling will lead to improved sensitivity.

Many quantization schemes exist (see e.g. [Cooper 1970]). It is entirely sufficient to use merely a few
quantum steps, if the cross-correlation function will be later corrected for the effects of quantization. For
the sake of illustration, the transfer function of a four-level 2-bit quantization is shown in Fig. 6.5. Each of
the four steps is assigned a sign bit, and a magnitude bit. After discretizing the signal, the samples from
one antenna are shifted in time, in order to compensate the geometric delay 7¢(¢). The correlator now
proceeds in the following way: for each delay step At, the corresponding sign and magnitude bits are put
into two registers (one for the first antenna, and one for the second). The second register is successively
shifted by one sample. In this way, sample pairs from both antennas, separated by a successively longer
time lag, are created. These pairs are multiplied, using a multiplication table. For the case of four-level
quantization, it is shown in Fig.6.5. Products which are assigned a value of £n? are called “high-level
products”, those with a value of £n are “intermediate-level products”, and those with a value of £1 “low-
level products”. The products (evaluated using the multiplication table in Fig.6.5) are sent to a counter
(one counter for each channel, i.e. for each of the discrete time lags). After the end of the integration
cycle, the counters are read out.

In practice, the multiplication table will be shifted by a positive offset of n2, to avoid negative products
(the offset needs to be corrected when the counters are read out). This is because the counter is simply
an adding device. As another simplification, low-level products may be deleted. This makes digital
implementation easier, and accounts for a loss of sensitivity of merely 1% (see Table 6.1). Finally, not all
bits of the counters’ content need to be transmitted (see Section 6.3.2).

Before the normalized contents of the counters are Fourier-transformed, they need to be corrected,
because the cross-correlation function of quantized data does not equal the cross-correlation function of
continuous data. This “clipping correction” can be derived using two different methods. As an example
for the case of full 4-level quantization:

e Four-level cross-correlation coefficient according to the multiplication table Fig.6.5. The cross-
correlation coefficient p is a normalized form of the cross-correlation function (see Appendix A):

py = 2n2(No1,01 — 2No1,11) + 4n(Noo,01 — Noo,11) + 2(Noo,00 — Noo,10) (6.9)
2(n2No1,01 + Noo,00) p=1 '

where Njj i is the number of counts with sign bit ¢ and magnitude bit j at time ¢ (first antenna),
and sign bit k¥ and magnitude bit [ at time ¢ + 7 (second antenna). +n is the product value assigned
to intermediate-level products.

¢ Clipping correction, first method: evaluate the Nj; i in Eq. 6.9, using joint probabilities Pj i (see
Appendix A for the definition of the jointly Gaussian probability distribution), such as

N R e —(z* +y? — 2pzy)
N = NP, = dzd 6.10
oor =N =5 s [ o [ Sy e (610

(N is the number of signal pairs, separated by the time lag of the channel under consideration, vg is
the clipping voltage, see Fig. 6.4).

e Clipping correction, second method: using Price’s theorem for functions of jointly random variables.
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Table 6.1: Correlator parameters for several quantization schemes

method n | Vo [Orms) n((ll) for
sampling rate

2005 | 40
two-level - | - 0.64 0.74
three-level | — | 0.61 0.81 0.89
four-level | 3 | 1.00 0.88() | 0.94
4 | 0.95 0.88 0.94
oo-level - | - 1.00 1.00
Notes:

(1) The correlator efficiency is defined by Eq.6.13.
The values are for an idealized (rectangular)
bandpass and after level optimization.

(2) Nyquist sampling,

(3) oversampling by factor 2

(4) 0.87 if low level products deleted

(case of Plateau de Bure correlator)

The result, derived in Appendix B, is shown in Fig. 6.4:

+4(n — 1) exp (ﬁ) +2}dr. (6.11)

Although the discrete, normalized cross-correlation function and the continuous cross-correlation co-
efficient are almost linearly dependent within a wide range, the correction is not trivial. An analytical
solution is only possible for the case of two-level quantization (“van Vleck correction” [Van Vleck 1966]).

In practice, several methods are used to numerically implement Eq.6.11 (in the following, the index
k means k-level quantization). The integrand may be replaced by an interpolating polynomial, allowing
to solve the integral. One may also construct an interpolating surface p(Ry, o). As already discussed, the
clipping correction cannot recover the loss of sensitivity due to quantization. The loss of sensitivity for
k-level discretization may be found by evaluating the signal-to-noise ratio

Ry Ry
Ronp = —= = ] 6.12
T o (R — (Ri)? (6.12)

In order to minimize the loss of sensitivity, the clipping voltage (with respect to the noise o) needs to be
adjusted such that the correlator efficiency curve in Fig. 6.4 is at its maximum. The correlator efficiency
is defined with respect to the signal-to-noise ratio of a (fictive) continuous correlator, i.e.

§):Esn,k — \SRsn,k (613)

Nk = %sn,oo p Nq

where Ny is the number of samples. Table6.1 summarizes the results for different correlator types and
samplings.

Due to the discretization of the input voltages (as shown in Fig. 6.5), any knowledge of the absolute signal
value is lost. The signal amplitude is recovered by a regularly performed calibration (using a calibration
load of known temperature, for details, see Chapter 12 by A.Dutrey). Fig. 6.6 shows the signal processing
steps from the incoming time series to the derived spectrum.
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Figure 6.4: Left: Clipping correction (cross correlation coefficient of a continuous signal vs. cross cor-
relation correlation coefficient of a quantized signal) for two-, three- and four level quantization (with
optimized threshold voltage). The case of two level quantization is also known as van Vleck correction.
For more quantization levels, the clipping correction becomes smaller. Right: Correlator efficiency as
function of the clipping voltage, for three-level and four-level quantization (at Nyquist sampling).
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Figure 6.5: Left: Transfer function for a 4-level 2-bit correlator. The dashed line corresponds to the
transfer function of a (fictive) continuous correlator with an infinite number of infinitesimally small delay
steps. Right: Multiplication table. S(z) is the signal bit at time ¢, M (x) is the magnitude bit at time ¢
(respectively S(y) and M(y) at time t + 7).
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Figure 6.6: The signal processing in a 3-level 2-bit correlator. From top to bottom: the original time series
(sampled in discrete time steps, but continuous in amplitude), the digitized time series (with high-level
weight 3), the digital correlation R4, the reconstructed spectral line.
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Table 6.2: Time lag windows

Description | Lag window Spectral window
rectangular | w(t) =1 for || < 7, else 0 w(v) = 2Tm%
2
_ |t ~ _ sin (7v7Tm)
Bartlett w(t) =1— — for [t| < 7, else 0 W) = Tm (#)

von Hann | w(t) = 1 (1 + cos(%)) for [t| < T, else 0 | W(v) = 7y - sin2(:‘r/r:;m) ) 17(2'1”“1)2

Welch w(t) = (1 - (%)2) (V) = Gl (Sig(jj:y - cos(27r1/7'm))
o(3) so(s)
Parzen w(t) = for [t] <mn/2 W(v) = §Tm (%)4

6.3.2 Time lag windows and spectral resolution

According to the sampling theorem, we need a sampling timestep At = 1/(2Aw;z) if we want to fully recover
the cross-power spectral density within a bandwidth Avy. The channel spacing dv is then determined by
the maximum time lag Tmax = NenAt (where Ngp, is the number of channels), i.e.

1 1

6 = =
Y o T ONaAt

(6.14)

However, the data acquisition is abruptly stopped after the maximum time lag. After the Fourier transform,
the observed cross power spectrum is thus convolved with the Fourier transform #(v) of the box-shaped
time window w(t), producing strong sidelobes:

L

_ I7| < Timax . _ sin (20Tmax)
w(T) = { 0. else = W(V) = 2Tpax————~

2UTmax

(6.15)

These oscillations are especially annoying, if strong lines are observed. They may be minimized, if the
box-shaped time lag window is replaced by a function that rises from zero to peak at negative time lags,
and decreases to zero at positive time lags (apodization). Such a window function suppresses the sidelobes,
at the cost of spectral resolution. A comparison between several window functions is given in Fig.6.7,
together with sidelobe levels and spectral resolutions (defined by the full width at half-power, FWHP, of
the main lobe of the spectral window). Table 6.2 summarizes the various functions in time and spectral
domains. The default of the Plateau de Bure correlator is the Welch window, because it still offers a good
spectral resolution. Moreover, the oscillating sidelobes partly cancel out the contamination of a channel
by the signals in adjacent channels. Of course, the observer is free to deconvolve the spectra from this
default window, and to use another time lag window.

Note: If you apodize your data, not only the effective spectral resolution is changed. Due to the sup-
pression of noise at large time lags, the sensitivity is increased. The variance ratio of apodized data to
unapodized data,

/_oo |w(t)|*dt = /_oo |w(v)2dv = 1/B, (6.16)

defines the noise equivalent bandwidth B,. It is the width of an ideal rectangular spectral window (i.e.
w(v) = 1/By with zero loss inside |v| < B,/2, and infinite loss outside) containing the same noise power
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Table 6.3: Effects of delay pattern on the sensitivity

Intermediate frequency bandwidth vy = 160 MHz
Baseline b=100m

Zenith distance of source in direction s | @ = 30°

Results in geometric delay: Te =b-8/c=017ps
Attenuation according to Eq.6.4 1%

as the actual data. For sensitivity estimates of spectral line observations, the channel width to be used
is thus the noise equivalent width, and neither the channel spacing, nor the effective spectral resolution.
Fig.6.7 gives the noise equivalent bandwidths B, for commonly used time lag windows.

6.3.3 Main limitations

In real life, cross-correlators are subject to the performance of the whole receiving system. This comprises
the “analog part” (the signal path from the receivers to the IF filters at the correlator entry), and the
“digital part” (everything behind the sampler). Although the analog part is out of the correlator, its
performance requires to change our assumptions concerning the input data. This complicates the analysis
of the correlator response. The following discussion refers to instantaneous errors only. However, in
interferometric mapping, scan-averaged visibilities are used, and the data may be less affected.

Analog part

The shape of the bandpass function (amplitude and phase) at the correlator output is mainly due to the
correlator’s response to the filters inserted in the IF band at the correlator entry. So far, for the sake of
simplicity, rectangular passbands, centered at the intermediate frequency vz, have been assumed. A more
complex (and more realistic) case may be an amplitude slope where the logarithm of the amplitude varies
linearly with frequency. Although the bandpass function will be calibrated (see Eq.6.17, and R. Lucas
Chapter 7), the effect of such a slope on sensitivity remains. A derivation of the signal-to-noise ratio for
that case is beyond the scope of this lecture. To give an impression of the order of magnitude: a slope of
3.5dB (edge-to-edge) leads to a 2.5 % degradation of the sensitivity calculated for a rectangular passband.
A center frequency displacement of 5 % of the bandwidth leads to the same degradation.

As already demonstrated, delay-setting errors linearly increase with the intermediate frequency (Eq. 6.6).
Table 6.3 gives an impression of the decrease of sensitivity due to a delay error. The effect is also shown
in Fig. 6.3 for a range of delay errors. For example, a delay error of 0.12/Avy accounts for a 2.5 % degra-
dation. Delay errors are mainly due to inaccurately known antenna positions (asking for a better baseline
calibration), or due to errors in the transmission cables.

Phase errors across the bandpass may also be of random nature. A phase fluctuation of 12.8° (rms)
per scan leads to a degradation of (1 —exp (—0%/2)) x 100 % = 2.5%. Fluctuations across the bandpass
also appear as ripples. They may have several reasons, and are mainly due to the Gibbs phenomenon,
and due to reflections in the transmission cables. A sinusoidal bandpass ripple of 2.9dB (peak-to-peak)
yields a 2.5 % degradation in the signal-to-noise ratio. The Gibbs phenomenon also occurs in single-dish
autocorrelation spectrometers. For the sake of illustration, let us again assume a perfectly flat response
of receivers and filters. However, the filter response function is only flat across the IF passband. Towards
its boundary, steep edges occur. We already learned that strong spectral lines may show ripples, if no
special data windowing in time domain is applied. The Gibbs phenomenon is due to a similar problem
(but now the spectral line is replaced by the edge of a flat rectangular band extending in frequency from
zero to Avge). The output of the cosine correlator is symmetric, but the sine output (imaginary part) is
antisymmetric, thus including an even steeper edge. Convolving this edge with the sinc function (i.e. the
spectral window) results in strong oscillations. Let us call this function f(v). For calibration purposes,
the Gibbs phenomenon has to be avoided: the problem is that calibration uses the system response to a
flat-spectrum continuum source. A source whose visibility is V' (v) is seen as f(v) * [G;;(¥)V (V)] (where
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Figure 6.7: Several time lag windows, and their Fourier transforms (normalized to peak). The sidelobe
levels SL are indicated, as well as the spectral resolution (defined as the FWHP of the main lobe), and the
noise equivalent width. The delay stepsize, and channel spacing are indicated for the following example:
256 channels, clock rate 40 MHz, resulting in a channel spacing of 78.125 kHz.
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Figure 6.8: The Gibbs phenomenon. The convolution of the bandpass with the (unapodized) spectral win-

dow (sinc function) is shown for the real and imaginary parts. Note that for the real part, the phenomenon
is stronger at the band edges, whereas for the imaginary part, it contaminates the whole bandpass.
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Table 6.4: Maximum integration time of a 16-bit counter

clock frequency: 80 MHz

weight for intermediate-level products: | n =3

positive offset: n?=9

weight for autocorrelation product: 18 (using offset multiplication table)
carry out rate of a 4-bit adder 18/2* = 1.125

maximum integration time: 216 /(80 MHz x 1.125) = 0.73 ms
same with a 4-bit prescaler: 216 x 24 /(80 MHz x 1.125) = 11.7ms

Gij is now a frequency-dependent complex gain function). After calibration it becomes

o 1) £ [Gy)V ()
V) = = G )

(6.17)

Due to the convolution product the complex gain Gy;(v) does not cancel out, as desired, and V() # V (v).
Automatic calibration procedures have to flag the channels concerned. As shown in Fig. 6.8, for the real
part, the effect is stronger at the band edges, but the output of the imaginary part also shows ripples in
the middle of the band (thus, the problem is of greater importance for interferometers than for single-
dish telescopes using auto-correlators). If the bandwidth to be observed is synthesized by two adjacent
frequency windows, the phenomenon is stronger at the band center. You should avoid to place your line
there, if it is on top of an important continuum (see Section 6.4.1 for the case of the Plateau de Bure
system).

The above summary of the system-dependent performance of a correlator is not exhaustive. For exam-
ple, the phase stability of tunable filters, which depends on their physical temperature, is not discussed.
Alternatives to such filters are image rejection mixers (as used in the Plateau de Bure correlator).

Digital part

Errors induced by the digital part are generally negligible with respect to the analog part. In digital delays,
a basic limitation is given by the discrete nature of the delay compensation, which accuracy in turn is
limited by the clock period of the sampler. However, digital techniques allow for high clock rates, keeping
this error at a minimum.

Evidently, a basic limitation is given by the memory of the counters, setting the maximum time lag
(which in turn defines the spectral resolution, as already discussed): with 2K bits, we can exactly represent
N = 22K numbers. However, the information contained in the bits is not equivalent. For the 3-level 2-bit
correlator, the output of each channel ¢ =1,..., N is

R(i) = % (N + VN, /1- erf(vo /ﬁ)) (6.18)

(assuming white, Gaussian noise of zero mean and of unit variance, and neglecting the weak contribution
of the astrophysical signal). The lo-precision of the output is ~ v/N /2, contained in the last K — 1 bits,
which thus do not need to be transmitted. The maximum integration time before overflow occurs is set
by the number of bits of the counter, and the clock frequency. Table 6.4 shows an example.

The only error cause due to the correlator that is worth to be mentioned is the sampler, i.e. the
analog-to-digital conversion. As already shown, the threshold levels are adjusted with respect to the noise
in the unquantized signal. However, the noise power may change during the integration. In that case, the
correlator does not operate anymore at its optimum level (see Fig.6.4). This error cause can be eliminated
with an automatic level control circuit. However, slight deviations from the optimal level adjustment may
remain. Without going too far into detail, the deviations can be decomposed in an even and an odd
part: in one case, the positive and negative threshold voltages move into opposed directions (even part of
the threshold error). The resulting error can be equivalently interpreted as a change of the signal level
with respect to the threshold vy, and leads to a gain error. In the other case, the positive and negative
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threshold voltages move into the same direction (odd part of the threshold error). This error, however, can
be reduced by periodic sign reversal of the digitized samples (if the local oscillator phase is simultaneously
shifted by =, the correlator output remains unaffected). Combining the original and phase-shifted outputs,
the error cancels out with high precision. Such a phase shift is implemented in the first local oscillators
of the Plateau de Bure system (for details see Chapter 7 by R.Lucas). Note also that threshold errors
of up to 10% can be tolerated without degrading the correlator sensitivity too much: the examination of
Fig. 6.4 shows that such an error results in a signal-to-noise degradation of less than 0.2% for a 3-level
system, and of less than 0.5 % for a 4-level system (the maxima of the efficiency curves are rather broad).

Another problem is that the nominal and actual threshold values may differ. The error can be described
by “indecision regions”. By calculating the probability that one or both signals of the cross-correlation
product fall into such an indecision region, the error can be estimated. With an indecision region of 10 %
of the nominal threshold value, the error is negligibly small.

Finally, it should be noted that strict synchronisation of the time series from different antennas is manda-
tory: any deviation will introduce a phase error.

6.4 The correlator on Plateau de Bure

As an example of a cross-correlator used in mm-wave interferometry, I briefly introduce the correlator
system on Plateau-de-Bure. Only a spectroscopic correlator is in use. Continuum bands are synthesized
by channel averages covering the desired bandwidths. Aspects concerning concrete observing projects are
addressed in Chapter 8 by R.Neri.

6.4.1 The third-generation correlator

The third-generation correlator for the Plateau de Bure interferometer will allow for more flexibility, due
to the following improvements:

e global bandwidth: 2.56 GHz (vs. 0.96 GHz in the second generation system),

e flexibility: 8 units with channel spacings in powers-of-2 sequence (vs. 6 units, channel spacing in
powers-of-4 sequence)

e global digital performance: 9.8 Teramultiplications per second (vs. 1.3 TMs~1).

These improvements are made possible by using new, more integrated technology at both analog and
digital signal processing steps.

The cross-correlator comprises eight independent units. Each consists of three parts: an IF processor
(frequency setting, low-pass filter selection, oscillator phase control — i.e. the analog functions), a digital
part, controlled by a master processor (i.e. delay steps, clipping correction, FFT, small delay corrections,
bandpass correction), and a satellite micro reading out and further processing the correlations. Each
unit can be placed in the [100,1100] MHz IF band *, in steps of 0.625 MHz (by using a third frequency
conversion). There are seven combinations of bandwidth and channel spacing. The channel spacing follows
a power-of-two sequence. Three out of the seven modes are synthesized by the adjacent upper and lower
sidebands of an image rejection mixer. These bandwidths show the Gibbs phenomenon right in the middle
of the band (i.e. at the edges of the IRM sidebands). The central two channels are flagged by default, the
observer should avoid to place the most important part of the line there. The highest possible spectral
resolution (channel spacing 0.039 MHz) is produced by slowing down the clock rate from 40 to 20 MHz.

The spectroscopic capabilities of the cross-correlator at Plateau de Bure are summarized in Table 6.5. Part
of the flexibility is achieved by using the “time-multiplexing” technique. For example, a time-multiplexing
factor four means that the data, arriving at a rate of 160 x 106 samples/s, are alternately put into four
shift-registers. The shift registers are read out at the clock frequency of 40 MHz, thus creating four data

4Note that at Bure the total IF bandwidth available is limited by the receivers to the range [100,650] MHz
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Table 6.5: The Complex Cross Correlator on Plateau de Bure

Bandwidth Sub-band Clock Time Number | Complex | Channel Spectral
of IRM(Y) Rate | Multiplex | of Lags | Channels | Spacing | Resolution [MHz]
[MHz] [MHz] Factor (2) [MHz] (3) (4)

2 x 160MHz | LSB + USB 80 4 2x 128 | 2x 64 2.500 3.018 3.975
1 x 160 MHz | LSB or USB 80 4 1x 256 | 1x128 1.250 | 1.509 1.988
2x 80MHz | LSB + USB 80 2 2x 256 | 2x128 0.625 | 0.754 0.994
1x 80MHz | LSB or USB 80 2 1x 512 | 1x256 0.312 | 0.377 0.497
2x 40MHz | LSB + USB 80 1 2x 512 | 2x256 0.156 0.189 0.248
1x 40MHz | LSB or USB 80 1 1x1024 | 1x512 0.078 0.094 0.124
1x 20MHz | LSB or USB 40 1 1x1024 | 1x512 0.039 | 0.047 0.062

Notes: (1) image rejection mixer (2) with negative & positive time lags (3) box-shaped time-lag
window (4) Welch time-lag window

streams taken at a rate that is lower by a factor of four (as compared to the sampling speed). Equivalently,
a time-multiplex factor two means two data streams at a rate of 80 MHz each.

For further technical specifications see the Correlator Web page®.

6.5 Appendix

6.5.1 Summary of definitions

e Cross-correlation function of voltage outputs v; and v; from antenna pair (i, j):

Rij (1) = (vi(t)vs(t + 7)) = Th_r};o 1 /OT vi(t)v;(t + T)dt (6.19)
e Covariance of two jointly random variables:
n = (zy) — (x){y) (6.20)
For signals of zero mean, and again identifying 2 = v;(¢) and y = v;(¢t + 7),
= R;;(T) (6.21)
e Cross-correlation coefficient of two jointly random variables z,y of variance o2 and 03:
p= 0503 (6.22)

For jointly normal random variables of zero mean and of variance o2 = (z?) — (z)? = (2?), and with
x = v;(t) and y = vj(t + 7), the cross-correlation function R;;(¢) and the cross-correlation coefficient
are related by

Rz'j (T) = p0'2 (623)

e Bivariate Gaussian Probability Distribution:
Assume two Gaussian random variables z and y, both of zero mean, and variance 2. The probability
p(z,y) dx dy that the value of z is between z¢ and z¢ + dx, and that simultaneously the value of y
between yo and yo + dy, is given by the jointly gaussian probability distribution

, X 6.24
P(mo yO) 9 2 /—1 5 exp ( 2 2(1 2) ( )

In our case, the variable x is assigned to the output voltage of antenna ¢ at time ¢, and y the output
voltage of antenna j at time ¢ + 7.

Shttp://iram.fr/TA /backend /cor6A




6.5. APPENDIX 89

6.5.2 Clipping correction for 4-level quantization

The following determination of the clipping correction is due to [Hagen et al. 1973]:
Given two jointly normal random variables z and y with covariance u, and given some arbitrary function
g(z,y), Price’s theorem states that

0™ (g(x,y)) _ ,0*™g(z,y) / %[ 9?mg(x,y)
_ _ Z,Y) 2
o ( Gz aym ) | azmaym p(z,y)dzdy (6.25)

For random signals of zero mean, the covariance p is identical with the cross-correlation function R;;(7)
defined in Eq.6.1. As shown by Eq.6.1, we need to accumulate products of the voltage outputs of two
antennas (4, j), but using the quantized signals rather than the continuous ones. Thus, with the identi-
fication = v;(t) and y = v;(t + 7), and using & and § for the quantized signals, we can apply Price’s
theorem to the 4-level cross-correlation function R4 = (Z§) such that

dRy  ,dRi  Ld{F)) /°° /°° 8% 9§
dRy _ ,dRy _ _ oz 9y ded 6.26
rakde alaerratelal N ayp(w,y) zdy (6.26)

(R = po? denotes the continuous cross correlation function, for the sake of simplicity, antenna indices are
omitted). The partial derivatives in the integrand are easily found by using the transfer function shown
in Fig. 6.5:

2=0(=)+ (n—1)[0(z —vo) — O(—z — 19)] O(—x) (6.27)

where ©(z) =1 for > 0, and 0 else. Thus,

% = 25(z) + (n — 1) [5(z — o) + 8( + vo)] (6.28)
Re-writing Price’s theorem, we find
dR4 - / / (26(z) + (n — 1) [(z — vo) + 5(z + vo)])
(28(y) + (n = 1) [6(y — vo) + 6(y + vo)]) p(=, y)dzdy . (6.29)

Inserting the jointly normal distribution p(x,y), and evaluating the integral yields
dR4 o2 —v? —v2
d—p = Z 1£T2 {(n —1)2 [exp (—02(1_?_p)) + exp (—02(13,)))]

2
+4(n— 1) exp (ng)) + 2} , (6.30)

or, alternatively, the integral form given in Eq.6.11.
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