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Problems when mapping an extended source

e The largest structures are filtered out due to the lack of the short spacings

Solution: add the short spacing information

e The field of view is limited by the antenna primary beam width

Solution: observe a mosaic = several adjacent overlapping fields

e Deconvolution algorithms are not very good at recovering small- and large-scale
structures

Solution: try SDI CLEAN, Multi-Scale CLEAN, Multi-Resolution CLEAN;, ...

e Non-coplanar baselines

Solution: use appropriate algorithm if necessary — not the case for
mm-interferometers
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Short spacings
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Lack of the short spacings
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Lack of the short spacings
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Lack of the short spacings
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Lack of the short spacings
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Lack of the short spacings
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The short spacings problem

Missing short spacings :

e Shortest baseline B, = 24 m at Plateau de Bure

e Projection effects can reduce the minimal baseline — but baselines smaller than
antenna diameter D can never be measured

e In any case: lack of the short spacings information

Consequence :

e The most extended structures are filtered out

e The largest structures that can be mapped are ~ 2/3 of the primary beam

(field of view)

e Structures larger than ~ 1/3 of the primary beam may already be affected
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Short spacings: example

Without short spacings With short spacings
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BCO (1-0) in the L 1157 protostar (Gueth et al. 1997)
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Short spacings: example

Simulations of small source
+ extended cold/warm
layer

Lack of short spacings can
introduce complex arti-
facts leading to wrong
scientific interpreta-
tion
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Spatial frequencies: measurements

e A single-dish of diameter D is sensitive to spatial frequencies from 0 to D

e An interferometer baseline B is sensitive to spatial frequencies from B — D to
B-+D

(B+D) /A

(B=D)/A
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Spatial frequencies: measurements

An interferometer measures the convolution of the
“true” visibility with the antenna transfer function

Radius in UV plane

Short spacings
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Obtaining short spacings

No short-spacings

Radius in UV plane
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Obtaining short spacings

Single-dish measurement (same antenna diameter)

Radius in UV plane
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Obtaining short spacings

Interferometer with smaller antennas

HOOOC

Radius in UV plane
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Obtaining short spacings

Small interferometer + Single-dish measurement

HOOOC

Radius in UV plane

Short spacings
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Obtaining short spacings

Single-dish measurement (larger antenna diameter)

Radius in UV plane
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IRAM PdBI + IRAM 30-m

e Get zero and short spacings

e Only two instruments to be merged
e Same calibration procedures
e Same software

e Same proposal
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Short spacings from SD data

e Combine SD and Interferometric maps in the image plane
e Joint deconvolution (MEM or CLEAN)
e Hybridization: fill inner hole in uv plane with FT of single-dish image

e Combine data in the uv plane before deconvolution

1. Use the 30-m map to simulate what would have observed the PdBI, i.e. extract
“pseudo-visibilities”

2. Merge with the interferometer visibilities

3. Process (gridding, F'T, deconvolution) all data together

This drastically improves the deconvolution
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Extracting visibilities

SD map = SD beam *x Sky

Int. map = Dirty beam * (Int beam x Sky)

e Image plane Gridding of the single-dish data
e Image plane Extrapolation to zero outside the mapped region
e uv plane Correction for single-dish beam and gridding function

e Image plane Multiplication by interferometer primary beam

e uv plane Extract visibilities up to Dgp — Dipg
e uv plane Apply a weighting factor before merging with the interferometer
data

Short spacings

21



Spatial frequencies: what can be extracted from SD data

Single-dish data = pseudo-visibilities from 0 to Dgp — Dy

Spatial frequencies measured
by the Single Dish antenna
(circle of radius D)

Spatial frequencies used to
simulate interferometer measuremgent
(circle of radius d)
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Weighting factor

Weighting factor to SD data :

e Produce different images and dirty beams
e Same result after deconvolution, if methods were perfect
e Methods are not perfect, noise — weight to be optimized

e Usually, it is better to downweight the SD data (as compared to natural
weight)

Optimization :
e Adjust the weights so that there is almost no negative sidelobes while
keeping the highest angular resolution possible

e Adjust the weights so that the weight densities in 0—D and D—-2D areas
are equal — mathematical criteria
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GILDAS implementation: user interface
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Short spacings: example

Without short spacings With short spacings
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BCO (1-0) in the L 1157 protostar (Gueth et al. 1997)
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Short spacings: example

T T T T T ‘ T o~ T T T T
Without short spacings . With short spacings

68°02'00"

68°01'20"

68°00'40"

20"39™12% 20"39™04% 20"39™12% 20"39™04%0

Gueth et al. 1996
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15°30'00"

5 (J2000)

15°29'40"

15°29'20"

Short spacings: example
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Mosaics
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Interferometer field of view

Measurement equation of an interferometric observation:

F=D+BxI)+N

dirty map = FT of observed visibilities

dirty beam (— deconvolution)

primary beam = FT of transfer function

sky brightness distribution = FT of “true” visibilities
noise distribution

2~wWOm™
I

e An interferometer measures the product B x 1
e B has a finite support — limits the size of the field of view

e B ~ Gaussian — primary beam correction possible (proper estimate of the
fluxes) but strong increase of the noise

Mosaics
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Primary beam width

Aperture function

*

Transfer function T'(u, v)
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Voltage pattern

ik

Power pattern B({, m)
= Primary beam

Gaussian illumination = B ~ Gaussian of 1.2 A\/D FWHM

Frequency Wavelength Field of View

85 GHz 3.5 mm 58"

100 GHz 3.0 mm 50"

Plateau de Bure 115 CHy 9 6 mm 43"
D=15m 015 GHz 1.4 mm 23"
230 GHz 1.3 mm 22"

245 GHz 1.2 mm 20"

Mosaics
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Mosaicing with the PdBI

Mosaic :
e Field spacing = half the primary beam FWHM i.e. one field each 11”

at 230 GHz

e Observations with two receivers: choice of the spacing for one frequency —
under- or oversampling for the other frequency NO LONGER VALID

e Mosaic at 3 mm —— no mosaic at 1 mm WITH NEW RECEIVERS

Observations :

e Fields are observed in a loop, each one during a few minutes — similar
atmospheric conditions (noise) and similar uv coverages (dirty beam,
resolution) for all fields
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Mosaicing with the PdBI

Size of the mosaic :

e Observing time to be minimized, uv coverage to be maximized — maximal
number of fields ~ 20

Calibration :

e Procedure identical with any other Plateau de Bure observations (only the
calibrators are used)

e Produce one dirty map per field

Short spacings :

e Visibilities from 30-m data are computed and merged with Plateau de Bure
data for each field — process as a normal mosaic
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Mosaic reconstruction

e Forgetting the effects of the dirty beam:
F,=B; x I+ N;

e This is similar to several measurements of I, each one with a “weight” B;

e Best estimate of [ in least-square formalism (assuming same noise):

> BiF
S

e J is homogeneous to I, i.e. the mosaic is corrected for the primary beam
attenuation

J

Mosaics
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Noise distribution

ZBF
>B

— O'J:O'

e

The noise depends on the position and strongly
increases at the edges of the field of view

In practice :

e Use truncated primary beams (B,;, = 0.1 — 0.3) to avoid noise
propagation between adjacent fields

e Truncate the mosaic

Mosaics
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Noise rms o;/0

Primary beams

0.5

Noise distribution

Mosaics

Position (arbitrary unit)
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Mosaic deconvolution

e Linear mosaicing: deconvolution of each field, then mosaic reconstruction
Non-linear mosaicing: mosaic reconstruction, then global deconvolution

e The two methods are not equivalent, because the deconvolution algorithms are
(highly) non-linear

e Non-linear mosaicing gives better results

e sidelobes removed in the whole map

e better sensitivity

e Plateau de Bure mosaics: non-linear joint deconvolution based on

CLEAN

Mosaics
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Mosaic CLEAN

Signal-to-noise distribution :

Y B [DZ- « (B, 1) + Ni]

Q
~
S

Mosaic CLEAN :

e J has a non-uniform noise level

e It is safer to search for CLEAN components on H
e Find positions of components on H

e Correct J

Mosaics
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Mosaic CLEAN

(1) Find CLEAN component: position of the maximum of H and intensity of
J (even if it is not the maximum of J)

(2) Remove corresponding point source from J and H

Y B! [Di i [Bi 54]
>

Jk:+1 — Jk -

Y B! [DZ-* [BZ- 5,€H
U\/ZB?
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Mosaic CLEAN

(3) Identify I and the sum of CLEAN components

(4) Clean map:
M =C x Z (Sk + Jk

max

C' = clean beam

Jhmax = final residuals

e The algorithms CLARK, SDI, and MX can be adapted in a similar
way: find position of CLEAN components on H, and correct J

e This is not feasible for MRC — because this method relies on a linear measurement
equation, which is not the case for mosaics
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GILDAS implementation

The mosaicing algorithm is implemented in MAPPING for the HOGBOM, CLARK, and
SDI methods.

e Create a dirty map for each field, with the same phase center.

e Combine the fields to produce the dirty mosaic. Input parameters: primary beam
width and truncation level (B, ~ 0.1 — 0.3).

e Mosaic mode switched on when loading a mosaic. Same parameters as normal
deconvolution: windows, maximal number of iterations,...

e Clean beam is computed from the first field

e Mosaic has to be truncated at some value of ;. Default: truncation at

o7/0 =1/v/ B
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52°01'00"

52°00'40"

Mosaics: example

H, + CO(2—1) EHV 4+ continuum 1.3 mm in HH211

Disk (A1.3 mm continuum)

Shock

(H, 2.12um

emission)

S

3"44™00% 58%0 56°0 54°0
(Gueth & Guilloteau 1999)
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52°01'00"

52°00'40"

Mosaics: example

H, + CO(2—1) EHV 4+ continuum 1.3 mm in HH211

S

3"44™00% 58%0 56°0 54°0

S
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TT Cyg CO(1-0) v=—28.6 to —26.56 km & !
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(Pety et al. 2005)
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Mosaics and short spacings
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Mosaics and short spacings

Effect of missing short spacings more severe on mosaics than on single-field images:

e Extended structures are filtered out in each field
e Lack of information on an intermediate scale as compared to the mosaic size
e Possible artefact: extended structures split in several parts

e In most cases cases, adding the short spacings is required
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Mosaics and short spacings

Without short—spacings |
Recovered flux = 37% ~

With short—spacings

Mosaics and short spacings
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Mosaics and short spacings

Effect of missing short spacings more severe on mosaics than on single-field images:

e Extended structures are filtered out in each field
e Lack of information on an intermediate scale as compared to the mosaic size
e Possible artefact: extended structures split in several parts

e In most cases cases, adding the short spacings is required

However, mosaics are able to recover part of the short spacings
information
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Image formation in a mosaic

Ekers & Rots’s analysis: ideal “on-the-fly” mosaic: (u,v) fixed, (¢,,m,)
continuously modified, visibility V., monitored

e Phase center = Pointing center = (0,0

Vines(u, v) = [FT(B x I)](u, v) // 1(6,m) e 2mirvm) qp dm,

e Phase center (0,0) # Pointing center (¢, m,)

400
Vmes(ua v, gpa mp) - // B(f - €p7 m — mp) g(g, m) e—2i7r(u€+vml dl dm

F(u,v,€,m)
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Image formation in a mosaic

e V. can be written as a convolution product:

Vmes(u7 U: gpa mp) — B(gjm mp) * f(u7 U7 gP’ mp)

e Fourier transform of V. with respect to (£,,m,):

FT (Vines)] (wpy vp) = T'(wp, v,) V(up + 1, v, + )

o T'=FT(B) = transfer function T'(u,, v,) = 0if \/u+v2 > d
o VV = “true” visibility = FT(7)
o F = I x(phase term) = FT(F) = V at a shifted point

Mosaics and short spacings
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Image formation in a mosaic

e Ideal “on-the-fly” mosaic: (u,v) fixed, (¢,,m,) continuously modified,
visibility V.. monitored

FT Vmes 5
e For , /ug — U}% <d: V(u, +u,v,+v) = | P(T(u )]v@)‘p Vp)
p> Up

e The measurements were done at (u,v), but the “true” visibility can
be recovered in a disk of radius d, centered in (u,v)

e Redundancy of the adjacent pointings allows to estimate the source visibility at
points which were not sampled!
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Interpretation

e An interferometer is sensitive to all spatial frequencies from B—D to B4+D = it
measures a local average of the “true” visibilities

(B+D) /A

(B=D)/A
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Interpretation

e An interferometer is sensitive to all spatial frequencies from B—D to B4+D = it
measures a local average of the “true” visibilities

e Measured visibilities: Vs = FT(B x I) = T * V where T is the transfert function
of the antenna

e Pointing center (¢, m,) # Phase center: phase gradient across the antenna aperture

Vines(U, v) = [T(u, V) e*m(“gﬁ“mﬁ)] * V(u,v)

e Combination of measurements at different (¢,,m,) should allow to
derive V

e The recovery algorithm is a simple Fourier Transform
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Consequences: short spacings

e Mosaicing can recover information in a disk of radius D around each sample in the
uv plane

e Minimal baseline B,;, — Recovery down to B,;, — D
e Mosaics are able to recover part of the short spacing information

e In practice:

e Noisy data, rapidly decreasing function T" — expect only gain of D /2

e Direct analysis not used: instead, direct reconstruction of the mosaic +
deconvolution — more complex properties
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Consequences: image quality

e Mosaicing can recover information in a disk of radius D around each sample in the
uv plane! Mosaicing can recover part of the short spacings information!

e The resulting image should be wonderful!l NO!

e The image quality is not drastically improved in a mosaic because of additional
information being recovered. The ‘“equivalent” uv coverage is denser, but
the region to be imaged is larger.
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Consequences: field spacing

e In practice: not on-the-fly measurements, but sampling of the pointing positions

e Primary beam is a Gaussian (of 1.2 \/D FWHM) — large overlap between the
adjacent fields is needed

e Previous analysis includes Fourier transform on a support which extends up to
+D/A

—> same information can be recovered with pointing centers separated by A/2d

—> optimal separation between pointing centers = half the primary
beam FWHM
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Conclusions

e Mosaicing is a standard observing mode at Plateau de Bure

e Adding short spacings from the IRAM 30-m is an (almost) standard
procedure

Mosaics and short spacings
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