

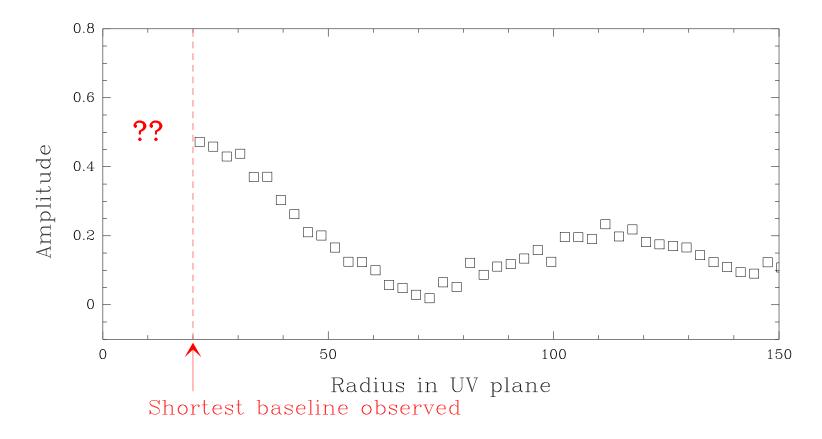
Large-scale mapping

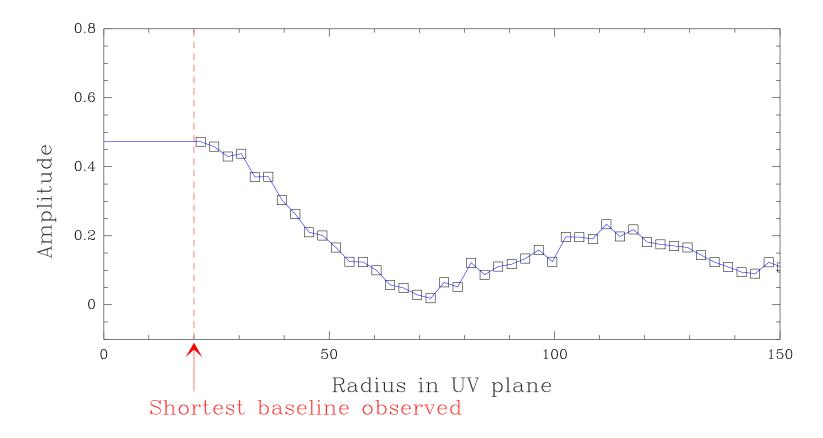
Frédéric Gueth

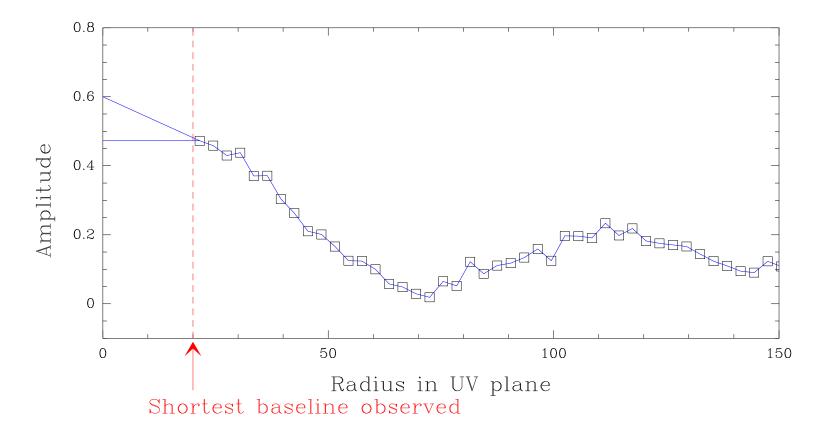
IRAM Grenoble

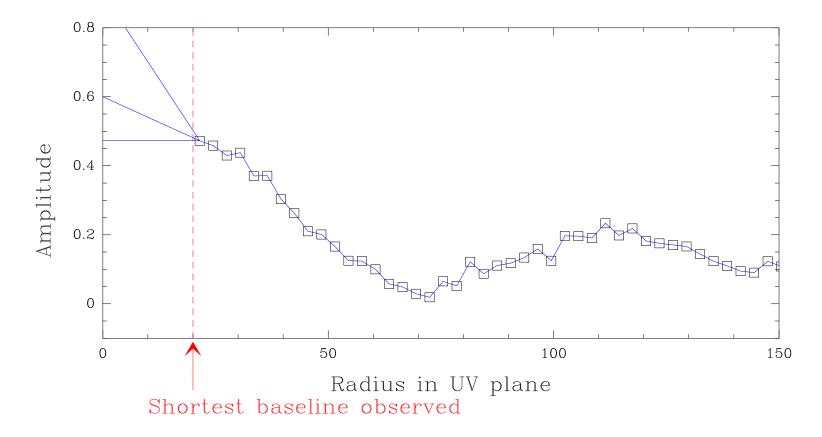
1

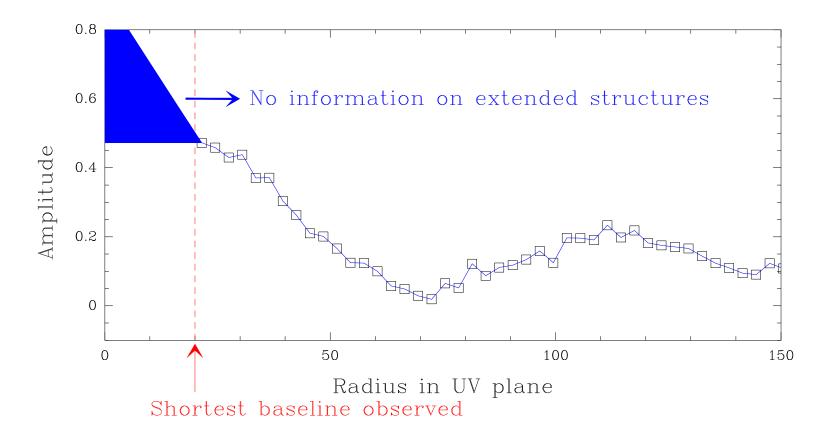
IRAM mm-Interferometry School 2006


Problems when mapping an extended source


- The largest structures are filtered out due to the lack of the short spacings Solution: add the **short spacing** information
- The field of view is limited by the antenna primary beam width Solution: observe a **mosaic** = several adjacent overlapping fields
- Deconvolution algorithms are not very good at recovering small- *and* large-scale structures

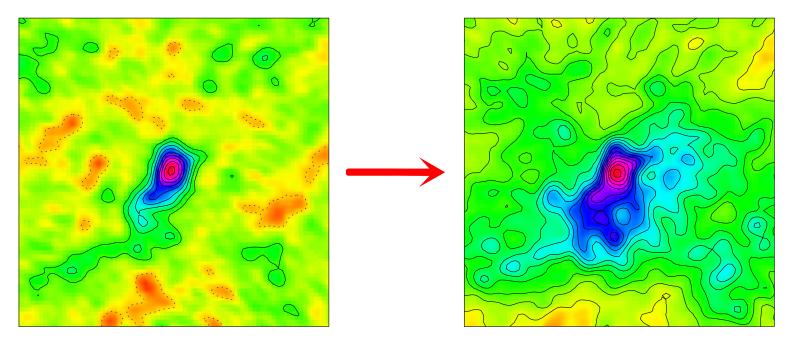

Solution: try SDI CLEAN, Multi-Scale CLEAN, Multi-Resolution CLEAN, ...


• Non-coplanar baselines


Solution: use appropriate algorithm if necessary – not the case for mm-interferometers

The short spacings problem

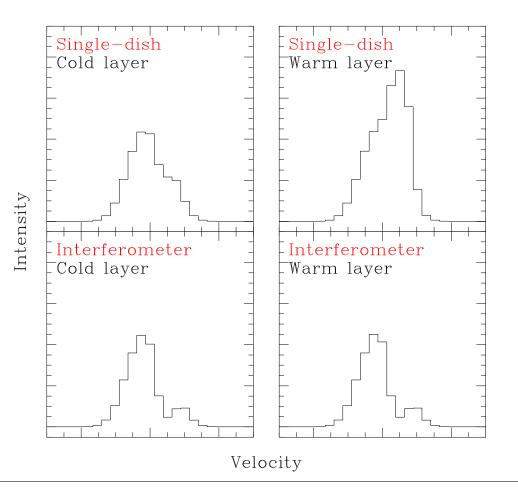
Missing short spacings :


- Shortest baseline $B_{\min} = 24$ m at Plateau de Bure
- Projection effects can reduce the minimal baseline but baselines smaller than antenna diameter D can never be measured
- In any case: lack of the short spacings information

Consequence :

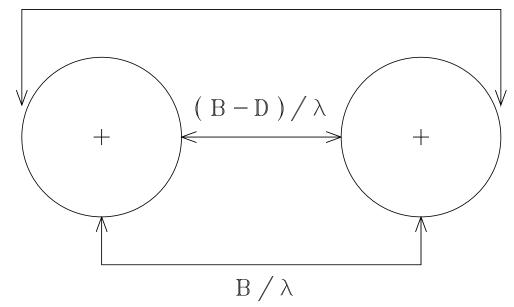
- The most extended structures are filtered out
- The largest structures that can be mapped are $\sim 2/3$ of the primary beam (field of view)
- Structures larger than $\sim 1/3$ of the primary beam may already be affected

Without short spacings

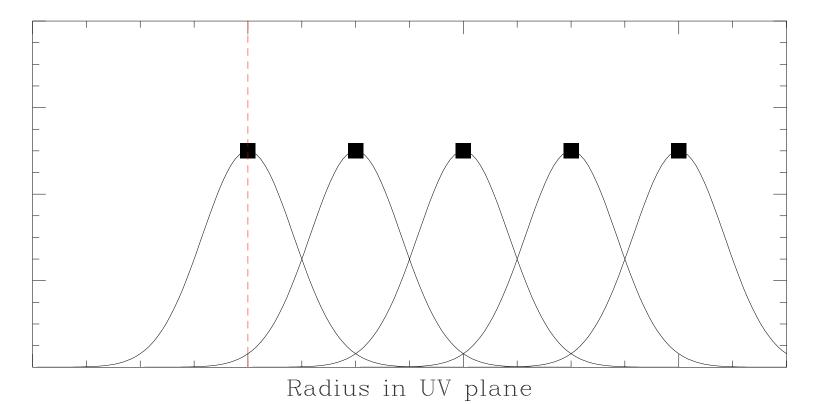

With short spacings

 $^{13}\mathrm{CO}$ (1–0) in the L1157 protostar (Gueth et al. 1997)

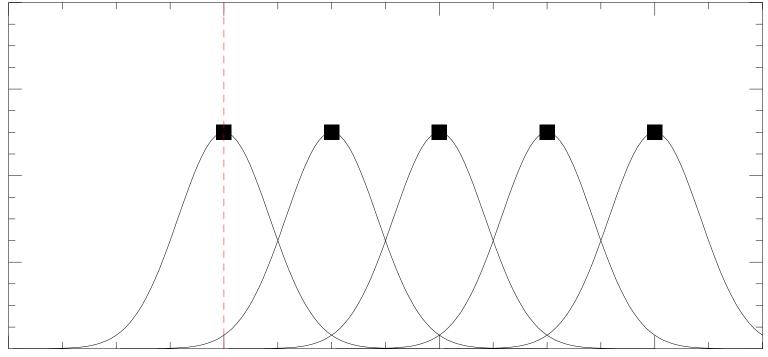
Simulations of small source + extended cold/warm layer


Lack of short spacings can introduce complex artifacts **leading to wrong** scientific interpretation

Spatial frequencies: measurements

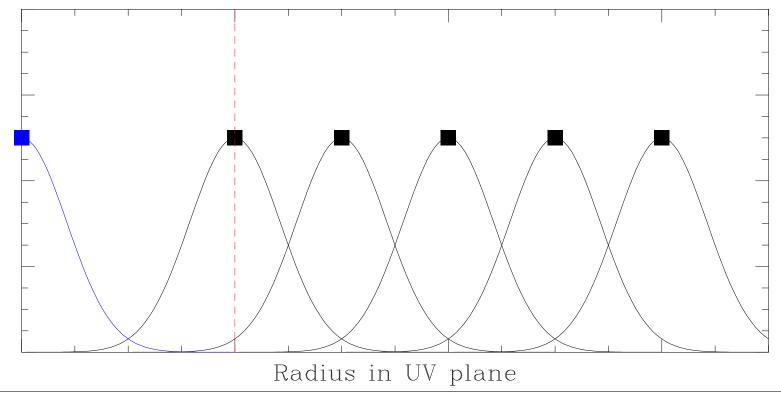

- A single-dish of diameter D is sensitive to spatial frequencies from **0** to **D**
- An interferometer baseline B is sensitive to spatial frequencies from B D to B + D

(B+D)/ λ

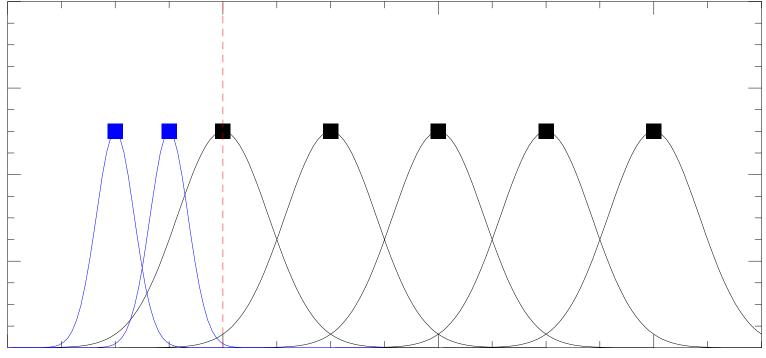


Spatial frequencies: measurements

An interferometer measures the **convolution** of the "true" visibility with the **antenna transfer function**

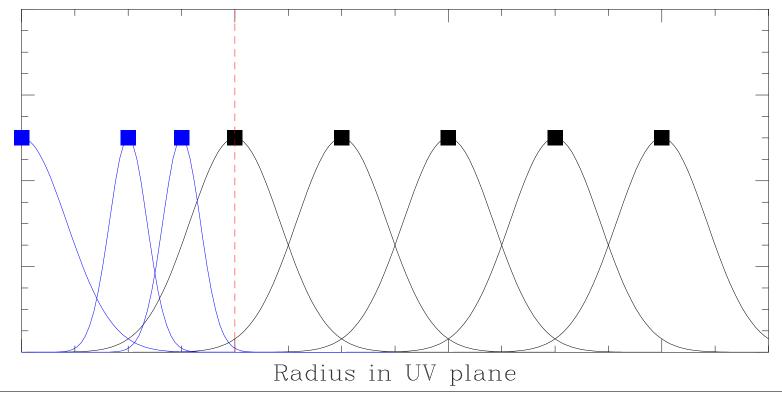


No short-spacings

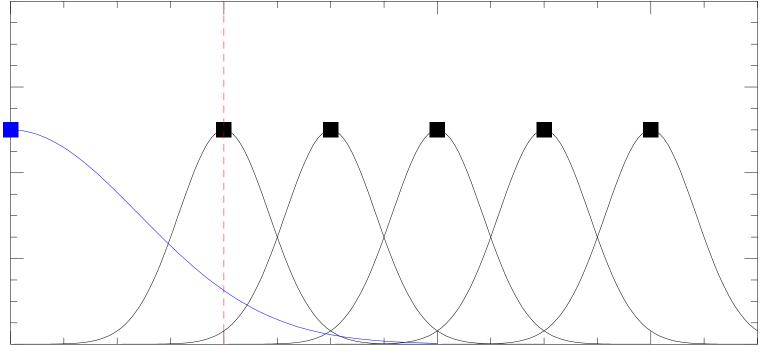


Radius in UV plane

Single-dish measurement (same antenna diameter)



Interferometer with smaller antennas



Radius in UV plane

Small interferometer + Single-dish measurement

Single-dish measurement (larger antenna diameter)

Radius in UV plane

IRAM PdBI + IRAM 30-m

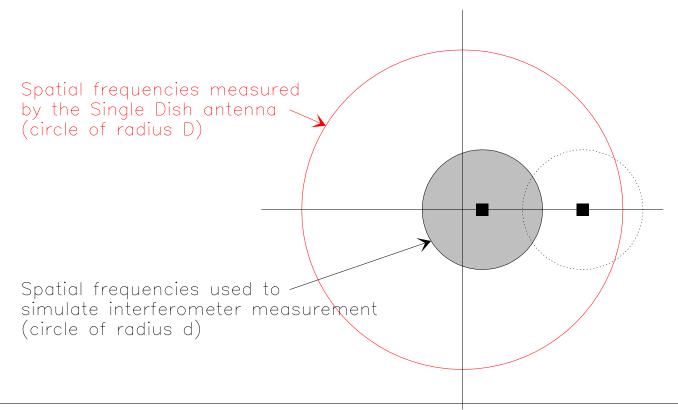
- Get zero and short spacings
- Only two instruments to be merged
- Same calibration procedures
- Same software
- Same proposal

Short spacings from SD data

- Combine SD and Interferometric maps in the image plane
- Joint deconvolution (MEM or CLEAN)
- Hybridization: fill inner hole in uv plane with FT of single-dish image
- Combine data in the uv plane before deconvolution
 - **1.** Use the 30–m map to simulate what would have observed the PdBI, i.e. extract "pseudo-visibilities"
 - 2. Merge with the interferometer visibilities
 - **3.** Process (gridding, FT, deconvolution) all data together

This drastically improves the deconvolution

Extracting visibilities


SD map = SD beam * Sky

Int. map = Dirty beam * (Int beam \times Sky)

- Image plane Gridding of the single-dish data
- Image plane Extrapolation to zero outside the mapped region
- uv plane Correction for single-dish beam and gridding function
- Image plane Multiplication by interferometer primary beam
- uv plane Extract visibilities up to $D_{SD} D_{Int}$
- uv plane Apply a **weighting factor** before merging with the interferometer data

Spatial frequencies: what can be extracted from SD data

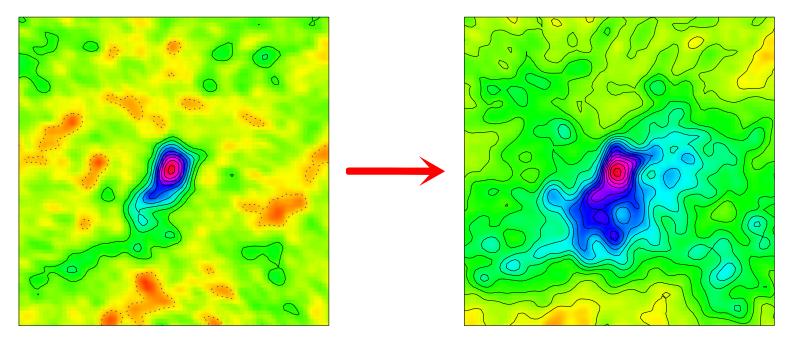
Single-dish data \implies pseudo-visibilities from 0 to $D_{SD} - D_{Int}$

Weighting factor

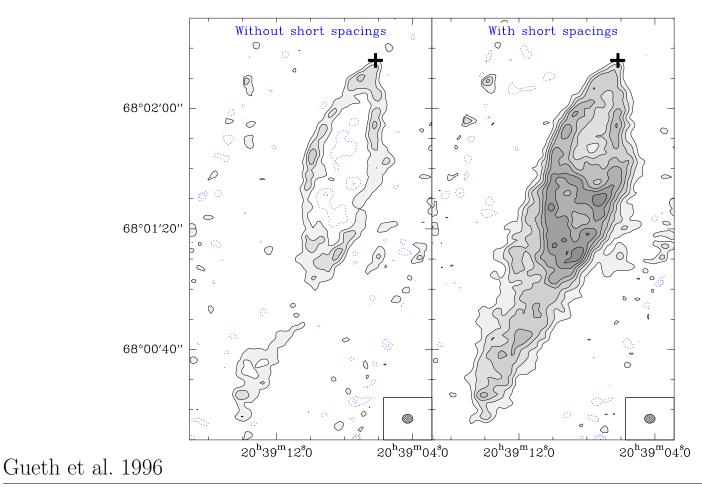
Weighting factor to SD data :

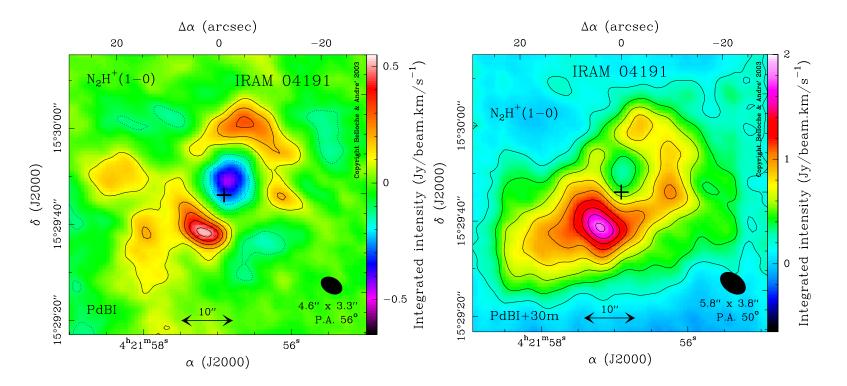
- Produce different images and dirty beams
- Same result after deconvolution, if methods were perfect
- \bullet Methods are not perfect, noise \longrightarrow weight to be optimized
- Usually, it is better to **downweight the SD data** (as compared to natural weight)

Optimization :


- Adjust the weights so that there is almost **no negative sidelobes** while keeping the highest angular resolution possible
- Adjust the weights so that the **weight densities in 0–D and D–2D** areas are equal \longrightarrow mathematical criteria

GILDAS implementation: user interface


	Short-spacings processi	ng		
GO ABORT			HELP	
COMPLETE PROCESSING				
Single-Dish input table (.tab)	Į		File	
Interferometer uv-tables (GENERIC name)	I		File	
Output merged uv-tables (GENERIC name)	Ĭ			
Single-Dish data unit	Tmb Choi			
SD amplitudes scaling factor	1			
SD weights scaling factor	1			
Check input data	CHECK		Help	
Create short-spacings UV tables from SD data	SHORT SPACINGS	Check parameters	Help	
Merge SD and interferometer UV tables	MERGE DATA	Check parameters	Help	
Go to mapping procedure	MAPPING		Help	


Without short spacings

With short spacings

 $^{13}\mathrm{CO}$ (1–0) in the L1157 protostar (Gueth et al. 1997)

 N_2H^+ in the IRAM 04191 protostar (Belloche et al. 2004)

Mosaics

Interferometer field of view

Measurement equation of an interferometric observation:

 $\mathbf{F} = \mathbf{D} * (\mathbf{B} \times \mathbf{I}) + \mathbf{N}$

- F = dirty map = FT of observed visibilities
- $D = \text{dirty beam} (\longrightarrow \text{deconvolution})$
- B = primary beam = FT of transfer function
- I = sky brightness distribution = FT of "true" visibilities
- N = noise distribution

\bullet An interferometer measures the product $\mathbf{B}\times\mathbf{I}$

- B has a finite support \longrightarrow limits the size of the field of view
- $B \sim \text{Gaussian} \longrightarrow$ primary beam correction possible (proper estimate of the fluxes) but strong increase of the noise

Primary beam width

Gaussian illumination $\implies B \sim \text{Gaussian of } \mathbf{1.2} \lambda / \mathbf{D} \text{ FWHM}$

Plateau de Bure $D = 15 \text{ m}$	Frequency	Wavelength	Field of View
	$85~\mathrm{GHz}$	$3.5 \mathrm{mm}$	58"
	$100 \mathrm{~GHz}$	3.0 mm	50"
	$115 \mathrm{~GHz}$	$2.6 \mathrm{mm}$	43"
	$215 \mathrm{~GHz}$	1.4 mm	23"
	$230 \mathrm{~GHz}$	$1.3 \mathrm{mm}$	22"
	$245~\mathrm{GHz}$	1.2 mm	20"

Mosaicing with the PdBI

Mosaic :

- Field spacing = half the primary beam FWHM i.e. one field each 11" at 230 GHz
- Observations with two receivers: choice of the spacing for one frequency \longrightarrow under- or oversampling for the other frequency **NO LONGER VALID**
- Mosaic at $3 \text{ mm} \longrightarrow \text{no mosaic at } 1 \text{ mm}$

WITH NEW RECEIVERS

Observations :

• Fields are observed in a loop, each one during a few minutes → similar atmospheric conditions (noise) and similar *uv* coverages (dirty beam, resolution) for all fields

Mosaicing with the PdBI

Size of the mosaic :

• Observing time to be minimized, uv coverage to be maximized \longrightarrow maximal number of fields ~ 20

Calibration :

- Procedure identical with any other Plateau de Bure observations (only the calibrators are used)
- Produce one dirty map per field

Short spacings :

 Visibilities from 30−m data are computed and merged with Plateau de Bure data for each field → process as a normal mosaic

Mosaic reconstruction

• Forgetting the effects of the dirty beam:

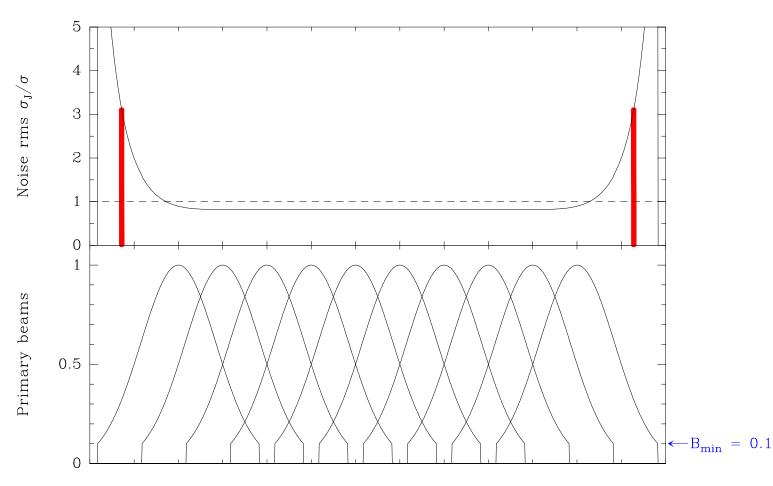
$$F_i = B_i \times I + N_i$$

- This is similar to several measurements of I, each one with a "weight" B_i
- Best estimate of I in least-square formalism (assuming same noise):

$$\mathbf{J} = \frac{\displaystyle{\sum_i \mathbf{B}_i \, \mathbf{F}_i}}{\displaystyle{\sum_i \mathbf{B}_i^2}}$$

• J is homogeneous to I, i.e. the mosaic is **corrected for the primary beam attenuation**

Noise distribution


$$J = \frac{\sum_{i} B_{i} F_{i}}{\sum_{i} B_{i}^{2}} \quad \Longrightarrow \quad \sigma_{J} = \sigma \frac{1}{\sqrt{\sum B_{i}^{2}}}$$

The noise depends on the position and strongly increases at the edges of the field of view

In practice :

- Use truncated primary beams $(B_{\min} = 0.1 0.3)$ to avoid noise propagation between adjacent fields
- Truncate the mosaic

Noise distribution

Mosaic deconvolution

- Linear mosaicing: deconvolution of each field, then mosaic reconstruction Non-linear mosaicing: mosaic reconstruction, then global deconvolution
- The two methods are not equivalent, because the deconvolution algorithms are (highly) non-linear
- Non-linear mosaicing gives better results
 - sidelobes removed in the whole map
 - better sensitivity
- Plateau de Bure mosaics: non-linear joint deconvolution based on CLEAN

Mosaic CLEAN

Signal-to-noise distribution :

$$\mathbf{H} = \frac{\mathbf{J}}{\sigma_{\mathbf{J}}} = \frac{1}{\sigma} \frac{\sum B_i^t \left[D_i * (B_i I) + N_i \right]}{\sqrt{\sum B_i^{t^2}}}$$

Mosaic CLEAN :

- J has a non-uniform noise level
- It is safer to search for CLEAN components on H
- Find positions of components on H
- Correct J

Mosaic CLEAN

(1) Find CLEAN component: position of the maximum of H and intensity of J (even if it is not the maximum of J)

(2) Remove corresponding point source from \mathbf{J} and \mathbf{H}

$$J_{k+1} = J_k - \frac{\sum B_i^t \left[D_i * \left[B_i \, \delta_k \right] \right]}{\sum B_i^{t^2}}$$

$$H_{k+1} = H_k - \frac{\sum B_i^t \left[D_i * \left[B_i \, \delta_k \right] \right]}{\sigma \, \sqrt{\sum B_i^{t^2}}}$$

Mosaic CLEAN

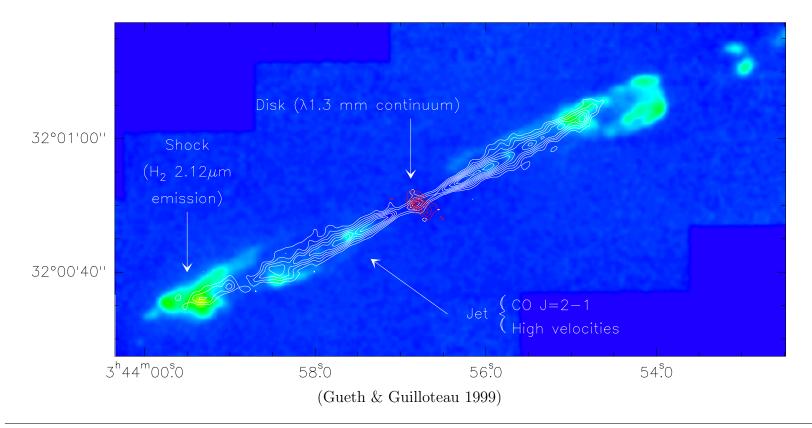
(3) Identify I and the sum of CLEAN components

(4) Clean map:

$$M = C * \sum \delta_k + J_{k_{\max}}$$

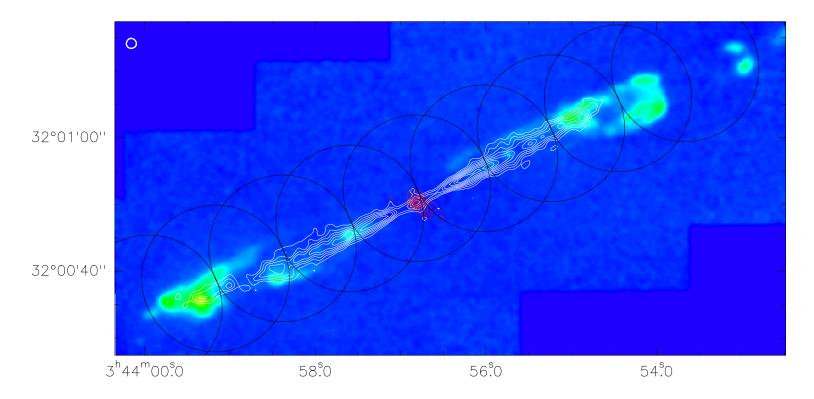
C = clean beam $J_{k_{\text{max}}} = \text{final residuals}$

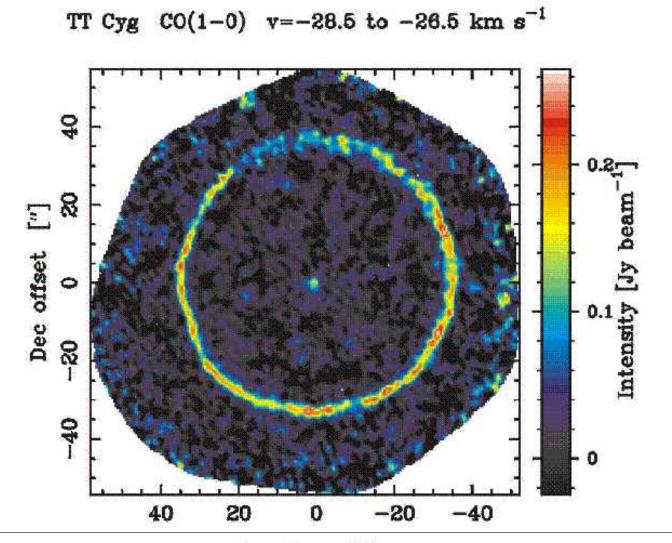
- The algorithms CLARK, SDI, and MX can be adapted in a similar way: find position of CLEAN components on H, and correct J
- This is not feasible for MRC because this method relies on a linear measurement equation, which is not the case for mosaics

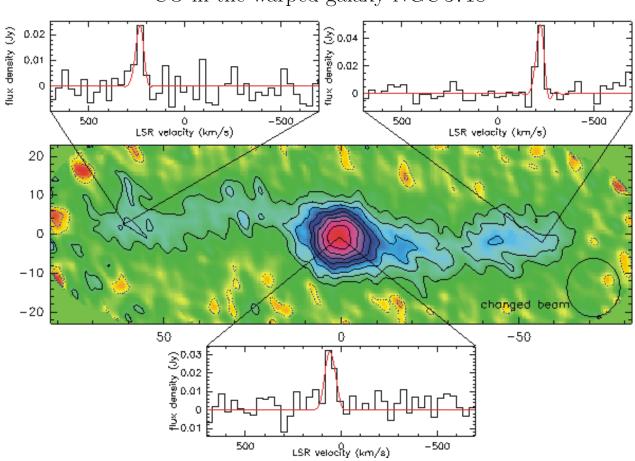

GILDAS implementation

The mosaicing algorithm is implemented in **MAPPING** for the **HOGBOM**, **CLARK**, and **SDI** methods.

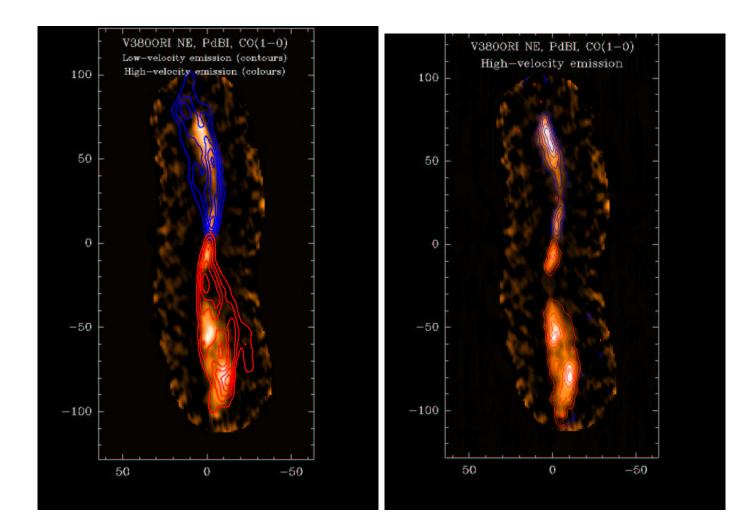
- Create a dirty map for each field, with the same phase center.
- Combine the fields to produce the dirty mosaic. Input parameters: primary beam width and truncation level $(B_{\min} \sim 0.1 0.3)$.
- Mosaic mode switched on when loading a mosaic. Same parameters as normal deconvolution: windows, maximal number of iterations,...
- Clean beam is computed from the first field
- Mosaic has to be truncated at some value of σ_J . Default: truncation at $\sigma_J/\sigma = 1/\sqrt{B_{\min}}$.

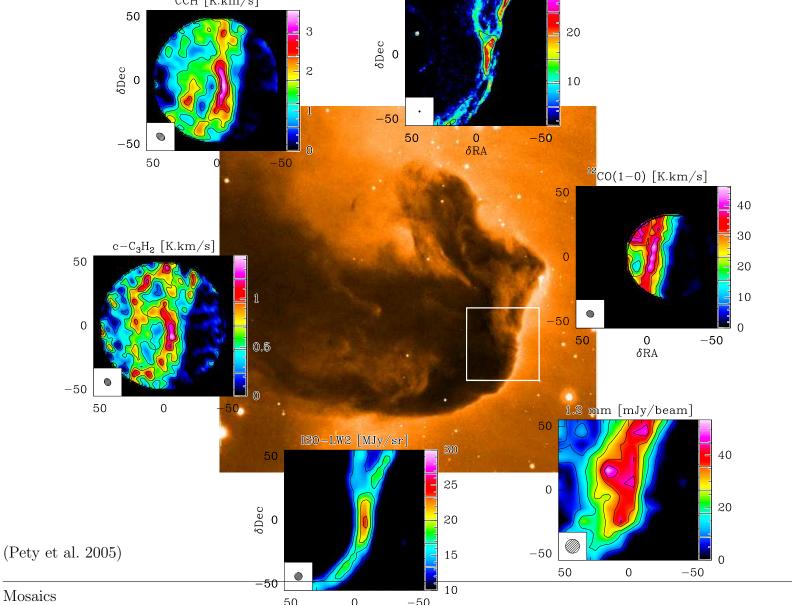

Mosaics: example


H_2 + CO(2-1) EHV + continuum 1.3 mm in HH211

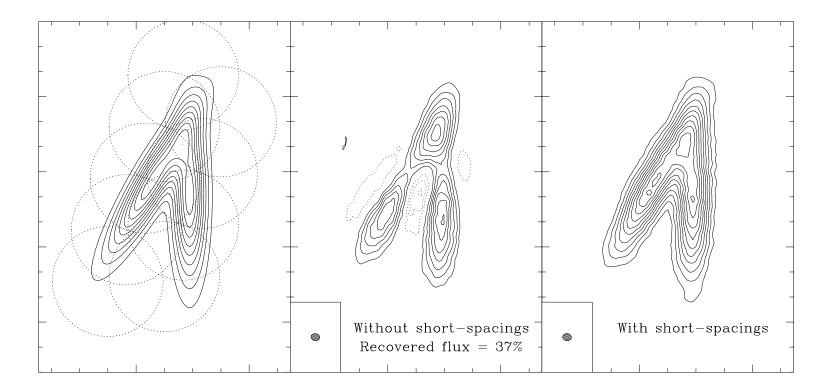


Mosaics: example


$H_2 + CO(2-1) EHV + continuum 1.3 mm in HH211$



CO in the warped galaxy NGC 3718 $\,$



Mosaics

Effect of missing short spacings more severe on mosaics than on single-field images:

- Extended structures are filtered out in each field
- Lack of information on an **intermediate scale** as compared to the mosaic size
- Possible artefact: extended structures split in several parts
- In most cases cases, adding the short spacings is required

Effect of missing short spacings more severe on mosaics than on single-field images:

- Extended structures are filtered out in each field
- Lack of information on an **intermediate scale** as compared to the mosaic size
- Possible artefact: extended structures split in several parts
- In most cases cases, adding the short spacings is required

However, mosaics are able to recover part of the short spacings information

Image formation in a mosaic

Ekers & Rots's analysis: ideal "on-the-fly" mosaic: (u, v) fixed, (ℓ_p, m_p) continuously modified, visibility V_{mes} monitored

• Phase center = Pointing center =
$$(0, 0)$$

$$V_{\rm mes}(u,v) = [{\rm FT}(B \times I)](u,v) = \iint_{-\infty}^{+\infty} B(\ell,m) I(\ell,m) \, {\rm e}^{-2i\pi(u\ell+vm)} \, d\ell \, dm$$

• Phase center $(0,0) \neq$ Pointing center (ℓ_p, m_p)

$$V_{\rm mes}(u,v,\ell_p,m_p) = \iint_{-\infty}^{+\infty} B(\ell-\ell_p,m-m_p) \underbrace{I(\ell,m)\,{\rm e}^{-2i\pi(u\ell+vm)}}_{\mathcal{F}(u,v,\ell,m)} d\ell \, dm$$

Image formation in a mosaic

• $V_{\rm mes}$ can be written as a convolution product:

$$V_{\rm mes}(u, v, \ell_p, m_p) = B(\ell_p, m_p) * \mathcal{F}(u, v, \ell_p, m_p)$$

• Fourier transform of V_{mes} with respect to (ℓ_p, m_p) :

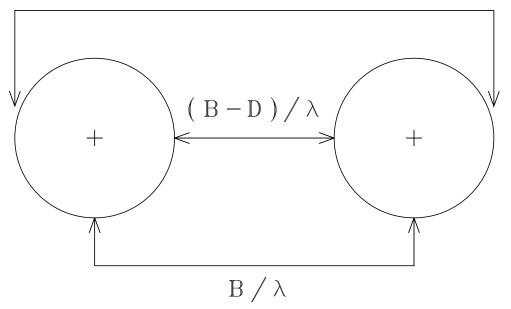
$$[\mathrm{FT}_{\mathrm{p}}(V_{\mathrm{mes}})](u_p, v_p) = T(u_p, v_p) V(u_p + u, v_p + v)$$

• $T = FT(B) = transfer function T(u_p, v_p) = 0 \text{ if } \sqrt{u_p^2 + v_p^2} > d$

- V = "true" visibility = FT(I)
- $\mathcal{F} = I \times (\text{phase term}) \Rightarrow FT(\mathcal{F}) = V$ at a shifted point

Image formation in a mosaic

• Ideal "on-the-fly" mosaic: (u, v) fixed, (ℓ_p, m_p) continuously modified, visibility $V_{\rm mes}$ monitored


• For
$$\sqrt{u_p^2 + v_p^2} < d$$
: $V(u_p + u, v_p + v) = \frac{[\mathrm{FT}_p(V_{\mathrm{mes}})](u_p, v_p)}{T(u_p, v_p)}$

- The measurements were done at (u, v), but the "true" visibility can be recovered in a disk of radius d, centered in (u, v)
- Redundancy of the adjacent pointings allows to estimate the source visibility at points which were not sampled!

Interpretation

• An interferometer is sensitive to all spatial frequencies from B-D to $B+D \implies$ it measures a **local average** of the "true" visibilities

(B + D) / λ

Interpretation

- An interferometer is sensitive to all spatial frequencies from B-D to $B+D \implies$ it measures a **local average** of the "true" visibilities
- Measured visibilities: $V_{\text{mes}} = FT(B \times I) = \mathbf{T} * \mathbf{V}$ where T is the transfert function of the antenna
- Pointing center $(\ell_p, m_p) \neq$ Phase center: phase gradient across the antenna aperture $V_{\text{mes}}(u, v) = \left[T(u, v) e^{-2i\pi(u\ell_p + vm_p)}\right] * V(u, v)$
- Combination of measurements at different (ℓ_p, m_p) should allow to derive V
- The recovery algorithm is a simple Fourier Transform

Consequences: short spacings

- • Mosaicing can recover information in a disk of radius D around each sample in the uv plane
- Minimal baseline $B_{\min} \longrightarrow \mathbf{Recovery \ down \ to \ } \mathbf{B}_{\min} \mathbf{D}$
- Mosaics are able to recover part of the short spacing information
- In practice:
 - Noisy data, rapidly decreasing function $T \longrightarrow$ expect only gain of $\mathbf{D/2}$
 - Direct analysis not used: instead, direct reconstruction of the mosaic + deconvolution \longrightarrow more complex properties

Consequences: image quality

- Mosaicing can recover information in a disk of radius D around each sample in the uv plane! Mosaicing can recover part of the short spacings information!
- The resulting image should be wonderful! **NO!**
- The image quality is not drastically improved in a mosaic because of additional information being recovered. The "equivalent" *uv* coverage is denser, but the region to be imaged is larger.

Consequences: field spacing

- In practice: not on-the-fly measurements, but sampling of the pointing positions
- Primary beam is a Gaussian (of $1.2 \lambda/D$ FWHM) \longrightarrow large overlap between the adjacent fields is needed
- \bullet Previous analysis includes Fourier transform on a support which extends up to $\pm D/\lambda$
- \implies same information can be recovered with pointing centers separated by $\lambda/2 d$
- \Longrightarrow optimal separation between pointing centers = half the primary beam FWHM

Conclusions

- Mosaicing is a **standard observing mode** at Plateau de Bure
- Adding short spacings from the IRAM 30–m is an (almost) standard procedure