Single-dish antenna at radio wavelengths

Pierre Hily-Blant
IRAM interferometry school 2006

I. Antenna Optics

Characteristics of a Cassegrain single-dish antenna

I. Antenna Optics

Why Cassegrain configuration?

We want a large F/D

- increase effective area (or on-axis gain)
- use secondary focus: decrease spillover
- Rx alignement more easily acheived; focal plane arrays
- but increase mechanical load
- ⇒ Cassegrain configuration
- + Effective ratio $F_e/D = m(F/D)$
- obstruction by subreflector ($\varnothing=2$ m at 30-m) \Rightarrow wider main-beam
- 30m antenna:

$$F/D = 0.35$$
, $m = 27.8$, $F_e/D \approx 10$

Main single-dish antenna

Large aperture: f/D $\lesssim 1$

Institute	Diameter (m)	Frequency (GHz)	Wavelength (mm)	HPBW (")	Latitude
Max-Planck IRAM JCMT APEX CSO	100 30 15 12 10.4	0.09 - 1.15 $80 - 280$ $210 - 710$ $230 - 1200$ $230 - 810$	3 - 300 $1 - 3$ $0.2 - 2$ $0.3 - 1.3$ $0.4 - 1.3$	11 - 680 $9 - 30$ $8 - 20$ $6 - 30$ $10 - 30$	$+47^{\circ}$ $+37^{\circ}$ $+20^{\circ}$ -22° $+20^{\circ}$

Terminology

Receivers (Rx)

- ullet bandwidth $\Delta
 u = 0.5$ -2 GHz to 50 GHz
- ullet central frequency $u_0 = 100 1200 \; \mathrm{GHz}$
- $\Delta \nu \ll \nu_0 \Rightarrow \approx \text{monochromatic}$
- one polarization (linear, circular)
- taper (apodization at the rim)

Backends:

- spectrometers:
 - o filter banks (FB),
 - o autocorrelators (AC)
 - acousto-optic (AOS), fourier transform (FTS)
- ullet spectral resolution $\delta
 u pprox 0.01 1\,\mathrm{MHz}$
- \Rightarrow resolution power $R = \nu_0/\delta\nu \approx 10^5 10^8$

Power received

What is the power received from a (point) source of flux density S_{ν} (W m⁻² Hz⁻¹)?

- S_{ν} measured in Jy: 1 Jy = $10^{-26}~\mathrm{W\,m^{-2}\,Hz^{-1}}$
- Monochromatic power:

$$p_{\nu} = \frac{1}{2} A_e \cdot S_{\nu} \qquad [W \, Hz^{-1}]$$

ullet Power in the bandwidth $\Delta
u$:

$$p = \frac{1}{2} A_e \cdot S_{\nu} \cdot \Delta \nu \qquad [W]$$

• effective area of the antenna:

$$A_e \le A_{\text{geom}}$$

Question: $A_e = ?$

Ideal beam pattern

 Diffraction theory (Huygens-Fresnel, Fraunhoffer approx.)

$$E_{\rm f-f}(l,m) \propto \mathcal{F}[E_{\rm ant}(x,y)]$$

- $E_{\rm ant}(x,y)$ (grading)
 - \circ bounded on a finite domain $\Delta 1$ $\Rightarrow E_{\mathrm{f-f}}(l,m)$ concentrated on a finite domain $\Delta 2 \; (\Delta 1 \cdot \Delta 2 \sim 1)$
 - o sharp cut of the antenna domain
 ⇒ oscillations (side-lobes) ⇒ taper

IRAM Interferometry School

- /

Ideal beam pattern

- Reciprocity: antenna in emission:
 - \circ pattern of the transmitted emission depends on the direction (l,m):

Power pattern

$$\mathcal{P}(l,m) \propto |E_{\rm f-f}(l,m)|^2$$

Effective area

$$A(l,m) = A_{\text{max}} \cdot \mathcal{P}(l,m)$$

o example: circular aperture

$$\mathcal{P}(l,m) \propto$$
 Airy disk

IRAM Interferometry School

8

Power pattern

Brightness distribution with total-power telescope

- point source: flux density $S_{\nu}(\mathrm{W\,m^{-2}\,Hz^{-1}})$
- extended source: brightness $I_{\nu}(l,m)$ $I_{\nu} = \mathrm{d}S_{\nu}/\mathrm{d}\Omega \; (\mathrm{W\,m^{-2}\,Hz^{-1}\,sr^{-1}})$
- from the direction (l_i, m_i) :

$$dp_{\nu} = A(l_i, m_i) I_{\nu}(l_i, m_i) d\Omega_i$$

• incoherent emission: add intensities

$$p_{\nu}(0,0) = \iint A(l,m) I_{\nu}(l,m) d\Omega$$

Brightness distribution with total-power telescope

- point source: flux density $S_{\nu}(\mathrm{W\,m^{-2}\,Hz^{-1}})$
- ullet extended source: brightness $I_{
 u}(l,m)$

$$I_{\nu} = dS_{\nu}/d\Omega \; (W \, m^{-2} \, Hz^{-1} \, sr^{-1})$$

- ullet antenna tilted towards (l_0,m_0)
- from the direction (l_i, m_i) $dp_{\nu} = A(l_0 - l_i, m_0 - m_i) I_{\nu}(l_i, m_i) dl_i dm_i$
- incoherent emission: add intensities
- $p_
 u(l_0,m_0) = \iint A(l_0-l,m_0-m)\,I_
 u(l,m)\,\mathrm{d}l\mathrm{d}m$ $I_
 u' = \mathcal{P}*I_
 u$

Convolution: consequences

Point source

-> see the beam

Infinite telescope

-> see the source

Smoothing

→ smear the source

$$\theta_{\rm obs} = \sqrt{\theta_{\rm mb}^2 + \theta_{\rm sou}^2}$$

Beam pattern

- secondary lobes (finite surface antenna)
- error lobes (surface irregularities)
 - o main-beam collects less power
 - o if correlation length l \Rightarrow one Gaussian error-beam $\Theta_{\rm EB} \approx \frac{1}{2} \cdot \lambda/\ell$ real beam = main-beam +
 - real beam = main-beam +
 error-beam(s)
- Questions:
 - What power is collected in each beam ?
 - o What are the FWHMs of the beams?

IRAM 30-m antenna: Error-Beams power

Brightness temperature

ullet $T_{
m B}$ defined by

$$I_{\nu} = B_{\nu}(T_{\rm B})$$
 [W m⁻² Hz⁻¹ sr⁻¹]

ullet radiation temperature, T_R , Rayleigh-Jeans approximation

$$I_{\nu} = \frac{2k\nu^2}{c^2}T_R$$
 (W m⁻² Hz⁻¹ sr⁻¹)

- ullet relation $T_{
 m B}-T_{
 m R}$: $T_{
 m R}=J_{
 u}(T_{
 m B})=rac{h
 u}{k}rac{1}{\exp(h
 u/kT_{
 m B})-1}$
- ullet in the following: $I_{\nu}(l,m)
 ightarrow T_R(l,m)$
- ullet consequence: power $\propto T_R$

$$p_{\nu}(l_0, m_0) = \frac{k}{\lambda^2} \iint_{4\pi} A(l, m) T_R(l_0 - l, m_0 - m) d\Omega$$

IRAM Interferometry School

15

Antenna temperature

- ullet Johnson noise in terms of an equivalent temperature average power transferred from a conductor to a line within $\delta
 u$: $= k \, T \, \delta
 u$
- Antenna temperature: antenna as a conductor

$$p_{\nu} = k T_A$$
 [W·Hz⁻¹] = [J] = [J·K⁻¹][K]

•
$$A_{\text{max}} = \lambda^2 / \iint_{4\pi} P(l, m) d\Omega$$

• Therefore:
$$T_A(l,m)=rac{1}{\lambda^2}\iint_{4\pi}A(l,m)\,T_R(l_0-l,m_0-m)\,\mathrm{d}\Omega$$

$$T_A(l,m)=\iint_{4\pi}T_R(l_0-l,m_0-m)\,\mathrm{d}\Omega/\iint_{4\pi}P(l,m)\mathrm{d}\Omega$$

Atmosphere

$$T = \alpha \left\{ T_R e^{-\tau_{\nu}} + (1 - e^{-\tau_{\nu}}) T_{\text{atm}} \right\} + (1 - \alpha) T_{\text{gr}}$$

see J-M Winters lecture

$$T_{
m A}^*$$
 and $T_{
m mb}$

- ullet Antenna temperature: $T_{
 m A}^*$
 - \circ takes into account rear side-lobes: FORWARD SIGNAL ONLY (2 π sr)
 - \circ corrects for atmospheric attenuation: $\times \exp(\tau_{\nu})$

$$T_{\mathcal{A}}^*(\Omega_0) = \frac{\int_{\Omega_S} \mathcal{P}(\Omega) T_R(\Omega_0 - \Omega) d\Omega}{\mathcal{P}_{2\pi}} \qquad \qquad \mathcal{P}_{2\pi} = \int_{2\pi} \mathcal{P}(\Omega) d\Omega$$

ullet $T_{
m mb}$: Equivalent in main-beam instead of 2π

$$T_{\rm mb}(\Omega_0) = \frac{\int_{\Omega_S} \mathcal{P}(\Omega) T_R(\Omega_0 - \Omega) d\Omega}{\mathcal{P}_{\rm mb}} \qquad \qquad \mathcal{P}_{\rm mb} = \int_{\Omega_{\rm mb}} \mathcal{P}(\Omega) d\Omega$$

Temperature scales

Definitions

$$F_{\text{eff}} = \frac{\mathcal{P}_{2\pi}}{\mathcal{P}_{4\pi}}$$
 $B_{\text{eff}} = \frac{\mathcal{P}_{\text{mb}}}{\mathcal{P}_{4\pi}}$

Consequences

$$T_{\rm mb} = \frac{F_{\rm eff}}{B_{\rm eff}} T_{\rm A}^* = \frac{\mathcal{P}_{2\pi}}{\mathcal{P}_{\rm mb}} T_{\rm A}^*$$

What you measure is $T_{
m A}^*$ or $T_{
m mb}$ (usually $eq T_{
m R}$)

Which temperature scale?

Source size Temperature scales
$$\begin{split} \Omega_S &= 2\pi & T_R = T_{\rm A}^* \\ \Omega_S &= \Omega_{\rm mb} & T_R = T_{\rm mb} \\ 2\pi &< \Omega_S & T_R < T_{\rm A}^* \\ \Omega_{\rm mb} &< \Omega_S < 2\pi & T_{\rm A}^* < T_R < T_{\rm mb} \\ \Omega_{\rm mb} &> \Omega_S & T_{\rm mb} < T_R \end{split}$$

Goal of the calibration

- ullet Atmosphere: opacity $au_
 u$
- ullet Antenna-sky coupling: $F_{
 m eff}$
- Output at backends: "counts"

Question: counts \longrightarrow Temperature ? $C = \chi T \Longrightarrow \chi = ?$

$$C_{\text{sou}} = \chi \left\{ T_{\text{rec}} + F_{\text{eff}} e^{-\tau_{\nu}} T_{\text{sou}} + T_{\text{emi}} \right\}$$

$$T_{\text{emi}} = F_{\text{eff}} (1 - e^{-\tau_{\nu}}) T_{\text{atm}} + (1 - F_{\text{eff}}) T_{\text{gr}}$$

⇒ How many unknowns? 4 unknowns

$$\{\chi,\, au_
u,\,{f T}_{
m sou},\,{f T}_{
m rec}\}$$

4 unknowns \Rightarrow 4 equations \Rightarrow 4 measurements:

$$T_{
m sou}$$
, $T_{
m atm}$, $T_{
m hot}$ and $T_{
m col}$

"Chopper Wheel"

$$C_{
m sou} = \chi \left\{ T_{
m rec} + T_{
m emi} + F_{
m eff} e^{-\tau_{
u}} T_{
m sou} \right\}$$
 $C_{
m atm} = \chi \left\{ T_{
m rec} + T_{
m emi} \right\}$
 $C_{
m hot} = \chi \left\{ T_{
m rec} + T_{
m hot} \right\}$
 $C_{
m col} = \chi \left\{ T_{
m rec} + T_{
m col} \right\}$

Making differences

$$C_{\text{sou}} - C_{\text{atm}} = \chi F_{\text{eff}} e^{-\tau_{\nu}} T_{\text{sou}}$$

 $C_{\text{hot}} - C_{\text{atm}} = \chi (T_{\text{hot}} - T_{\text{emi}})$

Definition of $T_{\rm cal}$:

$$T_{
m sou} = rac{C_{
m sou} - C_{
m atm}}{C_{
m hot} - C_{
m atm}} \; T_{
m cal}$$

$$\Rightarrow T_{\rm cal} = (T_{\rm hot} - T_{\rm emi}) \frac{e^{\tau_{\nu}}}{F_{\rm eff}}$$

Outputs of calibration procedure: $T_{ m rec}$

Hot & cold loads $\longrightarrow T_{\rm rec}$:

$$Y = \frac{C_{\text{hot}}}{C_{\text{col}}}$$
 $T_{\text{rec}} = \frac{T_{\text{hot}} - YT_{\text{col}}}{Y - 1}$

Outputs of calibration procedure: $T_{\rm cal}$

Rewrite $T_{\rm emi}$

$$T_{\rm emi} = T_{\rm gr} + F_{\rm eff}(T_{\rm atm} - T_{\rm gr}) - F_{\rm eff}e^{-\tau_{\nu}}T_{\rm atm}$$

$$C_{\text{hot}} - C_{\text{atm}} = \chi \{ (T_{\text{hot}} - T_{\text{gr}}) + F_{\text{eff}} (T_{\text{gr}} - T_{\text{atm}}) + F_{\text{eff}} e^{-\tau_{\nu}} T_{\text{atm}} \}$$

• Assume $T_{\rm hot} = T_{\rm atm} = T_{\rm gr} \Rightarrow \{\chi, \tau_{\nu}\} \rightarrow \{\chi e^{-\tau_{\nu}}\}$ \Rightarrow 3 unknowns \Rightarrow e.g. don't need to solve for τ_{ν} (Penzias & Burrus 1973)

$$T_{
m cal} = T_{
m atm}$$

• General case: different $T_{\rm atm}$, $T_{\rm hot}$ and $T_{\rm gr}$ \Rightarrow solve for the 4 unknowns

Outputs of calibration procedure: $T_{ m sys}$

System temperature: describes the noise including all sources from the sky down to the backends

$$\sigma_T = \frac{\kappa \cdot T_{\rm sys}}{\sqrt{\delta \nu \, \Delta t}}$$

- ullet κ depends on the observing mode: ON-OFF $t_{
 m ON}=t_{
 m OFF} \Rightarrow \kappa=\sqrt{2}$
- \bullet $\delta_{
 u}$: spectral resolution
- Δt : integration time $(t_{\tt ON} = t_{\tt OFF})$

From $T_{\rm mb}$ to I_{ν}

How to convert the temperatures into $W\,m^{-2}\,Hz^{-1}$?

$$S_{\nu} = \int_{\Omega_r} I_{\nu}(\Omega) d\Omega = \frac{2k}{\lambda^2} \int_{\Omega_r} T_{\rm mb} d\Omega$$

Gaussian source of uniform radiation temperature T_R :

$$S_{\nu} = 8.2 \times 10^{-3} \left(\frac{\nu}{100 \ GHz} \right)^{2} \left(\frac{\theta_{r}}{1''} \right)^{2} \left(\frac{T_{R}}{K} \right)$$

Image formation: total power telescope

- antenna scans the source
- ullet image: convolution of I_0 by beam pattern $I_
 u'=\mathcal{P}*I_{0,
 u}$
- ullet measure directly the brightness distribution I_0

Image formation: correlation telescope

- antennas fixed w.r.t. the source
- ullet correlation temperature: $\mathcal{T}(0,0)$ Fourier transform of $I_0 imes \mathcal{P}$
- ullet measure the Fourier transform of the brightness distribution I_0
- image built afterwards

Interferometer field of view

$$F = D * (\mathcal{P} \times I) + N$$

F = dirty map = FT of observed visibilities

 $D = \mathsf{dirty} \mathsf{ beam} (\longrightarrow \mathsf{deconvolution})$

 \mathcal{P} = power pattern of single-dish (primary beam B in the following)

I = sky brightness distribution

N = noise distribution

- ullet An interferometer measures the product $\mathcal{P} imes I$
- ullet has a finite support \longrightarrow limits the size of the field of view
- ullet \mathcal{P} is a Gaussian \longrightarrow primary beam correction possible (proper estimate of the fluxes) but strong increase of the noise

$$E_{\mathrm{ant}}(x,y) \qquad \qquad \Longrightarrow \qquad \mathrm{Voltage\ pattern}\ F(l,m)$$

$$\downarrow |\cdot|^2$$
 Transfert function $T(u,v) \qquad \Longrightarrow \qquad \mathrm{Power\ pattern}\ \mathcal{P}(\ell,m)$
$$= \mathrm{Primary\ beam}$$

IRAM Interferometry School

30

Summary

- full-aperture antenna: P ∗ I
- ullet interferometry sensitive to ${\cal P} imes {f I}$
- amplitude calibration:
 - o converts counts into temperatures
 - o corrects for atmospheric absorption
 - o corrects for spillover
- lobe = main-lobe + error-lobes (e.g. as much as 50% in error-lobes at 230GHz for the 30m)
- Pay attention to the **temperature scale** to use $(T_A^*, T_{mb},...)$

Interferometer field of view

Measurement equation of an interferometric observation:

$$F = D * (B \times I) + N$$

 $F = \mathsf{dirty} \; \mathsf{map} = \mathsf{FT} \; \mathsf{of} \; \mathsf{observed} \; \mathsf{visibilities}$

 $D = \operatorname{dirty beam} (\longrightarrow \operatorname{deconvolution})$

B = primary beam

I = sky brightness distribution

N = noise distribution

- ullet An interferometer measures the product B imes I
- ullet B has a finite support \longrightarrow limits the size of the field of view
- ullet B is a Gaussian \longrightarrow primary beam correction possible (proper estimate of the fluxes) but strong increase of the noise

Primary beam width

$$\begin{array}{cccc} \text{Aperture function} & \rightleftarrows & \text{Voltage pattern} \\ & \star \downarrow & & \downarrow |\cdot|^2 \\ \text{Transfert function } T(u,v) & \rightleftarrows & \text{Power pattern } B(\ell,m) \\ & = \text{Primary beam} \end{array}$$

Gaussian illumination \Longrightarrow to a good approximation, B is a Gaussian of $1.2\,\lambda/D$ FWHM

Plateau de Bure

	D = 15 m	
Frequency	Wavelength	Field of View
85 GHz	3.5 mm	58''
100 GHz	3.0 mm	50 ''
115 GHz	2.6 mm	43"
215 GHz	1.4 mm	23"
230 GHz	1.3 mm	22 ''
245 GHz	1.2 mm	20"