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[. Antenna

Optics

Characteristics of a Cassegrain single-dish antenna

Backends

Spectrometers

filter banks
autocorrelators
AOS

FTS

C(nut) [~ ]

Frontends

M1

single pixel
multi pixels
heterodyne/continuum

subreflector
M2
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[. Antenna

Optics

Why Cassegrain configuration ?

We want a large F'//D

e increase effective area (or on-axis gain)
e use secondary focus: decrease spillover

e Rx alignement more easily acheived; focal

plane arrays

but increase mechanical load

Cassegrain configuration
Effective ratio F./D = m(F/D)

+

— obstruction by subreflector (& = 2 m at 30-

m) = wider main-beam

30m antenna:

F/D =0.35, m = 27.8, F,/D ~ 10

Sky: Ts < Tg
Ts=tau.(Tg-40K)

1

R 1
Primary focus

Ground

Tg=300K = I = p

Secondary focus
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[. Antenna

Main single-dish antenna

Large aperture: f/D< 1

Institute Diameter  Frequency Wavelength  HPBW Latitude
(m) (GHz) (mm) (")

Max-Planck 100 0.09 -1.15 3 -—300 11 — 680 +447°
IRAM 30 80 — 280 1—3 9—30 +37°
JCMT 15 210 —710 0.2-—2 8 — 20 +20°
APEX 12 230 — 1200 0.3—-1.3 6 — 30 —22°

CSO 10.4 230 -810 04-—-1.3 10 -30  +20°
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[. Antenna

Terminology

Receivers (Rx)

bandwidth
Av = 0.5-2 GHz to 50 GHz

central frequency
vo = 100 — 1200 GHz

Av < vg = ~ monochromatic
one polarization (linear, circular)

taper (apodization at the rim)

Backends:
® spectrometers:

o filter banks (FB),

o autocorrelators (AC)

o acousto-optic  (AQS),
transform (FTS)

e spectral resolution dv =

1 MHz

= resolution power

R = vy/0v ~ 10° — 10®

fourier

0.01 —
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[l. Perfect antenna

Power received

What is the power received from a (point) source of flux density S,
(Wm™2Hz"1)?

e S, measuredin Jy: 1 Jy =102 Wm—2Hz!

e Monochromatic power: Py = %Ae - Sy [WHz ]
e Power in the bandwidth Av: p=3A.-S, - Av (W]
o cffective area of the antenna: Ae < Ageom

Question: A, =7
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[l. Perfect antenna

ldeal beam pattern

. .
e Diffraction theory

(Huygens-Fresnel, Fraunhoffer approx.)

Ef_f(l, m) X f[Eant(xa y)]

o F.ni(x,y) (grading)

o bounded on a finite domain Al

= Fr_¢(l,m) concentrated on a
finite domain A2 (Al1-A2 ~ 1)

o sharp cut of the antenna domain
= oscillations (side-lobes) = taper

IRAM Interferometry School



[l. Perfect antenna

ldeal beam pattern

e Reciprocity: antenna in emission: —-,!

o pattern of the transmitted emission
depends on the direction (I, m):
Power pattern
P(l,m) o< |Ee_¢(1,m)|?
Effective area

A(l,m) = Amax - P(l, m)
o example: circular aperture

P(l,m) o Airy disk

IRAM Interferometry School



[l. Perfect antenna

Power pattern

Relative power (dB)
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[l. Perfect antenna

Brightness distribution with total-power telescope

e point source: flux density

S,(Wm~2Hz1)
e extended source: brightness I,,(I, m)
I, =dS5,/dQ (Wm™?Hz tsr 1)
e from the direction (I;, m;):
dp, = A(l;,m;) 1, (l;, m;) d€Y;

® incoherent emission: add intensities

p,(0,0) = //A(l,m) L(1,m) d©
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[l. Perfect antenna

Brightness distribution with total-power telescope

e point source: flux density S,(Wm™2?Hz™1)
e extended source: brightness I,,(I,m)
I, =dS5,/dQ (Wm™2Hz tsr™?)

e antenna tilted towards (lg, mo)

" 1(10,m0)

e from the direction (I;, m;)
A(0,0) dpy = A(ZO — li) mo — mz) Iy(li, mz) dlzdmz

e incoherent emission: add intensities

e convolution

pu(lo, mo) = //A(lo —1,mg —m) I,(l,m) dldm
I' =Px1I,

'
A(10+11,mby m1);
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[l. Perfect antenna

Convolution: consequences

Point source Infinite telescope Smoothing
P, ad
B af -] Product i) Pa($o — ¢)
Pn (a) B\ J\ = curve —_ |
/ Va (a)
g ¢ — %

0 Po _Tn__"[ o]

/ksm*ﬁn“ﬁn (&) s n J\ = ®)
/_L 3 ///,/\
Dg 5 Do
——= see the beam ——= see the source ——= smear the source

eobs — \/912nb + 93011
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[1l. Real antenna

Beam pattern

e secondary lobes (finite surface antenna)

e crror lobes (surface irregularities)

o main-beam collects less power
o if correlation length {

= one Gaussian error-beam Ogp ~ % ‘

real beam = main-beam -4
error-beam(s)

e Questions:

o What power is collected in each beam 7
o What are the FWHMSs of the beams 7

W

Total Power (dB)

Cffget in Arcsecends
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[1l. Real antenna

IRAM 30-m antenna: Error-Beams power

o5 (")

Normalized integrated power P(8)

Log( 0 / 9fb)

40% in MB

30% into 3rd EB

IRAM Interferometry School

14



IV. Temperature scales

Brightness temperature

o Ty defined by I, = B,(Ts) [(Wm™2Hz sr™]

e radiation temperature, T'g, Rayleigh-Jeans approximation

B 2k1?

I, 5

Tr  (Wm ?Hz 'srt)

C

o relation T — Tr: Tr = Ju(Ts) = ¥ sommu e =1
e in the following: I,(I,m) — Tr(l,m)

® consequence: power < 1T’

pu(lo,mo) = 3% // A(l,m) Tr(ly — 1, mg — m) A
47
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IV. Temperature scales

Antenna temperature

e Johnson noise in terms of an equivalent temperature
average power transferred from a conductor to a line within dv: = kT v

e Antenna temperature: antenna as a conductor

Py =kTy (W -Hz 1] =[J] =[J - K K]

o Amax = \2/ /AWP(l,m)dQ

o Therefore: Ta(l,m) %// A(l,m) Tgr(lo — 1, mg — m) dS2

'A(l, m) // Tr(lo —l,mg —m dQ/// (I,m)d
4 47
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IV. Temperature scales

Atmosphere
Tr

\ i / /r atm.(1-exp(-tau)

Tr.exp(-tau)

/ ; E \ Tgr=300K

T=a{Tre ™+ (1—€ ™) Tatm} + (1 — )Ty

see J-M Winters lecture
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IV. Temperature scales

TK and Tmb

e Antenna temperature: 1T’k

o takes into account rear side-lobes: FORWARD SIGNAL ONLY (27 sr)
o corrects for atmospheric attenuation: X exp(7,)

Jors P(9) Tr(Q — Q)dQ Y .

Tx(Qp) =
A( O) 73271' 2T

o 1. Equivalent in main-beam instead of 27

Jo P(Q) Tr(92 — 2)dS
731rnb

Tob(Q0) = Pob = / P(2)d2
me

IRAM Interferometry School 18



IV. Temperature scales

Temperature scales

Definitions

Tmb —

What you measure is T'x or Typ (usually # Tg)

7)27r
Fog = —/—
" P47r
7’-)mb
B = —
" 7'7471'
Consequences
Fe n
i Po
Beff 7Dmb

Ty
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IV. Temperature scales

Which temperature scale ?

10 10°
1 L 1
| A=1.3 mm
o8l S |
L Tmb 4
%Q A
~ 06k -
%‘1 L
3D .
P O —— :
N - TZ
ol T~ .
0 0.5 | 1 1.5
Log( 0 / @fb)
Source size Temperature scales
QS =27 TR — TX
Qs = Qmyp, Tr = Tmb
21 < Qg Tr < TK
Qb < Qg < 27 TX<TR<Tmb
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V. Calibration

Goal of the calibration

e Atmosphere: opacity 7,
e Antenna-sky coupling: Feg

e Qutput at backends: “counts’

Question: counts — Temperature 7?7
C=xT—=— xy =7

Csou X {Trec + Feffe_TVTsou + Temi}
Temi — Feff(l — e_TV)T,atm + (]- — Feff)Tgr

= How many unknowns ? 4 unknowns

{X7 Ty, Tsoua Trec}

4 unknowns = 4 equations = 4 measurements:

Tsou, Tatm, Thot and Tcol
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V. Calibration

“Chopper Wheel”

Csou = X {Trec + Temi + Fesre™ " Tuou }
Catm = X1{Trec + Temi}

Chot = X {Trec + Thot}

Ceot = X{Trec + Teor}

Making differences

Csou — Catm — XFeffe_TyTsou
Ohot — Catm — X(Thot — Temi)

Definition of T4

T . Csou o Catm T |
sou — ca
Ohot — Catm
e’
= Tcal — (Thot — Temi) e —
eff
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V. Calibration

Outputs of calibration procedure:

Trec

Hot & cold loads — Tiec:

Chot
Y =
C'col
Thot — YTcol
Trec —
Y —1

IRAM Interferometry School
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V. Calibration

Outputs of calibration procedure:
Tcal

Rewrite Topm;

Temi — Ler + Feff(Tatm — Tgr) — Feffe_TV atm

C'hot — Catm — X{(Thot - Tgr) + Feff(Tgr — Tatm)
+ Feffe_TV atm}

o Assume Thot = Tatm = Tgr = {X, 7w} — {xe ™}
= 3 unknowns = e.¢. don't need to solve for 7,
(Penzias & Burrus 1973)

Tcalz Tatm

o General case: different Thtm, Thot and Ty
= solve for the 4 unknowns

IRAM Interferometry School 24



V. Calibration
Outputs of calibration procedure:
Tsys

System temperature: describes the noise including all
sources from the sky down to the backends

K Lsys

vV ov At

oT —

e x depends on the observing mode: ON-OFF tgy =
tOFF = K = \/§

® 0, spectral resolution

o At: integration time (tON:tOFF)
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V. Calibration

From 1, to I,

How to convert the temperatures into Wm=2Hz 17

2k
S, = / L)AQ =2 [ 7. d0
, A Ja,

Gaussian source of uniform radiation temperature T'g:

2
_ —3 v 2 & E
Sy = 8.2x10 (100 GHz) <1> (K)

IRAM Interferometry School 26



Image formation: total power telescope

grading far-field pattern
2
® [
transfer function power pattern

® antenna SCans the source

| | . r_
e image: convolution of Iy by beam pattern [, = P ]07,/
e measure directly the brightness distribution I

IRAM Interferometry School
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Image formation: correlation telescope

grading far-field pattern

|

A
/N
/N
/ \
/ \
N

transfer function power pattern

antennas fixed w.r.t. the source
correlation temperature: 7(0,0) Fourier transform of Iy x P
measure the Fourier transform of the brightness distribution I

image built afterwards
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Interferometer field of view

F=Dx(PxI)+ N
dirty map = FT of observed visibilities
dirty beam (— deconvolution)
power pattern of single-dish (primary beam B in the following)
sky brightness distribution
noise distribution

Z2~39 0T
I

e An interferometer measures the product P x I
e P has a finite support — limits the size of the field of view

e P is a Gaussian —» primary beam correction possible (proper estimate of the fluxes)
but strong increase of the noise
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Eant (xa y)

“|

Transfert function T'(u, v)

~

Voltage pattern F'(I, m)

| 12
Power pattern P (£, m)
— Primary beam

IRAM Interferometry School
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Summary

o full-aperture antenna: P *1
e interferometry sensitive to P x I

e amplitude calibration:

o converts counts into temperatures
o corrects for atmospheric absorption
o corrects for spillover

¢ lobe = main-lobe + error-lobes (e.g. as much as 50% in error-lobes at
230GHz for the 30m)

e Pay attention to the temperature scale to use (T'X, Twp,..)
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Interferometer field of view

Measurement equation of an interferometric
observation:

F=Dx(BxI)+N

= dirty map = FT of observed visibilities
dirty beam (— deconvolution)
primary beam

sky brightness distribution

noise distribution

F
D
B
1
N

e An interferometer measures the product B x I

e B has a finite support — limits the size of the field
of view

e B isa Gaussian —> primary beam correction possible
(proper estimate of the fluxes) but strong increase of
the noise
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Primary beam width

Aperture function = Voltage pattern

| I
Transfert function T'(u,v) =  Power pattern B(¢, m)
= Primary beam

Gaussian illumination = to a good approximation,
B is a Gaussian of 1.2 A/D FWHM

Plateau de Bure

D =15 m
Frequency Wavelength  Field of View
85 GHz 3.5 mm 58"
100 GHz 3.0 mm 50"
115 GHz 2.6 mm 43"
215 GHz 1.4 mm 23"
230 GHz 1.3 mm 22"
245 GHz 1.2 mm 20"
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