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The problems

T

e The largest structures are filtered out due to the lack of the short spacings

Solution: add the short spacing information

e The field of view is limited by the antenna primary beam width
Solution: observe a mosaic = several adjacent overlapping fields

e Deconvolution algorithms are not very good at recovering small- and large-scale
structures

Solution: try Multi-Scale CLEAN, Multi-Resolution CLEAN, ...

e Non-coplanar baselines

Solution: use appropriate algorithm if necessary



Lack of the short spacings
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Lack of the short spacings
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The problem

Missing short spacings :

e Shortest baseline By, = 24 m at Plateau de Bure

e Projection effects can reduce the minimal baseline — but baselines smaller than
antenna diameter D can never be measured

e In any case: lack of the short spacings information

Consequence :

e The most extended structures are filtered out

e The largest structures that can be mapped are ~ 2/3 of the primary beam

(field of view)

e Structures larger than ~ 1/3 of the primary beam may already be affected



Short Spacings
Example

With short spacings

PV

13CO (1-0) in the L1157 protostar (Gueth et al. 1997)
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Simulations of small source
+ extended cold/warm
layer

Lack of short spacings can
introduce complex arti-
facts leading to wrong
scientific interpreta-
tion

Intensity

Simulations

[ T ‘ T T T ‘ T
- Single—dish
L Cold layer

[ T ‘ T T T ‘ T
- Single—dish
L Warm layer

L Interferometer
| Cold layer

' Interferometer
L Warm layer

Velocity



Spatial frequencies

e A single-dish of diameter D is sensitive to spatial frequencies from 0 to D

e An interferometer baseline B is sensitive to spatial frequencies from B — D to
B-+D

(B+D) /X

(B=D)/A




"=  Measurements

ez

.An interferorﬁeter measures the convolution of the
“true” visibility with the antenna transfer function

Radius in UV plane



Measurements

No short-spacings
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Measurements

Single-dish measurement (same antenna diameter)
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Measurements

Interferometer with smaller antennas

Radius in UV plane



Measurements

Small interferometer + Single-dish measurement

Radius in UV plane
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Measurements

Single-dish measurement (larger antenna diameter)
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Short spacings from SD data

e Combine SD and Interferometric maps in the image plane
e Joint deconvolution (MEM or CLEAN)
e Hybridization: fill inner hole in uv plane with FT of single-dish image

e Combine data in the uv plane before deconvolution

1. Use the 30-m map to simulate what would have observed the PdBI, i.e. extract
“pseudo-visibilities”
2. Merge with the interferometer visibilities

3. Process (gridding, F'T, deconvolution) all data together

This drastically improves the deconvolution



Extracting visibilities

SD map = SD beam *x Sky

Int. map = Dirty beam * (Int beam x Sky)

Image plane Gridding of the single-dish data

uv plane Correction for single-dish beam

Image plane Multiplication by interferometer primary beam
uv plane Extract visibilities up to Dgp — Dint

uv plane Apply a weighting factor before merging with the interferometer
data



o = Extracting visibilities

Weighting factor to SD data :

e Produce different images and dirty beams
e Methods are not perfect, noise — weight to be optimized

e Usually, it is better to downweight the SD data (as compared to natural
weight)

Optimization :
e Adjust the weights so that there is almost no negative sidelobes while
keeping the highest angular resolution possible

e Adjust the weights so that the weight densities in 0—D and D—2D areas
are equal — mathematical criteria



Short spacings
Example

With short spacings

PV

13CO (1-0) in the L1157 protostar (Gueth et al. 1997)
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Short spacing
Example

Ao (arcsec)
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NoH™ in the IRAM 04191 protostar (Belloche et al. 2004)
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Interferometer field of view

Measurement equation of an interferometric observation:

F=DxBxI)+N

= dirty map = F'T of observed visibilities
dirty beam (— deconvolution)

primary beam = F'T of transfer function
sky brightness distribution = F'T of “true” visibilities

=~ O™
I

= noise distribution

e An interferometer measures the product B x 1

e B ~ Gaussian — primary beam correction possible (proper estimate of the
fluxes) but strong increase of the noise



Aperture function

|

Transfer function T'(u, v)
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Primary beam width

Voltage pattern

| 1

Power pattern B({,m)

= Primary beam

Gaussian illumination = B ~ Gaussian of 1.2 A\/D FWHM

Frequency Wavelength Field of View

85 GHz 3.5 mm 58"

100 GHz 3.0 mm 50"

Plateau de Bure 115 CHy 96 437
D=15m 215 GHz 1.4 mm 23"
230 GHz 1.3 mm 22"

245 GHz 1.2 mm 20"
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Mosaicing with the PdBI

Mosaic :

e Field spacing = half the primary beam FWHM i.e. one field each 11”
at 230 GHz

e Observations with two receivers: choice of the spacing for one frequency —
under- or oversampling for the other frequency NO LONGER VALID

e Mosaic at 3 mm —— no mosaic at 1 mm WITH NEW RECEIVERS

Observations :

e Fields are observed in a loop, each one during a few minutes — similar
atmospheric conditions (noise) and similar uv coverages (dirty beam,
resolution) for all fields



EERPEIT I=S Mosaicing with the PAB]

Size of the mosaic :

e Observing time to be minimized, uv coverage to be maximized — maximal
number of fields ~ 20

Calibration :

e Procedure identical with any other Plateau de Bure observations (only the
calibrators are used)

e Produce one dirty map per field

Short spacings :

e Visibilities from 30-m data are computed and merged with Plateau de Bure
data for each field — process as a normal mosaic



Mosaic reconstruction

e Forgetting the effects of the dirty beam:

e This is similar to several measurements of I, each one with a “weight” B;

e Best estimate of [ in least-square formalism (assuming same noise):

Zi B; F;
_ —Zi o

e J is homogeneous to I, i.e. the mosaic is corrected for the primary beam

J

attenuation



ZBF 1
;. =
ZB > B

The noise depends on the position and strongly
increases at the edges of the field of view

In practice :

e Use truncated primary beams (Bpy, = 0.1 — 0.3) to avoid noise
propagation between adjacent fields

e Truncate the mosaic
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Mosaic deconvolution

e Linear mosaicing: deconvolution of each field, then mosaic reconstruction
Non-linear mosaicing: mosaic reconstruction, then global deconvolution

e The two methods are not equivalent, because the deconvolution algorithms are
(highly) non-linear

e Non-linear mosaicing gives better results

e sidelobes removed in the whole map

e better sensitivity

e Plateau de Bure mosaics: non-linear joint deconvolution based on

CLEAN
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H, + CO(2—1) EHV + continuum 1.3 mm in HH211

Disk (A1.3 mm continuum)

52°01°00" Shock
(H, 2.12um
emission)
32°00'40"
J::)*W
High velocities
3"44™00%0 580 560 54°0

(Gueth & Guilloteau 1999)
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(Gueth & Guilloteau 1999)



TT Cyg CO(1-0) v=—28.6 to —26.5 km &~}

40

20

Dec offset ["]
0

—20

L r ] L ] I

40 20 0 -20 -40
RA offset [”]
CO101n TT Cvoni. Olofsson et al. 2000

L=
_1?

Intensity [Jy beam



RA affgat  [M]

CO 1-0 in TT Cygni, Olofsson et al. 2000
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Tlux density [Jy)

CO in the warped galaxy NGC 3718 (Krips et al. 2005)
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T I . N P T ST L
V3800RI NE, PdBI, CO(1-0) 1 - V380ORI NE, PdBI, CO(1-0)
Low—velocity emission (contours)

3 : e : High—velocity emission
High—velocity emission (colours) o

(Stanke et al. 2004




H, [Merg/s/cmZSr]

CCH [K.km/s]

50
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(Pety et al. 2005)
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- - - The problem
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Effect of missing short spacings more severe on mosaics than on single-field images:

e Extended structures are filtered out in each field
e Lack of information on an intermediate scale as compared to the mosaic size
e Possible artefact: extended structures split in several parts

e In most cases cases, adding the short spacings is required
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The problem

Effect of missing short spacings more severe on mosaics than on single-field images:
e ixtended structures are filtered out in each field
e Lack of information on an intermediate scale as compared to the mosaic size
e Possible artefact: extended structures split in several parts

e In most cases cases, adding the short spacings is required

However, mosaics are able to recover part of the short spacings
information



T : "‘ Image formation

' :

e An interferometer is sensitive to all spatial frequencies from B—D to B++D = it
measures a local average of the “true” visibilities

(B+D) /A

Q(BDVAQ
- -
B/ A




Image formation

e An interferometer is sensitive to all spatial frequencies from B—D to B4+D = it
measures a local average of the “true” visibilities

e Measured visibilities: Vipes = FT(B x I) = T % V where T is the transfert function
of the antenna

e Pointing center (¢,, m,) # Phase center: phase gradient across the antenna aperture

Vines(u, v) = [T(u, v) e—zm(ugpwmp)} « V(u,v)

e Combination of measurements at different (/,, m,) should allow to
derive V

e The recovery algorithm is a simple Fourier Transform (Ekers & Rots)






Conclusions

e Mosaicing is a standard observing mode at Plateau de Bure

e Adding short spacings from the IRAM 30-m is an standard procedure (box in
proposal form)

e ALMA designed from the beginning to include the short-spacings (ACA, SD
antennas) — but not for all projects

e New developments to come: on-the-fly interferometry




