Single-dish antenna at radio wavelength

P. Hily-Blant

Octobre 2008

Outline

- 1 Millimeter antenna: general introduction
- 2 Perfect antenna
- 3 Real antenna
- 4 Temperature scales
- 5 Calibration
- 6 Summary

A typical single-dish antenna

Perfect antenna

- $F/D \longrightarrow F_e/D = m \times F/D$ IRAM-30m. m = 27.8 $F/D = 0.35, F_e/D \approx 10$
- Rx alignement easier ; focal plane arrays
- increase effective area (or on-axis gain)
- decrease spillover
- but increase mechanical load
- obstruction by subreflector $(\emptyset = 2 \text{ m at } 30\text{-m}) \Rightarrow \text{wider}$ main-beam

Temperature scales

Main single-dish antenna at mm wavelength

Large aperture: $f/D \lesssim 1$

Institute	Diameter (m)	Frequency (GHz)	Wavelength (mm)	HPBW (")	Latitude
IRAM IRAM	30	70 – 280 70 – 345	1 – 4 0.8 – 4	9 – 35 7 – 35	+37°
JCMT	15	210 - 710	0.2 - 2	8 - 20	$+20^{\circ}$
APEX	12	230 - 1200	0.3 - 1.3	6 - 30	-22°
CSO	10.4	230 — 810	0.4 - 1.3	10 – 30	+20°

Perfect antenna

Some terminology

Receivers (Rx)

- ullet bandwidth $\Delta
 u = 0.5$ -4 GHz
- central frequency $\nu_0 = 100 1200 \; \mathrm{GHz}$
- heterodyne receivers: $\Delta \nu \ll \nu_0$ $\Rightarrow \approx$ monochromatic
- bolometers: $\Delta \nu \approx$ 50 GHz not monochromatic
- one polarization (linear, circular)
- taper (apodization at the rim)

Backends

- spectrometers:
 - filter banks (FB)
 - acousto-optic (AOS)
 - autocorrelators (AC)
 - Fast Fourier Transform Spectrometer (FFTS)
- spectral resolution $\delta
 u pprox 3 2000 \, \mathrm{kHz}$
- \Rightarrow largest resolution power $R = \nu_0/\delta\nu \approx 10^5 10^8$

Outline

- 1 Millimeter antenna: general introduction
- 2 Perfect antenna
- 3 Real antenna
- 4 Temperature scales
- **5** Calibration
- **6** Summary

Power received

What is the power received from an unpolarized (point) source of flux density S_{ν} (W m⁻² Hz⁻¹)?

- S_{ν} measured in Jy: 1 Jy = $10^{-26} \; \mathrm{W \, m^{-2} \, Hz^{-1}}$
- Monochromatic power:

$$p_{\nu} = \frac{1}{2} A_{\mathsf{e}} \cdot S_{\nu} \qquad [\mathrm{W}\,\mathrm{Hz}^{-1}]$$

• Power in the bandwidth $\Delta \nu$:

$$p = \frac{1}{2}A_e \cdot S_{\nu} \cdot \Delta \nu \qquad [W]$$

- effective area of the antenna: $A_e \leq A_{\text{geom}}$
- Question: $A_e = ?$

Power received

What is the power received from an unpolarized (point) source of flux density S_{ν} (W m⁻² Hz⁻¹)?

- S_{ν} measured in Jy: 1 Jy = $10^{-26} \ {\rm W \, m^{-2} \, Hz^{-1}}$
- Monochromatic power:

$$p_{\nu} = \frac{1}{2} A_{\mathsf{e}} \cdot S_{\nu} \qquad [\mathrm{W}\,\mathrm{Hz}^{-1}]$$

• Power in the bandwidth $\Delta \nu$:

$$p = \frac{1}{2}A_{e} \cdot S_{\nu} \cdot \Delta \nu \qquad [W]$$

- effective area of the antenna: $A_e \leq A_{\text{geom}}$
- Question: $A_e = ?$
- Answer: $A_e = \eta_A A_{\text{geom}} = \eta_i \eta_s ... A_{\text{geom}}$

Power received

What is the power received from an unpolarized (point) source of flux density S_{ν} (W m⁻² Hz⁻¹)?

- S_{ν} measured in Jy: 1 Jy = $10^{-26} \; \mathrm{W \, m^{-2} \, Hz^{-1}}$
- Monochromatic power:

$$p_{\nu} = \frac{1}{2} A_{\mathsf{e}} \cdot S_{\nu} \qquad [\mathrm{W} \, \mathrm{Hz}^{-1}]$$

• Power in the bandwidth $\Delta \nu$:

$$p = \frac{1}{2}A_e \cdot S_\nu \cdot \Delta\nu \qquad [W]$$

- effective area of the antenna: $A_e \leq A_{\text{geom}}$
- Question: $A_e = ?$
- Answer: $A_e = \eta_A A_{\text{geom}} = \eta_i \eta_s ... A_{\text{geom}}$
- Determine $\eta_i, \eta_s...$

Ideal beam pattern: illumination and taper

Millimeter antenna: general introduction

 Diffraction theory (Huygens-Fresnel, Fraunhoffer approx.): $E_{\rm f-f}(I,m) \propto \mathcal{F}[E_{\rm ant}(x,y)]$

Real antenna

• $E_{\text{ant}}(x, y)$ (grading) bounded on a finite domain $\Delta 1 \Rightarrow E_{f-f}(I, m)$ concentrated on a finite domain $\Delta 2 \ (\Delta 1 \cdot \Delta 2 \sim 1)$ sharp cut of the antenna domain \Rightarrow oscillations (side-lobes) \Rightarrow taper

Millimeter antenna: general introduction

- Reciprocity: antenna in emission
- pattern of the transmitted emission depends on the direction (1, m):

Power pattern

$$\mathcal{P}(I,m) \propto |E_{\mathrm{f-f}}(I,m)|^2$$

Effective area

$$A(I, m) = A_{\max} \cdot \mathcal{P}(I, m)$$

• example: circular aperture $\mathcal{P}(I, m) \propto \text{Airy disk}$

Power pattern

Calibration

point source: flux density S_{ν} [W m⁻² Hz⁻¹]

Millimeter antenna: general introduction

- extended source: brightness $I_{\nu}(I, m)$ [W m⁻² Hz⁻¹ sr⁻¹] $I_{\nu} = dS_{\nu}/d\Omega$
- from the direction (I_i, m_i) : $\mathrm{d}p_{\nu} = A(I_i, m_i) I_{\nu}(I_i, m_i) \mathrm{d}\Omega_i$
- incoherent emission: add intensities

Pointing a source at a fixed position:

$$p_{\nu}(0,0) = \iint_{A_{-}} A(l,m) \, l_{\nu}(l,m) \, d\Omega$$

Millimeter antenna: general introduction

- point source: flux density $S_{\nu}(W m^{-2} Hz^{-1})$
- extended source: brightness $I_{\nu}(I, m)$ $I_{\nu} = dS_{\nu}/d\Omega \, (W \, m^{-2} \, Hz^{-1} \, sr^{-1})$
- antenna tilted towards (l_0, m_0)
- from the direction $(l_i, m_i) dp_{ii} =$ $A(I_0 - I_i, m_0 - m_i) I_{\nu}(I_i, m_i) dI_i dm_i$
- incoherent emission: add intensities
- convolution

Scanning a source leads to a convolution:

$$p_{\nu}(I_{0}, m_{0}) = \iint A(I_{0} - I, m_{0} - m) I_{\nu}(I, m) dI dm$$
$$I'_{\nu} = \mathcal{P} * I_{\nu}$$

Convolution: consequences

Perfect antenna

$$\theta_{\rm obs} = \sqrt{\theta_{\rm mb}^2 + \theta_{\rm sou}^2}$$

Outline

- 1 Millimeter antenna: general introduction
- 2 Perfect antenna
- 3 Real antenna
- 4 Temperature scales
- 5 Calibration
- 6 Summary

- secondary lobes (finite surface) antenna)
- error lobes (surface irregularities)
 - main-beam collects less power
 - if correlation length / ⇒ Gaussian error-beam $\Theta_{\rm EB} \approx \lambda/\ell$

real beam = main-beam + error-beam(s)

• Questions:

What power is collected in each beam? What are the FWHMs of the beams?

IRAM 30-m antenna: Error-Beams power

Greve et al A&A 1998

Outline

- 1 Millimeter antenna: general introduction
- 2 Perfect antenna
- 3 Real antenna
- 4 Temperature scales
- **5** Calibration
- 6 Summary

Radioastronomy: speaking in terms of temperatures

Black-body radiation:

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1} [\text{W m}^{-2} \, \text{Hz}^{-1} \, \text{sr}^{-1}]$$

Perfect antenna

- express energy of a transition into temperature: $T_0 = \frac{h\nu}{k}$
- Rayleigh-Jeans approximation: $h\nu \ll kT$ $B_{\nu}(T) \approx \frac{2kT}{\sqrt{2}} \ [\text{W m}^{-2} \,\text{Hz}^{-1}]$
- radiation temperature, T_{R.I.}, Rayleigh-Jeans approximation

$$I_{\nu} = \frac{2k\nu^2}{c^2} T_{\rm RJ} = \frac{2k}{\lambda^2} T_{\rm RJ} \qquad [\text{W m}^{-2} \, \text{Hz}^{-1} \, \text{sr}^{-1}]$$

- relation $T_{\rm B} T_{\rm B \, I}$: $T_{\rm RJ} = J_{\nu}(T_{\rm B}) = \frac{h\nu}{k} \frac{1}{\exp(h\nu/kT_{\rm B}) - 1} = \frac{T_0}{\exp(T_0/T_{\rm B}) - 1}$
- in the following: $I_{\nu}(l,m) \rightarrow \overline{I}_{\rm RJ}(l,m)$
- consequence: power $\propto T_{\rm BJ}$

$$p_{\nu}(I_0, m_0) = \frac{k}{\lambda^2} \iint_{A_-} A(I, m) T_{\mathrm{RJ}}(I_0 - I, m_0 - m) d\Omega$$

Brightness temperature

- T_B defined by $I_{\nu} = B_{\nu}(T_{\rm B}) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT_{\rm B}} - 1}$ [W m⁻² Hz⁻¹ sr⁻¹]
- Consider a source of a finite angular extent (Ω_S) and flux density S_{ν} [W m⁻² Hz⁻¹]: $S_{\nu} = \frac{2k}{\lambda^2} \int_{\Omega_{\epsilon}} T_{\rm B}(\Omega) \, \mathrm{d}\Omega$

Antenna temperature

Millimeter antenna: general introduction

- Johnson noise in terms of an equivalent temperature average power transferred from a conductor to a line within $\delta \nu$: = $k T \delta \nu$
 - Antenna temperature: antenna as a conductor

$$p_{\nu} = k T_{A}$$
 [W · Hz⁻¹] = [J] = [J · K⁻¹][K]

•
$$A_{\text{max}} = \lambda^2 / \iint_{4\pi} P(I, m) d\Omega$$

• Therefore:
$$T_A(I, m) = \frac{1}{\lambda^2} \iint_{4\pi} A(I, m) T_{\text{RJ}}(I_0 - I, m_0 - m) d\Omega$$

 $T_A(I, m) = \iint_{4\pi} P(I, m) T_{\text{RJ}}(I_0 - I, m_0 - m) d\Omega / \iint_{4\pi} P(I, m) d\Omega$

Correct for atmospheric emission/absorption

Antenna temperature given by:

$$T_A = \eta_s \left\{ T_{\mathrm{RJ}} e^{- au_
u} + (1 - e^{- au_
u}) T_{\mathrm{atm}}
ight\} + (1 - \eta_s) T_{\mathrm{gr}}$$
 see lecture on Atmospheric transmission

Calibration

- corrects for atmospheric attenuation: $\times \exp(\tau_{\nu})$ $T_A' = T_A e^{\tau_{\nu}}$
- takes into account rear side-lobes: forward signal only $(2\pi \text{ sr})$
- ullet Antenna temperature: $\mathcal{T}_{
 m A}^* = rac{\mathcal{T}_A'}{\mathcal{F}_{
 m eff}}$
- Consequence:

$$T_{\mathrm{A}}^*(\Omega_0) = \frac{\int_{\Omega_S} \mathcal{P}(\Omega) \ T_{\mathrm{RJ}}(\Omega_0 - \Omega) \,\mathrm{d}\Omega}{\mathcal{P}_{2\pi}}, \qquad \mathcal{P}_{2\pi} = \int_{2\pi} \mathcal{P}(\Omega) \,\mathrm{d}\Omega$$

Correcting for spillover and beam pattern: $\mathcal{T}_{ m A}^*$ and $\mathcal{T}_{ m mb}$

- corrects for atmospheric attenuation: $\times \exp(\tau_{\nu})$ $T_A' = T_A e^{\tau_{\nu}}$
- takes into account rear side-lobes: forward signal only $(2\pi \text{ sr})$
- Antenna temperature: $T_{
 m A}^* = \frac{T_A'}{F_{
 m eff}}$
- Consequence:

Millimeter antenna: general introduction

$$\mathcal{T}_{\mathrm{A}}^*(\Omega_0) = \frac{\int_{\Omega_S} \mathcal{P}(\Omega) \; \mathcal{T}_{\mathrm{RJ}}(\Omega_0 - \Omega) \, \mathrm{d}\Omega}{\mathcal{P}_{2\pi}}, \qquad \mathcal{P}_{2\pi} = \int_{2\pi} \mathcal{P}(\Omega) \, \mathrm{d}\Omega$$

- take into account main-beam and error-lobes
- same as $T_{\rm A}^*$ but in $\Omega_{\rm mb}$ instead of 2π : $T_{\rm mb} = \frac{T_A'}{B_{\rm eff}}$

$$\mathcal{T}_{\mathrm{mb}}(\Omega_0) = rac{\int_{\Omega_S} \mathcal{P}(\Omega) \, \mathcal{T}_{\mathrm{RJ}}(\Omega_0 - \Omega) \, \mathrm{d}\Omega}{\mathcal{P}_{\mathrm{mb}}}, \qquad \mathcal{P}_{\mathrm{mb}} = \int_{\Omega_{\mathrm{mb}}} \mathcal{P}(\Omega) \, \mathrm{d}\Omega$$

Temperature scales

Definitions

Forward efficiency:
$$F_{\text{eff}} = \frac{\mathcal{P}_{2\pi}}{\mathcal{P}_{4\pi}}$$

Beam efficiency: $B_{\text{eff}} = \frac{\mathcal{P}_{\text{mb}}}{\mathcal{P}_{4\pi}}$

Consequences

$$T_{
m mb} = rac{F_{
m eff}}{B_{
m eff}} \ T_{
m A}^* = rac{\mathcal{P}_{2\pi}}{\mathcal{P}_{
m mb}} \ T_{
m A}^*$$

What you measure is $T_{
m A}^*$ or $T_{
m mb}$ (usually $eq T_{
m RJ}$)

Consider limiting cases:

 $\begin{array}{l} \bullet \; \text{Small source:} \; \Omega_S \ll \mathcal{P}_{\mathrm{mb}} \\ \mathcal{T}_{\mathrm{A}}^* = \frac{P(0)\Omega_S\,\mathcal{T}_{\mathrm{RJ}}}{\mathcal{P}_{2\pi}} = \mathcal{T}_{\mathrm{RJ}}\frac{\Omega_S}{\mathcal{P}_{2\pi}} \\ \rightarrow \; \text{beam dilution} \end{array}$

Consider limiting cases:

- Small source: $\Omega_S \ll \mathcal{P}_{\mathrm{mb}}$ $T_{\mathrm{A}}^* = \frac{P(0)\Omega_S T_{\mathrm{RJ}}}{\mathcal{P}_{2\pi}} = T_{\mathrm{RJ}} \frac{\Omega_S}{\mathcal{P}_{2\pi}}$ \rightarrow beam dilution
- Large source: $\Omega_S \gg \mathcal{P}_{\mathrm{mb}}$ $T_{\mathrm{A}}^* = \frac{\mathcal{P}_{2\pi}T_{\mathrm{RJ}}}{\mathcal{P}_{2\pi}} \approx T_{\mathrm{RJ}}$
 - → Antenna temperature gives the source brightness

Consider limiting cases:

- $\begin{array}{l} \bullet \; \; \mathsf{Small} \; \mathsf{source:} \; \Omega_{\mathsf{S}} \ll \mathcal{P}_{\mathrm{mb}} \\ \mathcal{T}_{\mathsf{A}}^* = \frac{P(0)\Omega_{\mathsf{S}}\mathcal{T}_{\mathsf{RJ}}}{\mathcal{P}_{2\pi}} = \mathcal{T}_{\mathsf{RJ}}\frac{\Omega_{\mathsf{S}}}{\mathcal{P}_{2\pi}} \\ \to \mathsf{beam} \; \; \mathsf{dilution} \\ \end{array}$
- Large source: $\Omega_{S} \gg \mathcal{P}_{mb}$ $\mathcal{T}_{A}^{*} = \frac{\mathcal{P}_{2\pi}\mathcal{T}_{RJ}}{\mathcal{P}_{2\pi}} \approx \mathcal{T}_{RJ}$ \rightarrow Antenna temperature gives the source brightness
- Special case: $\Omega_S = \mathcal{P}_{mb}$ $T_A^* = \frac{T_{RJ}}{\mathcal{P}_{2\pi}} \int_{\Omega_S} P(\Omega) \, \mathrm{d}\textit{Omega} \Rightarrow T_{mb} = T_{RJ}$ Main-beam temperature gives the source brightness

Consider limiting cases:

- $\begin{array}{l} \bullet \; \; \mathsf{Small} \; \mathsf{source:} \; \Omega_{\mathsf{S}} \ll \mathcal{P}_{\mathrm{mb}} \\ \mathcal{T}_{\mathsf{A}}^* = \frac{P(0)\Omega_{\mathsf{S}}\mathcal{T}_{\mathsf{RJ}}}{\mathcal{P}_{2\pi}} = \mathcal{T}_{\mathsf{RJ}} \frac{\Omega_{\mathsf{S}}}{\mathcal{P}_{2\pi}} \\ \to \mathsf{beam} \; \; \mathsf{dilution} \\ \end{array}$
- Large source: $\Omega_S \gg \mathcal{P}_{mb}$ $T_A^* = \frac{\mathcal{P}_{2\pi}T_{RJ}}{\mathcal{P}_{2\pi}} \approx T_{RJ}$ \rightarrow Antenna temperature gives the source brightness
- Special case: $\Omega_S = \mathcal{P}_{mb}$ $T_A^* = \frac{T_{RJ}}{\mathcal{P}_{2\pi}} \int_{\Omega_S} P(\Omega) \, \mathrm{d}\textit{Omega} \Rightarrow T_{mb} = T_{RJ}$ Main-beam temperature gives the source brightness
- General (worse) case: $\Omega_S \sim \mathcal{P}_{mb}$ $T_A^* = \frac{T_{RJ}}{\mathcal{P}_{2\pi}} \int_{\Omega_S} P(\Omega) \, \mathrm{d}Omega$ If source of uniform brightness and beam pattern known, feasible, but in real life... Which scale to use: T_A^* , T_{mb} ?

Which temperature scale?

$\begin{array}{ll} \Omega_{S} = 2\pi & T_{\rm RJ} = T_{\rm A}^{*} \\ \Omega_{S} = \Omega_{\rm mb} & T_{\rm RJ} = T_{\rm mb} \\ 2\pi < \Omega_{S} & T_{\rm RJ} < T_{\rm A}^{*} \\ \Omega_{\rm mb} < \Omega_{S} < 2\pi & T_{\rm A}^{*} < T_{\rm RJ} < T_{\rm mb} \\ \Omega_{\rm mb} > \Omega_{S} & T_{\rm mb} < T_{\rm RJ} \end{array}$	Source size	Temperature scales
	$\Omega_S = \Omega_{ m mb} \ 2\pi < \Omega_S \ \Omega_{ m mb} < \Omega_S < 2\pi$	$T_{\mathrm{RJ}} = T_{\mathrm{mb}}$ $T_{\mathrm{RJ}} < T_{\mathrm{A}}^*$ $T_{\mathrm{A}}^* < T_{\mathrm{RJ}} < T_{\mathrm{mb}}$

Outline

- 1 Millimeter antenna: general introduction
- 2 Perfect antenna
- 3 Real antenna
- 4 Temperature scales
- 5 Calibration
- 6 Summary

Goal of the calibration

- ullet Atmosphere: opacity $au_
 u$
- ullet Antenna-sky coupling: $F_{
 m eff}$
- Output at backends: "counts"
- Question: **counts** \longrightarrow **Temperature ?** $C = \chi T \Longrightarrow \chi = ?$
- Telescope pointing at a source: how many counts?

$$C_{\text{sou}} = \chi \left\{ T_{\text{rec}} + F_{\text{eff}} e^{-\tau_{\nu}} T_{\text{sou}} + T_{\text{emi}} \right\}$$

$$T_{\text{emi}} = F_{\text{eff}} (1 - e^{-\tau_{\nu}}) T_{\text{atm}} + (1 - F_{\text{eff}}) T_{\text{gr}}$$

• source signal very weak: $T_{
m atm}=290$ K, $T_{
m rec}\approx 50-150$ K, $T_{
m emi}pprox 70$ K

Temperature scales

Chopper Wheel method

$$\begin{split} & C_{\rm sou} &= \chi \left\{ T_{\rm rec} + T_{\rm emi} + F_{\rm eff} e^{-\tau_{\nu}} T_{\rm sou} \right\} \\ & C_{\rm atm} &= \chi \left\{ T_{\rm rec} + T_{\rm emi} \right\} \\ & C_{\rm hot} &= \chi \left\{ T_{\rm rec} + T_{\rm hot} \right\} \\ & C_{\rm col} &= \chi \left\{ T_{\rm rec} + T_{\rm col} \right\} \end{split}$$

Making differences

$$C_{
m sou} - C_{
m atm} = \chi F_{
m eff} e^{-\tau_{\nu}} T_{
m sou}$$

 $C_{
m hot} - C_{
m atm} = \chi (T_{
m hot} - T_{
m emi})$

Definition of $T_{\rm cal}$:

Calibration

Perfect antenna

Rewrite $T_{\rm emi}$

Millimeter antenna: general introduction

$$T_{\mathrm{emi}} = T_{\mathrm{gr}} + F_{\mathrm{eff}} (T_{\mathrm{atm}} - T_{\mathrm{gr}}) - F_{\mathrm{eff}} e^{- au_{
u}} T_{\mathrm{atm}}$$

$$\begin{split} C_{\rm hot} - C_{\rm atm} &= \chi \{ (T_{\rm hot} - T_{\rm gr}) + F_{\rm eff} (T_{\rm gr} - T_{\rm atm}) \\ &+ F_{\rm eff} e^{-\tau_{\nu}} T_{\rm atm} \} \end{split}$$

• Assume $T_{\rm hot} = T_{\rm atm} = T_{\rm gr} \Rightarrow \{\chi, \tau_{\nu}\} \rightarrow \{\chi e^{-\tau_{\nu}}\}$ \Rightarrow 3 unknowns \Rightarrow e.g. don't need to solve for τ_{ν} (Penzias & Burrus ARAA 1973)

$$T_{\rm cal} = T_{\rm atm}$$

ullet General case: different $T_{
m atm}$, $T_{
m hot}$ and $T_{
m gr}$ ⇒ solve for the 4 unknowns

Perfect antenna

Hot & cold loads $\longrightarrow T_{\rm rec}$:

Perfect antenna

System temperature: describes the noise including all sources from the sky down to the backends

 used to determine the total statistical noise. For heterodyne receivers, noise is given by the "radiometer formula":

$$\sigma_T = \frac{\kappa \cdot T_{\text{sys}}}{\sqrt{\delta \nu \, \Delta t}}$$

- δ_{ν} : spectral resolution
- \bullet Δt : total integration time
- κ depends on the observing mode: example: position switching $ON-OFF \Rightarrow \sqrt{2}$ $t_{\text{ON}} = t_{\text{OFF}} \Rightarrow \Delta t = 2t_{\text{ON}} \Rightarrow \sqrt{2}$

Millimeter antenna: general introduction

From $T_{\rm mb}$ to I_{ν} , from Kelvin to Jansky

• flux density: $S_{\nu} = \int_{\Omega} I_{\nu}(\Omega) d\Omega = \frac{2k}{\lambda^2} \int_{\Omega} T_{\rm mb} d\Omega$

Perfect antenna

- power received: $kT'_A = k\frac{T'_A}{F_C} = \frac{1}{2}S_{\nu}A_e$ $\Rightarrow \frac{S_{\nu}}{T_{*}^{*}} = \frac{2k}{A} \frac{F_{\text{eff}}}{n_{A}}$
- values of S_{ν}/T_{Λ}^* are tabulated e.g. on IRAM-30m web page $(\approx 6 \ @ \ 100 \ \text{GHz}, \approx 9 \ @ \ 230 \ \text{GHz})$

Calibration

From $T_{\rm mb}$ to I_{ν} , from Kelvin to Jansky

• flux density: $S_{\nu} = \int_{\Omega} I_{\nu}(\Omega) d\Omega = \frac{2k}{\lambda^2} \int_{\Omega} T_{\rm mb} d\Omega$

Perfect antenna

- power received: $kT'_A = k\frac{T'_A}{F_A} = \frac{1}{2}S_{\nu}A_e$ $\Rightarrow \frac{S_{\nu}}{T_{\bullet}^{*}} = \frac{2k}{A} \frac{F_{\text{eff}}}{n_{A}}$
- values of S_{ν}/T_{Λ}^* are tabulated e.g. on IRAM-30m web page $(\approx 6 \ @ \ 100 \ \text{GHz}, \approx 9 \ @ \ 230 \ \text{GHz})$
- How to convert the temperatures into $W m^{-2} Hz^{-1}$?
- Gaussian source of uniform radiation temperature T_R:

$$S_{\nu} = 8.2 \times 10^{-3} \left(\frac{\nu}{100 \text{ GHz}}\right)^2 \left(\frac{\theta_r}{1''}\right)^2 \left(\frac{T_R}{K}\right) \quad \text{Jy}$$

$$1 \text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{Hz}^{-1}$$

Outline

- 1 Millimeter antenna: general introduction
- 2 Perfect antenna
- 3 Real antenna
- 4 Temperature scales
- 5 Calibration
- 6 Summary

Image formation: total power telescope

- antenna scans the source
- image: convolution of I_0 by beam pattern $I_{\nu}' = \mathcal{P} * I_{0,\nu}$
- ullet measure directly the brightness distribution I_0

Calibration

$$F = D * (\mathcal{P} \times I) + N$$

= dirty map = FT of observed visibilities

Perfect antenna

 $D = \text{dirty beam } (\longrightarrow \text{deconvolution})$

 \mathcal{P} = power pattern of single-dish (primary beam B in the following)

= sky brightness distribution

= noise distribution

- An interferometer measures the product $\mathcal{P} \times I$
- ullet P has a finite support \longrightarrow limits the size of the field of view

Summary

- full-aperture antenna: P * I
- interferometry sensitive to $\mathcal{P} \times \mathbf{I}$
- amplitude calibration:
 - converts counts into temperatures
 - corrects for atmospheric absorption
 - corrects for spillover
- lobe = main-lobe + error-lobes (e.g. as much as 50% in error-lobes at 230GHz for the 30m)
- Pay attention to the **temperature scale** to use $(T_A^*, T_{mb},...)$

Millimeter antenna: general introduction	Perfect antenna	Real antenna	Temperature scales	Calibration	Summary

Image formation: correlation telescope

- antennas fixed w.r.t. the source
- ullet correlation temperature: $\mathcal{T}(0,0)$ Fourier transform of $\emph{I}_0 imes \mathcal{P}$
- ullet measure the Fourier transform of the brightness distribution I_0
- image built afterwards

Calibration

Interferometer field of view

Measurement equation of an interferometric observation:

$$F = D * (B \times I) + N$$

= dirty map = FT of observed visibilities

 $D = \text{dirty beam } (\longrightarrow \text{deconvolution})$

B = primary beam

= sky brightness distribution

N = noise distribution

- An interferometer measures the product $B \times I$
- B has a finite support \longrightarrow limits the size of the field of view
- B is a Gaussian \longrightarrow primary beam correction possible (proper estimate of the fluxes) but strong increase of the noise

Primary beam width

Aperture function
$$\rightleftharpoons$$
 Voltage pattern
$$\downarrow |\cdot|^2$$
 Transfert function $T(u,v)$ \rightleftharpoons Power pattern $B(\ell,m)$ $=$ Primary beam

Gaussian illumination \Longrightarrow to a good approximation, B is a Gaussian of $1.2\,\lambda/D$ FWHM

Plateau de Bure $D=15~\mathrm{m}$

Frequency	Wavelength	Field of View
85 GHz	3.5 mm	58"
100 GHz	3.0 mm	50"
115 GHz	2.6 mm	43"
215 GHz	1.4 mm	23"
230 GHz	1.3 mm	22"
245 GHz	1.2 mm	20"