The study of comets in millimeter interferometry (with the IRAM Plateau de Bure Interferometer)

- Jérémie Boissier (ESO ALMA fellow at italian ARC, Bologna ; IRAM, France) boissier@iram.fr
- Dominique Bockelée-Morvan, Nicolas Biver, Jacques Crovisier, Emmanuel Lellouch, Raphael Moreno (LESIA - Obs. Paris, France)
- Olivier Groussin, Philippe Lamy, Laurent Jorda (LAM Obs. Marseille, France)
- Jean-François Crifo (Service d'Aéronomie, Paris, France)
- A.V. Rodionov (TsNIIMASCh, Moscow, Russia)

- Few words about comets
- Study of comets with the IRAM interferometer
 - "Recent" Hale-Bopp results
 - Coma morphology
 - CO origin
 - 17P/Holmes outburst
 - 8P/Tuttle nucleus observations
- Conclusions, prospects

Generalities about comets

- Small icy bodies created during the Solar System formation then preserved far from the Sun
- Nucleus: Ice + refractory grains
- Coma: Sublimated volatiles and dust
- Why study them ?
 - Their composition and structure may provide constraints on the chemistry in the early Solar System
 - Assess their role in the planet evolution (cometary impacts)
- How ?
 - Space probes to few objects
 - Ground based observations required
 - mm observations probe the inner coma

Tempel 1 as seen by the Deep Impact spacecraft

Radioastronomy of comets

- Single dish spectroscopy (beams ~10-50")
 - Molecule abundances
 - Gas velocity
 - Gas temperature
 - Average parameters of the coma
 - 30 yrs of observations (30m, CSO, JCMT)
 - >35 comets observed: comparative studies of the comet compositions (chemical diversity)
- Bolometers
 - Large scales dust coma
- Interferometry (beams 1-10")
 - Structure of the inner coma
 - Gas radial extent
 - Jets, inhomogeneities
 - Nucleus thermal emission
 - We need strong (or near Earth) comets

2010, Oct. 8 J. Boissier - IRAM IS 2010 - Grenoble

Radio interferometric observations of comets

1985: Halley (VLA) 1987: Wilson (VLA)

1992: 1991 A1 Shoemaker-Levy (VLA)

1996/1997: Hyakutake (VLA, PdBI)

1997: Hale-Bopp (VLA, BIMA, OVRO, PdBI)

2004: C/2002 T7 Linear (BIMA)

2004: C/2001 Q4 NEAT (BIMA)

- 2006: 73P/SW3 (SMA)
- 2007: 17P/Holmes (PdBI, SMA)

2008: 8P/Tuttle (PdBI) 2010: 103P/Hartley (in october)

Observations of Hale-Bopp at the Plateau de Bure

Hale-Bopp gas coma: Morphology (1)

• Many evidences for spatial and spectral asymmetries

Hale-Bopp gas coma: Morphology (2)

- Astrometric considerations
 - Boissier et al. 2007
 - Continuum positions (*Altenhoff et al. 1999*): true nucleus
 - Ephemeris biased by the dust jet in the visible
 - Jet gaseous counterpart: molecules with shifted apparent positions (HCN, H₂CO, CS, HNC, SO)
 - H₂S not present in the polar jet
- Independant CO equatorial jet
 - Boissier et al. 2010
- Different molecules have different outagassing patterns: heterogeneity of the nucleus

Hale-Bopp gas coma: Gas radial extent (1)

- Determine the origin (nuclear or extended) of a molecule
 - Constrain parent scalelength $L_p = \beta_p x v$ [km]
- Measure its photodissociation rate β_{d} [s⁻¹]
 - Required to measure correct abundances
- Condition: Int Beam < L < SD beam
- The case of CO
 - Observed in many comets
 - Highly variable abundance
 - Drives the activity at large heliocentric distances
 - Debated Origin (role of organic grains ?)
 - IR studies of HB: extended source (5000 km)
 - PdB results: no need for extended source
 - Extended sources with Lp>1500km is excluded
 - Bockelée-Morvan et al. 2010

17P/Holmes outburst: Dust observations

- Outburst on 24 Oct. 2007
 - PdBI on 27 and 28
- Imaging the big (mm) particles coma surrounding the nucleus
- Modelling flux radial extent (27 and 28)
 - Thermal emission model
 - Computing κ for different kinds of materials
 - Dust density distribution model
 - Isotropic outflow, Q=Q(t)
 - Slow decrease of the dust production rate
 - Grain fragmentation
- Estimate of the released dust mass
 - Few % the nucleus mass, gas to dust ratio 25%
 Boissier et al. 2009, EM&P

Holmes outburst: HCN observations

- Single dish and interferometry
 - HCN *J*(1-0) at 88.6 Ghz
 - 54" and 7" beams (1"=1200km)
- Line width = gas velocity
 - 0.5 kms⁻¹ @ 10000 km
 - 1.0 kms⁻¹ @ 60000 km
- Different time evolutions
- 2 sources of HCN in the coma
 - Outburst (fast HCN molecules emission filtered out in int. mode)
 - Slowly variable compact source of slow HCN molecules (Lp=750 km)

Boissier et al. 2009, EM&P

8P/Tuttle nucleus

Close approach to the Earth in January 2008

- Δ = 0.25 AU, low activity, large nucleus expected Good target for ground based observation of the nucleus thermal emission

- Plateau de Bure observations
 - Thermal flux at 240 GHz (1.25 mm)
 - 3.0 ± 0.5 mJy ($\pm 20\%$ uncertainty of the absolute flux calibration)
 - Nucleus size $r_{mm} \sim 2 \pm 0.4$ km

Boissier et al. 2009

- Other observations
 - Arecibo radar experiment: bilobate shape, r_{radar} ~ 3.1 km (Harmon et al. 2010)
 - Spitzer IR observations: $r_{IR} \sim 2.8$ km (Groussin et al. 2008)
 - HST observations: bilobate shape (Lamy et al. 2010)
- Model of the nucleus emission using "known" size and shape
 - Constraints on emission properties @ mm wavelengths
 - Constraints on surface and subsurface properties
 - Boissier et al. to be submitted soon

Summary, prospects

- mm interferometry is a powerful tool to study comets
 - Gas coma
 - Gas radial extent
 - Coma morphology
 - Dust coma
 - Nucleus
 - Astrometry
 - Size estimates
 - Nucleus properties
- Models and methods ready for further observations
 - 103P/Hartley at the PdBI in Oct.-Nov 2010
 - 1 comets every 2 years at PdBI (more if NOEMA is built)
 - NOEMA = PdB 12 antennas + new receivers and correlator
 - ALMA

Cometary science with ALMA

- ALMA abilities and cometary science
 - Gain in sensitivity
 - Observe more comets (including Ecliptic comets)
 - Observe minor species (including new molecules)
 - Measure isotopic ratios
 - Monitor distant activity
 - Detect nuclei
 - Astrometric precision 0.2 mas if S/N>30
 - Measure emission light curves
 - Gain in angular resolution
 - Study extended sources (HNC, CO?, H₂CO)
 - Characterize the gas and dust coma morphology
 - Study gas sources at nucleus surface
 - Separate nucleus from dust coma
 - Good instantaneous uv-coverage
 - Coma kinematics
 - Time evolution

- Detailed composition
- Relation between chemical properties and dynamical classes
- Nucleus-coma interface
- Nucleus homogeneity
- Gas-Dust interrelation
- Measure albedo independent sizes
- Constrain nucleus shapes
- Constrain thermal properties
- Improve orbit determinations

Holmes: Visibilities

Hale-Bopp gas coma: Gas radial extent (2)

- $H_2S 2_{20}-2_{11}$ line at 217 GHz
 - Measure: $\beta_{H2S} \sim 1.5-3.0 \ 10^{-4} \ s^{-1}$
 - Theoretical value: 2.5 10⁻⁴ s⁻¹
 Crovisier et al. 1991
 - Measuring β_{cs}
 - CS *J*(2-1) and *J*(5-4) at 98 and 245 GHz
 - CS created from CS₂ L_{CS2} \sim 500 km
 - Our study: $\beta_{cs} \sim 1-5 \ 10^{-5} \ s^{-1}$
 - Other results
 - 1 10⁻⁵ s⁻¹ Jackson et al. 1982 (UV)
 - 1 10⁻⁴ s⁻¹ *Snyder et al. 2000* (BIMA)
 - 2 10⁻⁵ s⁻¹ *Biver et al. 2003* (mm SD)
 - Radial extent of SO
 - SO N_{J} (5₆-4₅) line at 220GHz
 - SO created from SO₂
 - III known value of β_{so} (1.5, 3.2, 4.9, 6.2 10⁻⁴ s⁻¹ ?)
 - Measure β < 1.5 10⁻⁴ s⁻¹ : SO more extended than expected
 - SO_2 detected in Hale-Bopp. $Q_{SO} = 2Q_{SO2}$: Additional, extended, source of SO?

