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System Temperature

 The output power of the receiver is linked to the Antenna System 

Temperature by:

PN = ° k Tant ¢ º

 On source, the power is PN + Pa with

Pa = ° k Ta ¢ º

 Ta is called the antenna temperature of the source.

 This is not a purely conventional definition.

It can be demonstrated that Pa is the power the receiver(+antenna) would deliver when 

observing a blackbody (filling its entire beam pattern) at the physical temperature Ta.

 Thus, Tant is the temperature of the “equivalent’’ blackbody seen by the 

antenna (in the Rayleigh Jeans approximation)



System Temperature

 Tant is given by (just summing powers…)

Tant = Tbg cosmic background

+ Tsky ¼ ´f (1-exp(-¿atm) Tatm sky noise

+ Tspill ¼ (1-´f-´loss) Tground ground noise pickup

+ Tloss ¼ ´loss Tcabin losses in receiver cabin

+ Trec receiver noise 

 This is a broad-band definition. It is a DSB (Double Side Band) 

noise temperature

 Many astronomical signals are narrow band. g being the image to 

signal band gain ratio, the equivalent DSB signal giving the same 

antenna temperature as a pure SSB signal is only

PDSB = (1 x PSSB + g x 0) / (1 + g)



System Temperature

 We usually refer the system temperature and antenna 
temperature to a perfect antenna (´f = 1) located 

outside the atmosphere, and single sideband signal:

Tsys = (1+g)  exp(¿atm)Tant / ´f

TA
* = (1+g)  exp(¿atm)Ta / ´f 

 This antenna temperature TA
* is weather independent, 

and linked to the source flux Sº by an antenna

dependent quantity only

TA
* = ´a A Sº / 2k



Noise Equation

 The noise power is Tsys, the signal is TA
* , and there are 

2¢º ¢t independent samples to measure a correlation 

product in a time ¢t, so the Signal to Noise is

Rsn = (2¢º ¢t)1/2 TA
* / Tsys

 On a single baseline, the noise is thus

 this is √2 less than that of a single antenna in total power

 but √2 worse than that of an antenna with the same total collecting 

area

 this sensitivity loss is because we ignore the autocorrelations



Noise Equation

 With quantization

 With ´q the quantization efficiency

 Noise is uncorrelated from one baseline to another

 There are n(n-1)/2 baselines for n antennas

 So the point source sensitivity is

 Where is the Jy/K conversion factor of one antenna



Noise on Amplitude and Phase

 For 1 baseline, this varies with Signal to Noise ratio

 On Amplitude

 On Phase

 Source detection is much easier on the phase than on the 
amplitude, since for S/N = 1, ¾Á = 1 radian = 60°.



Noise in Images

 The Fourier Transform is a linear combination of the visibilities 

with some rotation (phase factor) applied. How do we derive the 

noise in the image from that on the visibilities ?

 Noise on visibilities

 the complex (or spectral) correlator gives the same variance on the 

real and imaginary part of the complex visibility <εr
2> = <εi

2> = <ε2> 

 Real and Imaginary are uncorrelated <εrεi> = 0 

 So rotation (phase factor) has NO effect on noise



Noise in Imaging: first order

 In the imaging process, we combine (with some weights) the individual 

visibilities Vi. At the phase center:

I = (Σ wiVi ) / Σwi

 for a point source at phase center, Vi = V +εRi, εRi being the real part of 

the noise

I = (Σ wi(V+ εRi) ) / Σwi

 So its expectation is I = V, as < εRi > = 0

 As <εRi εRj> = 0, its variance is

σ2 = <I2> -<I>2 = = (Σ wi
2 < εRi

2 > ) / (Σwi )2

 Now using < εRi
2 > = σi

2   and the natural weights wi = 1/ σi
2 we have

1/σ2 = Σ (1/σi
2)

 Which is true anywhere else in the image by application of a phase shift



Weighting and Tapering

 When using non-natural weights (wi # σi
2), either as a 

result of Uniform or Robust weighting, or due to 

Tapering, the noise (for point sources) increases by 

wrms / wmean

wrms = ( (Σ(WT)2)/n )1/2

wmean = (ΣWT)/n

 Robust weighting improves angular resolution

 Tapering can be used to smooth data



Noise in Imaging

 Gridding introduces a convolution in UV plane, hence a 

multiplication in image plane

 Aliasing folds the noise back into the image

 Gridding Correction enhances the noise at edge

 Primary beam Correction even more...



Extended Source Sensitivity



Extended Source Sensitivity

 This is right only for sources just filling one synthesized beam θs.

 For more extended sources, it is not appropriate to count the number 

of synthesized beams nb and divide by √nb.

 This only gives a lower limit...

 Why ?

 Averaging nb beams is equivalent to smoothing

 This is equivalent to tapering, i.e. to ignore the longest baselines...

 This increases the noise ...

 Moreover, for very extended structures, missing flux may become a 

problem.



Bandwidth Effects

 The correlator channels have a non-square shape, i.e. their responses to narrow 

band and broad band signals differ.

 Hence the noise equivalent bandwidth ¢ºN is not the channel separation ¢ºC, 

neither the effective resolution ¢ºR

 These effects are of order 15-30 % on the noise.

 In practice, ¢ºN > ¢ºC, i.e. adjacent channels are correlated.

 Noise in one channel is less than predicted by the Noise Equation when using the 

channel separation as the bandwidth.

 But it does not average as √nc when using nc channels...

 When averaging nc ≫ 1 i.e. many channels, the bandpass becomes more or less 
square: the effective bandwidth becomes nc ¢ºC.

 Consequence: There is no (simple) exact way to propagate the noise information 

when smoothing in frequency.

 Consequence: In GILDAS software, it is assumed ¢ºN = ¢ºC = ¢ºR, and a √nc

noise averaging when smoothing



Reweighting in Frequency ?

 The receiver bandpass is not flat: Tsys depends on º

 Hence the weights depend on the channel number i

 When synthesizing broad band data, should we take the weights into account 

?

 For pure continuum data

 Yes: it improves S/N

 But: ill-defined equivalent central frequency, and undefined equivalent 

detection bandwidth

 so, may be: it depends on your scientific case...

 Weighting could take into account a spectral index, for example…

 For line data

 No: could degrade S/N if the line shape is not consistent with the weights

 No: undefined bandwidth: does not allow to compute an integrated line flux

 In practice: not implemented in current GILDAS software. Could be useful for 

specific weak source searches.  See “Optimal Filtering” later



Decorrelation

 Each visibility is affected by a random atmospheric phase 

 Assuming a point source at the phase center, 

 the expectation of I is now only

 The noise does not change,

 but the signal to noise is decreased.

 the Signal is spread around the source (seeing).

 So the effect is different for an extended source...

 This may limit the Dynamic range, and the effective noise level may be 

much higher than the thermal noise.

 The result depends on the source structure.

 There is so far no good simulation tool to evaluate the importance of this 

effect. It is not fully random at Plateau de Bure…



Estimating the Noise

 The weights are used to give a prediction of the noise level in the images.

 Predictions displayed by UV_MAP and UV_STAT

 Carried on in the image headers (aaa1%noise variable for an image displayed 

with GO MAP, GO NICE or GO BIT)

 but does not handle properly the noise equivalent bandwidth

 neither the effects of decorrelation...

 GO RMS will compute the rms level on the displayed image. May be biased by 

the source structure

 GO NOISE will plot an histogram of image values, and fit a Gaussian to it to 

determine the noise level. Will be less biased than GO RMS.

 Both GO NOISE and GO RMS will include dynamic range effects (i.e. give you 

the “true” noise of your image, rather than the theoretical).



Noise on Mosaics…

 GO NOISE does (yet) not work on mosaics…

 Because noise is NOT uniform on mosaics…

 J = Σ Bi Fi / Σ Bi
2

 Let us define W = Σ Bi
2

 If we instead use L = J / W1/2

 The noise on L is uniform (provided all fields had similar

noise) of value ¾L

 It corresponds to the noise at the most sensitive place in the 

mosaic

 L/¾L is a signal-to-noise image

 Valid also for 1 field mosaic…



Conclusions

 mm interferometry is not so difficult to understand

 even if you don't, the noise equation is all you need

 the noise equation

 allows you to check quickly if a source of given brightness Tb can be 
imaged at a given angular resolution µS and spectral resolution  ¢ º (n is 

the number of antennas, µP their primary beam width, and ´ an efficiency 

factor of order 0.5 – 0.8, and t the integration time…)

 Tsys is easy to guess: the simplistic value of 1 K per GHz of observing 

frequency is a good enough approximation in most cases.

 and you know Tb because you know the physics of your source!

 that is (almost) all you need to decide on the feasibility of an 

observation...



II – Low Signal to Noise

 When is a source detected ?

 What parameters can be derived ?



Low Signal to Noise

 A nice case

 Observers advantage

You don’t have to worry about bandpass & flux 

calibration…

 Theorists advantage

The data is always compatible with your favorite model

 A necessary challenge

 Mm interferometry is (almost) always sensitivity limited

 But with proper analysis, you may still invalidate (falsify) 

some model/theory

 So let us see…



Low S/N -- Continuum

 Rule 1: do not resolve the source

 Rule 2: get the best absolute position before

 Rule 3: Use UV_FIT to determine the S/N ratio

 Rule 4: the 3-4-5 rule about position accuracy

< 1/10th of beam

- >3 ¾ signal for detection

- Fix the position

- Use an appropriate

source size

Unknown

- 5 ¾ signal for detection

- make an image to locate

- Use as starting point

- Do not fix the position

- Use an appropriate

source size

About the beam

- >4 ¾ signal for detection

- Do not fix the position

- Use an appropriate

source size



Continuum source parameters

 Sources of unknown positions have fluxes biased by 1 to 2 ¾

 Free position 1 ¾ bias

 Position accuracy = beam/(S/N ratio)

 With < 6 ¾ , cannot measure any source size

 divide data in two, shortest baselines on one side, longest on 
another. Each subset get a 4.2 ¾ error on mean flux.

 Error on the difference is then just 3 ¾, i.e. any difference must be 

larger than 33 % to be significant

 Mean baseline length ratio for the subsets is at best  3.

 No smooth source structure can give a visibility difference larger 

than 30 % on such a baseline range ratio.

 If size is free,  error on flux increases quite significantly



Example: HDF source

 7 ¾ detection of the strongest source 

in the Hubble Deep Field. Note that 

contours are visually cheating (start 
at 2 ¾ but with 1 ¾ steps).

Attempt to derive a size. Size can be 

as large as the synthesized beam... 

Note that the integrated flux increases 

with the source size.



Line sources: things get worse…

 Line velocity unknown: observer will select the brightest part of the 

spectrum  bias

 Line width unknown: observer may limit the width to brightest part of the 

spectrum  another bias

 If position is unknown, it is determined from the integrated area map (or 

visibilities) made from the tailored line window specified by the 

astronomer. This gives a biased total flux !.

 All these biases are positive (noise is added to signal).

 Any speculated extension will increase the total flux, by enlarging the 

selected image region (same effect as the tailored line window).

 Net result 1 to 2 ¾ positive bias on integrated line flux.

 Things get really messy if a continuum is superposed to the weak line...



Line sources: How ?

 Point source or unresolved source (< 1/3rd of 

the beam)

Determine position (e.g. from 1.3 mm continuum if 

available, or from integrated line map if not, or from 

other data)

Derive line profile by fitting point or small (fixed 

size), fixed position, source into UV spectral data

Gives you a flux as function of velocity/frequency

Fit this spectrum by Gaussian (with or without 

constant baseline offset, depending on whether the 

continuum flux is known or not)



Line sources: How ?

 Extended sources, and/or velocity gradient

Fit multi-parameter (6 for an elliptical gaussian) 

source model for each spectral channel into UV 

data

Consequence : signal in each channel should be 
>6 ¾ to derive any meaningful information.

Strict minimum is 4 ¾ (per line channel...) to get 

flux and position for a fixed size Gaussian

Velocity gradients not believable unless even 

better signal to noise is obtained per line channel...



Line sources: Conclusions

 Do not believe velocity gradient unless proven at a 5 ¾ 

level. Requires a S/N larger than 6 in each channel. 

Remember that position accuracy per channel is the 

beamwidth divided by the signal-to-noise ratio...

 Do not believe source size unless S/N > 10 (or better)

 Expect line widths to be very inaccurate

 Expect integrated line intensity to be positively biased 
by 1 to 2 ¾

 even more biased if source is extended

 These biases are the analogous of the Malmquist bias



Examples

 Examples are numerous, specially for high redshift CO.

 e.g. 53 W002 :

 OVRO (Scoville et al. 1997) claims an extended 

source, with velocity gradient. Yet the total line 
flux is 1.5 § 0.2 Jy.km/s i.e. (at best) only 7 ¾ .

 PdBI (Alloin et al. 2000) finds a line flux of 1.20 §

0.15 Jy.km/s, no source extension, no velocity 

gradient, different line width and redshift.

 Note that the line fluxes agree within the errors...
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Example: (no) Velocity Gradients

 Contour map of dust emission at 1.3 mm, with 2 ¾ contours

 The inserts are redshifted CO(5-4) spectra from the indicated directions

 A weak continuum (measured independently) exist on the Northern source

 The rightmost insert is a difference spectrum (with a scale factor applied, and 

continuum offset removed): No SIGNIFICANT PROFILE DIFFERENCE!

 i.e. No Velocity Gradient measured.



How to analyze weak lines ?

 Perform a statistical analysis (e.g. Â2, or other statistical test) comparing 

model prediction to observations, i.e. VISIBILITIES

 The GILDAS software offer tools to compute visibilities from an image / 

data cube (task UV_FMODEL)

 Beware that (original) channels are correlated ( ¢ºN > ¢ºC )

 Appropriate statistical tests can actually provide a better estimate of the 

noise level than the prediction given by the weights.

 Up to you to develop the model adapted to your science case (and 

select the proper statistical tool for your measurement).

 GILDAS even provides minimization tools: the ADJUST command (but 

with no guarantee of suitability to your case, though. Expertise 

recommended !).



Example of Analysis

 Error bars derived from a Â2 analysis in the UV plane, using a 

line radiative transfer model for proto-planetary disks.



Example of Analysis

 A typical data cube from which the previous parameters were derived. It 

has quite decent S/N, and one can recognize the rotation pattern of a 

Keplerian disk



Example of Analysis

• A (really) low Signal to Noise image of the protoplanetary disk of DM Tau in the main
group of hyperfine components of the N2H

+ 1-0 transition.
• It really looks like absolute nothing... but a treasure is hidden inside the noise!



Example of Analysis

 Best fit integrated profile for the N2H
+ 1-0 line, derived from a Â2 analysis in the 

UV plane, using a line radiative transfer model for proto-planetary disks, 

assuming power law distributions, and taking into account the hyperfine structure.

 The observed spectrum is the integrated spectrum over a 6x6” area (from the 

Clean or Dirty image, does not really matter). The noise is about 11 mJy.



Example of Analysis

 Signal-to-noise maps of the integrated N2H
+ 1-0 line emission, using the 

best profile derived from the Â2 analysis in the UV plane as a (velocity) 

smoothing kernel (optimal filtering).

 7 ¾ detection for DM Tau, 6 ¾ detection for LkCa 15

 Nothing for MWC 480



ALMA won’t (always) save you !

 ALMA is only 7 times more sensitive than PdB (at 3mm, better 

ratio at higher frequencies)

 on the N2H
+ case, it will (in a mere 8 hours), obtain a peak 10 ¾

detection per channel, which is quite good, but will barely "see" 

the weakest hyperfine components. 

 but if the resolution is increased just to 2”, the S/N will drop by a 

factor 3 (in this favorable case, as the structure remain 

unresolved in one direction...)

 and a search for the 15N substitute remain beyond (reasonable) 

reach !.

 This is a simple molecule. Things a little more complex, e.g. 

HCOOH, HC3N will be tough

 you can transpose this example for extragalactic studies



Optimal Filtering

 Changing the frequency dependence of weights and 

signal to adjust for a continuum spectral index

 Convolve by expected line profile for blind line search

 If line profile unknown, convolve by several possible 

ones, and see if one convolution leads to a significant

signal


