Single-dish antenna at (sub)mm wavelengths

P. Hily-Blant
Institut of Planetology and Astrophysics of Grenoble

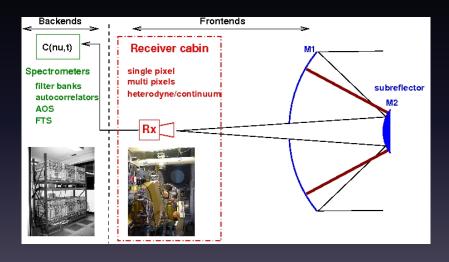
Oct 4th 2010

Outline

- 1 Introduction
- 2 Perfect antenna
- 3 Real antenna
- 4 Temperature sca
- 5 Calibration

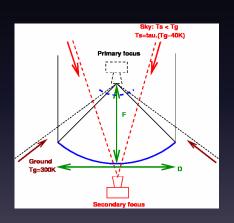
Introduction Perfect antenna Real antenna Temperature scales Calibration

A single-dish antenna



Why Cassegrain configuration?

- $F/D \longrightarrow F_e/D = m \times F/D$ IRAM-30m, m=27.8 $F/D=0.35, F_e/D \approx 10$
- Rx alignement easier; focal plane arrays
- increase effective area (or on-axis gain)
- decrease spillover
- but increase mechanical load
- obstruction by subreflector $(\emptyset = 2 \text{ m at } 30\text{-m}) \Rightarrow \text{wider}$ main-beam



Main single-dish antenna at λ mm

Large aperture: f/D≤ 1

Obs.	D	ν	λ	HPBW	Latitude
	(m)	(GHz)	(mm)	(")	
IRAM	30	70 – 345	0.7 - 4	7 – 35	+37°
JCMT	15	210 – 710	0.2 - 2	8 – 20	+20°
APEX	12	230 – 1200	0.3 - 1.3	6 – 30	-22°
CSO	10.4	230 – 810	0.4 - 1.3	10 – 30	+20°

Some terminology (1): receivers

central frequency

$$\nu_0 = 80 - 2000 \, \text{GHz}$$

Calibration

• heterodyne receivers \approx monochromatic

$$\Delta \nu \sim 0.5 - 4 \mathrm{GHz} \ll \nu_0$$

bolometers: not monochromatic

$$\Delta \nu \approx 50 \, \mathrm{GHz}$$

- one polarization (linear, circular)
- taper (apodization at the rim)

Some terminology (2): backends

- spectrometers:
 - filter banks (FB)
 - acousto-optic (AOS)
 - autocorrelators (AC
 - Fast Fourier Transform Spectrometer (FFTS)
- spectral resolution $\delta
 u pprox 3$ 2000 kHz
- ⇒ largest resolution power

```
R = \nu_0 / \delta \nu \approx 10^5 - 10^8
```

Outline

- 1 Introduction
- 2 Perfect antenna
- 3 Real antenna
- 4 Temperature soal
- 5 Calibration

Introduction

Collected power from a source

- S_{ν} measured in Jy: 1 Jy = 10^{-26} J s⁻¹ m⁻² Hz⁻¹
- Monochromatic (and monomode) power collected by an area A_e :

$$p_{\nu} = \frac{1}{2} A_{\mathsf{e}} \cdot \mathcal{S}_{\nu} \qquad [\mathrm{W}\,\mathrm{Hz}^{-1}]$$

- Power in the bandwidth $\Delta \nu$: $p = \frac{1}{2} A_e \cdot S_{\nu} \cdot \Delta \nu$ [W]
- Effective area of the antenna: $A_e \leq A_{\text{geom}}$
- Answer: $A_e = \eta_A A_{\text{geom}} = \eta_i \eta_s ... A_{\text{geom}}$
- Determine $\eta_i, \eta_s...$

Diffraction theory (Huygens-Fresnel, Fraunhoffer approx.):

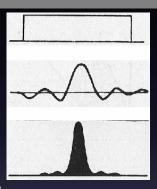
$$E_{\rm f-f}(I,m) \propto \mathcal{F}[E_{\rm ant}(x,y)]$$

- $E_{\mathrm{ant}}(x,y)$ (grading): bounded on a finite domain Δr $E_{\mathrm{f-f}}(I,m)$ concentrated on a finite domain $\Delta \Omega$ $(\Delta r \cdot \Delta \Omega \sim 1)$
- sharp cut of the antenna domain \Rightarrow oscillations (side-lobes)
- apodization or taper: decrease the level of the sidelobes, to the cost of increasing $\Delta\Omega$

Introduction

Antenna power pattern

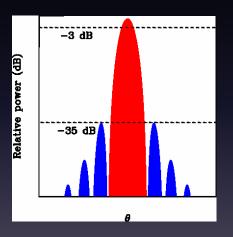
- Reciprocity: antenna in emission
- Distribution of electric field on the dish: $E_{ant}(x, y)$
- Far-field radiated by the dish: $E_{\rm f-f}(I,m) \propto \mathcal{F}[E_{\rm ant}(x,y)]$
- Power emitted is a function of direction: $\propto |E_{\rm f-f}(I,m)|^2$

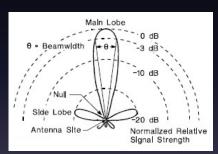


- Power pattern: $\mathcal{P}(I,m) \propto |\mathcal{E}_{f-f}(I,m)|^2$
- Beam solid angle: $\Omega_A = \int_{4\pi} \mathcal{P}(\Omega) \, \mathrm{d}\Omega \leq 4\pi$
- Effective area: $A(I, m) = A_e \cdot \mathcal{P}(I, m) \leq A_e$
- Fundamental relation:

$$A_e\Omega_A=\lambda^2$$

Power pattern $\mathcal{P}(I, m)$





SOURCE

Given a source of brightness $I_{\nu}(I, m) = I_{\nu}(\Omega)$

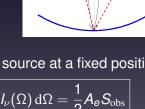
Source flux density:

$$S_{\nu} = \int_{\Omega_s} I_{\nu}(\Omega) d\Omega$$

Observed flux density:

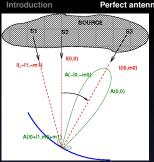
$$oldsymbol{\mathcal{S}_{
m obs}} = \int_{\Omega_S} \mathcal{P}(\Omega) \, \emph{\emph{I}}_
u(\Omega) \, \mathrm{d}\Omega < oldsymbol{\mathcal{S}}_
u$$

- Power received from $d\Omega_i$: $\mathrm{d}p_{\nu} = \frac{1}{2} A(\Omega_i) I_{\nu}(\Omega_i) \, \mathrm{d}\Omega_i$
- Incoherent emission: add intensities



Pointing towards a fixed position of the source at a fixed position

$$oxed{p_
u(I=0,m=0)=rac{A_e}{2}\,\int_{\Omega_{\mathcal{S}}}\mathcal{P}(\Omega)\,I_
u(\Omega)\,\mathrm{d}\Omega=rac{1}{2}A_eS_{\mathrm{obs}}}$$



- antenna tilted towards $\Omega_0 = (l_0, m_0)$
- Power received from the direction Ω_i

$$\mathrm{d}p_{\nu}(\Omega_i) = \frac{1}{2} A(\Omega_0 - \Omega_i) I_{\nu}(\Omega_i) \, \mathrm{d}\Omega_i$$

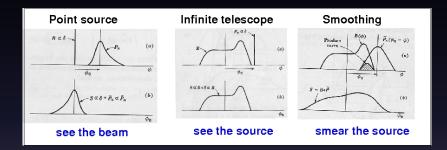
Incoherent emission: add intensities

Scanning a source leads to a convolution

$$\mathcal{S}_{\mathrm{obs}}(\Omega_0) = \int_{\Omega_{\mathcal{S}}} \mathcal{P}(\Omega - \Omega_0) I_{\nu}(\Omega) \,\mathrm{d}\Omega$$

$$p_
u(\Omega_0) = rac{A_e}{2} \, \int_{\Omega_S} \mathcal{P}(\Omega_0 - \Omega) \, \mathit{l}_
u(\Omega) \; \mathrm{d}\Omega = rac{1}{2} A_e S_{
m obs}(\Omega_0)$$

Convolution: consequences



$$\theta_{
m obs} = \sqrt{ heta_{
m mb}^2 + heta_{
m sou}^2}$$

When quoting sizes from observations, must quote the deconvolved size (when needed)

Outline

- 1 Introduction
- 2 Perfect antenna
- 3 Real antenna
- 4 Tem
- 5 Calibration

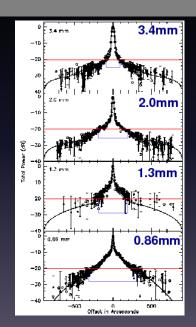
Introduction Perfect antenna Real antenna Temperature scales Calibration

Beam pattern

- secondary lobes (finite surface antenna)
- error lobes (surface irregularities)
- main-beam collects less power
- if correlation length ℓ \Rightarrow Gaussian error-beam $\Theta_{EB} \approx \lambda/\ell$ real beam = main-beam +
- Questions:

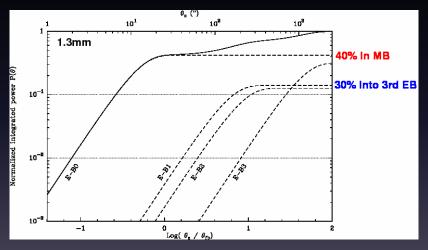
Power collected in each e-beam?

FWHMs of the e-beams?



Introduction Perfect antenna Real antenna Temperature scales Calibration

Error-Beams at IRAM-30m



Greve et al A&A 1998

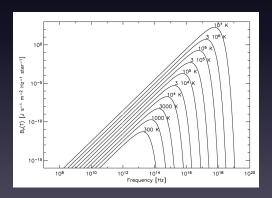
Outline

- 1 Introduction
- 2 Perfect antenna
- 3 Real antenna
- 4 Temperature scales
- 5 Calibration

Speaking in terms of temperatures

Black-body radiation at temperature T

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$
 [J s⁻¹ m⁻² Hz⁻¹ sr⁻¹]



Introduction

Black-body radiation (*i.e.* photons in thermal equilibrium with matter at temperature T)

$$B_{\nu}(T) = rac{2h
u^3}{c^2} rac{1}{e^{h
u/kT} - 1} \qquad [\mathrm{J}\,\mathrm{s}^{-1}\,\mathrm{m}^{-2}\,\mathrm{Hz}^{-1}\,\mathrm{sr}^{-1}]$$

- Dimensions of a brightness
- Rayleigh-Jeans approximation: $h\nu \ll kT$

$$B_{\nu}(T) pprox rac{2k}{\lambda^2} T \qquad [\mathrm{W}\,\mathrm{m}^{-2}\,\mathrm{Hz}^{-1}]$$

Flux density of a black-body:

$$S_{
u} = \int_{\mathbf{S}} B_{
u}(T,\Omega) \,\mathrm{d}\Omega \qquad = 4\pi B_{
u}(T)$$

Introduction

• Brightness temperature $T_{\rm B}$ of source brightness I_{ν} :

$$oxed{I_
u(\Omega)=B_
u(T_{
m B})}$$

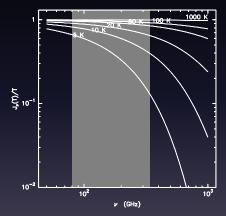
Radiation temperature, T_R , in the Rayleigh-Jeans regime approximation

$$I_{\nu}(\Omega) = \frac{2k\nu^2}{c^2} T_{\rm R}(\Omega) = \frac{2k}{\lambda^2} T_{\rm R} \qquad [{\rm J\,s^{-1}\,m^{-2}\,Hz^{-1}\,sr^{-1}}]$$

Relationship between $T_{\rm B}$ and $T_{\rm R}$:

$$T_{
m R} = J_{
u}(T_{
m B}) = rac{h
u}{k} rac{1}{\exp(h
u/kT_{
m B}) - 1} = rac{T_0}{\exp(T_0/T_{
m B}) - 1}$$

R-J approximation in the (sub)mm



Definitions

Introduction

• Brightness temperature $T_{\rm B}$ of source brightness I_{ν} :

$$oxed{I_
u(\Omega) = B_
u(T_{
m B},\Omega)}$$

* Radiation temperature, T_R , in the Rayleigh-Jeans regime approximation

$$I_{\nu}(\Omega) = \frac{2k\nu^2}{c^2} T_{\rm R}(\Omega) = \frac{2k}{\lambda^2} T_{\rm R}(\Omega) \qquad [{\rm J\,s^{-1}\,m^{-2}\,Hz^{-1}\,sr^{-1}}]$$

• Relationship between T_B and T_R :

$$T_{
m R} = J_{
u}(T_{
m B}) = rac{h
u}{k} rac{1}{\exp(h
u/kT_{
m B}) - 1} = rac{T_0}{\exp(T_0/T_{
m B}) - 1}$$

• In the following: $I_{\nu}(\Omega) \to \mathcal{T}_{\mathrm{R}}(\Omega)$

Temperature scales

Consequences

Monochromatic power received by the antenna:

$$\boxed{ \boldsymbol{p}_{\nu}(\Omega_0) = \frac{\boldsymbol{k}\boldsymbol{A}_e}{\lambda^2} \int_{\mathcal{S}} \mathcal{P}(\Omega) \, \boldsymbol{T}_R(\Omega_0 - \Omega) \, \mathrm{d}\Omega }$$

Observed flux density

$$\mathcal{S}_{\mathrm{obs}}(\Omega_0) = rac{2k}{\lambda^2} \int_{\mathcal{S}} \mathcal{P}(\Omega) \, \mathcal{T}_{\mathrm{R}}(\Omega_0 - \Omega) \, \mathrm{d}\Omega$$

Consider a source of finite angular extent (Ω_S) and flux density S_{ν} [J s⁻¹ m⁻² Hz⁻¹]:

$$\mathcal{S}_{
u} = rac{2k}{\lambda^2} \int_{\mathcal{S}} T_{\mathrm{B}}(\Omega) \, \mathrm{d}\Omega$$

Introduction

Antenna temperature

- Johnson noise in terms of an equivalent temperature: the average power transferred from a conductor (in thermal equilibrium) to a line within $\delta \nu$: $\delta p = k T \delta \nu$
- Antenna temperature defined by

$$\rho_{\nu} = kT_{A} \quad [W \cdot Hz^{-1}] = [J] = [J \cdot K^{-1}][K]$$

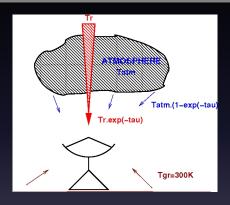
- On the other hand: $p_{\nu} = A_e/2 (\mathcal{P} * I_{\nu}) = kA_e/\lambda^2 (\mathcal{P} * T_R)$
- Hence, the antenna temperature reads

$$oxed{T_{\mathcal{A}}(\Omega_0) = rac{\mathcal{A}_e}{\lambda^2} \, \int_{\mathcal{S}} \mathcal{P}(\Omega) T_{\mathrm{R}}(\Omega - \Omega_0) \, \mathrm{d}\Omega}$$

Using $A_e\Omega_A=\lambda^2$, we may write:

$$T_A(\Omega_0) = rac{1}{\Omega_A} \int_{\mathcal{S}} \mathcal{P}(\Omega) T_{\mathrm{R}}(\Omega - \Omega_0) \, \mathrm{d}\Omega$$

Atmospheric emission/absorption



At frequency ν , Antenna temperature given by:

$$T_{A} = \eta_{s} \left\{ T_{R} e^{- au_{
u}} + (1 - e^{- au_{
u}}) T_{
m atm}
ight\} + (1 - \eta_{s}) T_{
m gr}$$

Correct for atmospheric attenuation:

$$T_A \rightarrow T_A' = T_A e^{ au_
u}$$

From T'_A to T^*_A

Correct for rear-sidelobes: measure the monochromatic power recieved from the forward 2π sr. Hence, $\Omega_A \to \mathcal{P}_{2\pi} = \int_{2\pi} \mathcal{P}(\Omega) \, \mathrm{d}\Omega$:

$$T_{\mathrm{A}}^*(\Omega_0) = rac{T_{\mathrm{A}}'}{F_{\mathrm{eff}}} = rac{\int_{\mathcal{S}} \mathcal{P}(\Omega) \, T_{\mathrm{R}}(\Omega_0 - \Omega) \, \mathrm{d}\Omega}{\mathcal{P}_{2\pi}}$$

- Forward efficiency: $F_{
 m eff}=\mathcal{P}_{2\pi}/\mathcal{P}_{4\pi}$
- \bullet $T_{
 m A} = F_{
 m eff} \, e^{- au_
 u} \, T_{
 m A}^*$

- Take into account main-beam and error-lobes
- Same as $T_{\rm A}^*$ but in $\Omega_{\rm mb}$ instead of 2π . Hence, $\Omega_A \to \mathcal{P}_{\rm mb} = \int_{\rm mb} \mathcal{P}(\Omega) \, \mathrm{d}\Omega$:

$$\mathcal{T}_{\mathrm{mb}}(\Omega_{0}) = rac{\mathcal{T}_{\mathrm{A}}^{\prime}}{\mathcal{B}_{\mathrm{eff}}} = rac{\int_{\mathcal{S}} \mathcal{P}(\Omega) \; \mathcal{T}_{\mathrm{R}}(\Omega_{0} - \Omega) \, \mathrm{d}\Omega}{\mathcal{P}_{\mathrm{mb}}},$$

- Beam efficiency: $B_{
 m eff}=\mathcal{P}_{
 m mb}/\mathcal{P}_{
 m 4\pi}$
- Useful relation for a Gaussian beam:

$$\Omega_{\mathrm{mb}} = \int_{\mathrm{mb}} \mathcal{P}(\Omega) \, \mathrm{d}\Omega = 1.133 \theta_{\mathrm{mb}}^2$$

Temperature scales

Definitions

Introduction

Forward efficiency:
$$F_{\text{eff}} = \frac{\mathcal{P}_{2\pi}}{\mathcal{P}_{4\pi}}$$

Beam efficiency: $B_{\text{eff}} = \frac{\mathcal{P}_{\text{mb}}}{\mathcal{P}_{4\pi}}$

Consequences

$$T_{
m mb} = rac{{m F}_{
m eff}}{{m B}_{
m eff}} \,\, T_{
m A}^* = rac{{m \mathcal{P}}_{2\pi}}{{m \mathcal{P}}_{
m mb}} \,\, T_{
m A}^*$$

Limiting cases

- Small sources: $\Omega_{\mathcal{S}} \ll \Omega_{mb}$
 - $T_{
 m mb}pprox rac{P(0)\Omega_ST_{
 m R}}{\mathcal{P}_{
 m mb}}=T_{
 m R}rac{\Omega_S}{\mathcal{P}_{
 m mb}}$
 - Gaussian sources & beam:

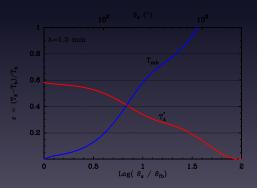
$$\int_{\mathcal{S}} \mathcal{P}(\Omega) T_{R}(\Omega_{0} - \Omega) d\Omega = 1.133(\theta_{\text{sou}}^{2} + \theta_{\text{mb}}^{2}) \text{ and}$$

$$\mathcal{P}_{mb}=1.133 heta_{mb}^2$$
 hence $\mathcal{T}_R=\mathcal{T}_{mb}rac{ heta_{mb}^2}{ heta_{sou}^2+ heta_{mb}^2}$: beam dilution

- Large sources: $\Omega_{\mathcal{S}}\gg\mathcal{P}_{\mathrm{mb}}$
 - $T_{
 m A}^*pprox T_{
 m R}rac{\int_{2\pi}P(\Omega)\,{
 m d}\Omega}{\mathcal{P}_{2\pi}}pprox T_{
 m R}$
- Special case: $\Omega_{\mathcal{S}} = \mathcal{P}_{\mathrm{mb}}$
 - $T_{
 m mb} = T_{
 m R} rac{\int_{\cal S} P(\Omega) \, {
 m d}\Omega}{{\cal P}_{
 m mb}} = T_{
 m R}$
 - Main-beam temperature gives the source brightness
- \circ General (worse) case: $\Omega_{\mathcal{S}} \sim \mathcal{P}_{
 m mb}$
 - $T_{\rm A}^* = \frac{T_{\rm R}}{P_{2\pi}} \int_{\mathcal{S}} P(\Omega) \, \mathrm{d}\Omega$
 - Main-beam temperature usually quoted
 - If source of uniform brightness and beam pattern known, feasible, but in real life... Which scale to use: T_{A}^{*} , T_{mb} ?

Which temperature scale?

Source size	Temperature scales
$egin{aligned} &\Omega_{\mathcal{S}} = 2\pi \ &\Omega_{\mathcal{S}} = \Omega_{\mathrm{mb}} \ &2\pi < \Omega_{\mathcal{S}} \ &\Omega_{\mathrm{mb}} < \Omega_{\mathcal{S}} < 2\pi \ &\Omega_{\mathrm{mb}} > \Omega_{\mathcal{S}} \end{aligned}$	$egin{array}{l} T_{R} &= T_{A}^{*} \ T_{R} &= T_{mb} \ T_{R} &< T_{A}^{*} \ T_{A}^{*} &< T_{R} < T_{mb} \ T_{mb} &< T_{R} \end{array}$



Outline

- 1 Introduction
- 2 Perfect antenna
- 3 Real antenna
- 4 Temperature scal
- 5 Calibration

Introduction Perfect antenna Real antenna Temperature scales Calibration

Goals of the calibration

Overview

- Atmospheric calibration:
 - atmospheric emission/abs at frequency ν: radiative transfer
 - turbulence affects the intensity through phase shifts
- Full detection chain calibration (antenna, receiver,)
 - Antenna-sky coupling: $F_{\rm eff}$
 - Receiver: gain, noise, stability
 - Cables, backends (e.g. dark currents)

Goals

- Input is an e-m field and output at backends are counts
- Question 1: how to convert from counts to power in physical units?
- Question 2: how to correct for the atmospheric contribution

Introduction Perfect antenna Real antenna Temperature scales Calibration

Notations

Telescope pointing at a source receives

$$C_{\text{sou}} = \chi \left\{ T_{\text{rec}} + F_{\text{eff}} e^{-\tau_{\nu}} T_{\text{sou}} + T_{\text{sky}} \right\}$$

$$T_{\text{sky}} = F_{\text{eff}} (1 - e^{-\tau_{\nu}}) T_{\text{atm}} + (1 - F_{\text{eff}}) T_{\text{gr}}$$

- $T_{\rm rec}$: noise contribution from the receiver
- $F_{\rm eff}e^{- au_{
 u}}T_{\rm sou}$: signal from the scientific target after propagation through the atmosphere
- $T_{
 m sky}$: signal emitted by the atmosphere ($T_{
 m atm}$) and the ground ($T_{
 m gr}$)
- Orders of magnitude (IRAM-30m):
 - $_{\odot}~T_{
 m atm}pprox T_{
 m gr}pprox$ 290 K
 - $T_{\rm rec} \approx 50-70$ K at 100-350 GHz at the IRAM-30m
 - $F_{\rm eff}(
 u) pprox 90 80\%$, $B_{\rm eff}(
 u) pprox 80 35\%$, $u_{\rm GHz} = 100 350$
 - $T_{\rm sky} \approx 30 100 \; {\rm K} \; {\rm at} \; 100 230 \; {\rm GHz}$
 - Note: if $\tau_{\nu} \ll$ 1 (good weather), $T_{\rm sky} \approx F_{\rm eff} \tau_{\nu} T_{\rm atm}$

The "Chopper Wheel" method

Perform 3 + 1 measurements: hot, cold, empty sky, source

$$C_{\text{sou}} = \chi \left\{ T_{\text{rec}} + T_{\text{sky}} + F_{\text{eff}} e^{-\tau_{\nu}} T_{\text{sou}} \right\}$$

$$C_{\text{atm}} = \chi \left\{ T_{\text{rec}} + T_{\text{sky}} \right\}$$

$$C_{\text{hot}} = \chi \left\{ T_{\text{rec}} + T_{\text{hot}} \right\}$$

$$C_{\text{col}} = \chi \left\{ T_{\text{rec}} + T_{\text{col}} \right\}$$

Making differences:

$$egin{array}{lcl} \Delta oldsymbol{\mathcal{C}}_{ ext{sig}} &= oldsymbol{\mathcal{C}}_{ ext{sou}} - oldsymbol{\mathcal{C}}_{ ext{atm}} = \chi oldsymbol{\mathcal{F}}_{ ext{eff}} oldsymbol{e}^{- au_
u} oldsymbol{\mathcal{T}}_{ ext{sou}} \ oldsymbol{\mathcal{C}}_{ ext{cal}} &= oldsymbol{\mathcal{C}}_{ ext{cal}} oldsymbol{\mathcal{C}}_{ ext{cal}} \ oldsymbol{\mathcal{C}}_{ ext{cal}} \end{array}$$

Definition of $T_{\rm cal}$ (correcting for atm contrib. and spillover)

$$T_{
m cal} = (T_{
m hot} - T_{
m sky}) rac{m{e}^{ au_
u}}{F_{
m eff}}$$

Calibration outputs (1): T_{cal}

Rewrite T_{sky} and $DeltaC_{\text{cal}}$:

$$T_{
m sky} = T_{
m gr} + F_{
m eff}(T_{
m atm} - T_{
m gr}) - F_{
m eff} e^{- au_{
u}} T_{
m atm}$$

 $\Delta C_{
m cal} = \chi \{ (T_{
m hot} - T_{
m gr}) + F_{
m eff} (T_{
m gr} - T_{
m atm}) + F_{
m eff} e^{- au_{
u}} T_{
m atm} \}$

Assume $T_{
m hot}=T_{
m atm}=T_{
m gr}=T$. Then $T_{
m cal}=T$, no need to know $e^{- au_{
u}}$ (Penzias & Burrus ARAA 1973):

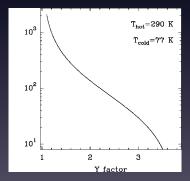
$$T_{
m sou} = T rac{\Delta C_{
m sig}}{\Delta C_{
m cal}}, \quad T_{
m cal} = T_{
m atm} = T_{
m gr} = T_{
m hot}$$

General case: different $T_{\rm atm}$, $T_{\rm hot}$ and $T_{\rm gr}$ \Rightarrow must solve for $e^{-\tau_{\nu}}$. This is done using a model of the atmosphere trying to reproduce $T_{\rm sky}$ varying the amount of dominant species in the model (hence providing us with pwv).

Calibration outputs (2): T_{rec}

Using hot & cold loads measurements lead to $T_{\rm rec}$:

$$T_{\text{rec}} = \frac{T_{\text{hot}} - YT_{\text{col}}}{Y - 1}$$
 $Y = \frac{C_{\text{hot}}}{C_{\text{col}}} = \frac{T_{\text{rec}} + T_{\text{hot}}}{T_{\text{rec}} + T_{\text{col}}}$



Temperature scales

Calibration outputs (3): $T_{\rm sys}$

System temperature: describes the noise including all sources from the sky down to the backends

used to determine the total statistical noise. For heterodyne receivers, noise is given by the "radiometer formula":

$$\sigma_T = \frac{\kappa \cdot T_{\rm sys}}{\sqrt{\delta \nu \, \Delta t}}$$

 δ_{ν} : spectral resolution

Perfect antenna

- Δt : total integration time
- κ depends on the observing mode:
- example: position switching $\overline{\text{ON-OFF}} \Rightarrow \sqrt{2}$ $t_{\rm ON} = t_{\rm OFF} \Rightarrow \Delta t = 2t_{\rm ON} \Rightarrow \sqrt{2}$ $\Rightarrow \kappa = 2$

Introduction

- flux density: $S_{\nu} = \int_{S} I_{\nu}(\Omega) d\Omega = \frac{2k}{\sqrt{2}} \int_{S} T_{\text{mb}} d\Omega$
- power received by the antenna: $kT_A' = k \frac{T_A^*}{F_{arr}} = \frac{1}{2} S_{\nu} A_e$

$$rac{\mathcal{S}_{
u}}{\mathcal{T}_{\mathrm{A}}^{*}} = rac{2k}{A} rac{F_{\mathrm{eff}}}{\eta_{A}} \qquad \mathrm{Jy/K}$$

- 1 Jv = 10^{-26} J s⁻¹ m⁻² Hz⁻¹
- values of S_{ν}/T_{Λ}^* are tabulated e.g. on IRAM-30m web page $(\approx 6 \ @ \ 100 \ \text{GHz}. \approx 11 \ @ \ 340 \ \text{GHz})$

Introduction

From $T_{\rm mb}$ to S_{ν} , from Kelvin to Jansky

- flux density: $S_{\nu} = \int_{S} I_{\nu}(\Omega) d\Omega = \frac{2k}{\sqrt{2}} \int_{S} T_{\rm mb} d\Omega$
- power received by the antenna: $kT_A' = k\frac{T_A^*}{F_{avr}} = \frac{1}{2}S_{\nu}A_e$

$$rac{S_{
u}}{T_{
m A}^*} = rac{2k}{A} rac{F_{
m eff}}{\eta_A} ~~{
m Jy/K}$$

- 1 Jv = 10^{-26} J s⁻¹ m⁻² Hz⁻¹
- values of S_{ν}/T_{Λ}^* are tabulated e.g. on IRAM-30m web page $(\approx 6 \ @ \ 100 \ \text{GHz}, \approx 11 \ @ \ 340 \ \text{GHz})$
- How to convert the temperatures into J s⁻¹ m⁻² Hz⁻¹ sr⁻¹? $I_{\nu}(\Omega) = \frac{2k}{\sqrt{2}} T_{R}(\Omega)$

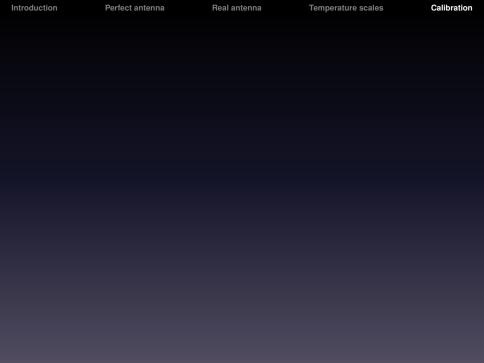
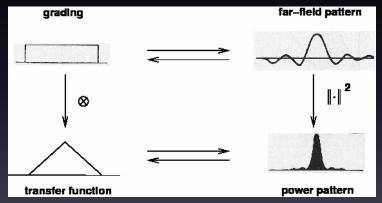


Image formation: total power telescope



- antenna scans the source
- \circ image: convolution of I_0 by beam pattern $I'_{\nu} = \mathcal{P} * I_{0,\nu}$
- \circ measure directly the brightness distribution k

Interferometer field of view

$$F = D * (\mathcal{P} \times I) + N$$

F = dirty map = FT of observed visibilities

 $D = \text{dirty beam } (\longrightarrow \text{deconvolution})$

P = power pattern of single-dish (primary beam B in the following

I = sky brightness distribution

N = noise distribution

- \circ An interferometer measures the product $\mathcal{P} imes \mathcal{D}$
- $m{\mathcal{P}}$ has a finite support \longrightarrow limits the size of the field of view

Summary

- full-aperture antenna: P * I
- \circ interferometry sensitive to $\mathcal{P} imes 1$
- amplitude calibration:
 - converts counts into temperatures
 - corrects for atmospheric absorption
 - corrects for spillover
- **lobe = main-lobe + error-lobes** (*e.g.* as much as 50% in error-lobes at 230GHz for the 30m)
- Pay attention to the **temperature scale** to use $(T_A^*, T_{mb},...)$

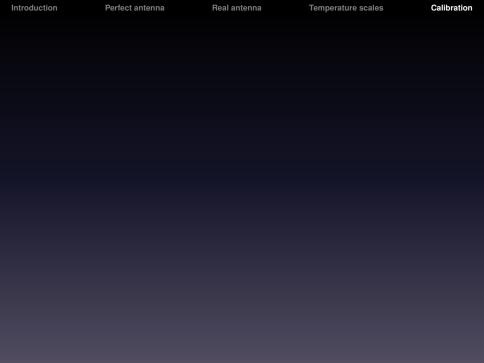
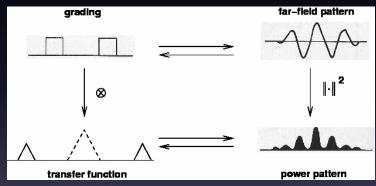


Image formation: correlation telescope



- antennas fixed w.r.t. the source
- \circ correlation temperature: $\mathcal{T}(0,0)$ Fourier transform of $I_0 \times \mathcal{P}$
- measure the Fourier transform of the brightness distribution In
- image built afterwards.

Interferometer field of view

Measurement equation of an interferometric observation:

$$F = D * (B \times I) + N$$

F = dirty map = FT of observed visibilities

 $D = \text{dirty beam } (\longrightarrow \text{deconvolution})$

B = primary beam

I = sky brightness distribution

N = noise distribution

- \circ An interferometer measures the product $B \times I$
- ullet B has a finite support \longrightarrow limits the size of the field of view
- B is a Gaussian primary beam correction possible (proper estimate of the fluxes) but strong increase of the noise

Primary beam width

Aperture function \Rightarrow Voltage pattern \downarrow $|\cdot|^2$ Transfert function T(u,v) \Rightarrow Power pattern $B(\ell,m)$

Gaussian illumination \Longrightarrow to a good approximation, B is a Gaussian of 1.2 λ/D FWHM

Plateau de Bure D = 15 mField of View Frequency Wavelength 85 GHz 3.5 mm 58" 100 GHz 50" 3.0 mm 115 GHz 2.6 mm 43" 215 GHz 1.4 mm 23" 230 GHz 1.3 mm 22" 245 GHz 20" 1.2 mm