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Scientific Analysis of a mm Interferometer Output

mm interferometer output:

Calibrated visibilities in the uv plane (' the Fourier plane).

2 possibilities:

• uv plane analysis (cf. Lecture by A. Castro-Carrizo):

Always better . . . when possible!

(in practice for “simple” sources as point sources or disks)

• Image plane analysis:

⇒ Mathematical transforms to go from uv to image plane!

Goal: Understand effects of the imaging process on

• The resolution;

• The field of view (single pointing or mosaicing, cf. Lecture by

F. Gueth);

• The reliability of the image;

• The noise level and repartition (cf. lecture by S.Guilloteau).
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From Calibrated Visibilities to Images:
I. Comparison Visibilities/Source Fourier Transform

Vij(bij) = 2D FT
{
Bprimary.Isource

}
(bij) + N

• Primary Beam

⇒ Distorted source information.

• Noise ⇒ Sensitivity problems.

• Irregular, limited sampling

⇒ incomplete source information:

– Support limited at:

∗ High spatial frequency

⇒ limited resolution;

∗ Low spatial frequency ⇒ prob-

lem of wide field imaging;

– Inside the support, incomplete

(i.e. Nyquist’s criterion not re-

spected) sampling ⇒ lost of in-

formation.
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From Calibrated Visibilities to Images:

II. Effect of Irregular, Limited Sampling

Definitions:

• V = 2D FT
{
Bprimary.Isource

}
;

• Irregular, limited sampling function:

– S(u, v) = 1 at (u, v) points where visibilities are measured;

– S(u, v) = 0 elsewhere;

• Bdirty = 2D FT−1 {S};

• Imeas = 2D FT−1 {S.V }.

Fourier Transform Property #1:

Imeas = Bdirty ∗
{
Bprimary.Isource

}
.

Bdirty: Point Spread Function (PSF) of the interferometer

(i.e. if the source is a point, then Imeas = Itot.Bdirty).
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From Calibrated Visibilities to Images:

III. Why Deconvolving?

• Difficult to do science

on dirty image.

• Deconvolution ⇒ a clean

image compatible with the

sky intensity distribution.
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From Calibrated Visibilities to Images: Summary

Fourier Transform and Deconvolution:

The two key issues in imaging.

Stage Implementation

Calibrated Visibilities

⇓ Fourier Transform GO UVSTAT, GO UVMAP

Dirty beam & image

⇓ Deconvolution GO CLEAN

Clean beam & image

⇓ Visualization GO BIT, GO VIEW

⇓ Image analysis GO NOISE, GO FLUX, GO MOMENTS

Physical information

on your source
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Direct vs. Fast Fourier Transform

Direct FT:

• Advantage: Direct use of the irregular sampling;

• Inconvenient: Slow.

Fast FT:

• Inconvenient: Needs a regular sampling ⇒ Gridding;

• Advantage: Quick for images of size 2M × 2N .

⇒ In practice, everybody use FFT.
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Gridding: I. Interpolation Scheme

Convolution because:

• Visibilities = noisy samples of a

smooth function.

⇒ Some smoothing is desirable.

• Nearby visibilities are not

independent.

– V = 2D FT
{
Bprimary.Isource

}
= B̃primary ∗ Ĩsource;

– FWHM(convolution kernel)

< FWHM(B̃primary)

⇒ No real information lost.

Imaging, Deconvolution & Image Analysis J. Pety, 2010



Gridding: II. Convolution Equation is Kept Through Gridding

Demonstration:

• Igrid
meas

2D FT
⇀↽ G ∗ (S.V ) ⇔ Igrid

meas = G̃. ˜(S.V ) = G̃.(S̃ ∗ Ṽ );

• Bgrid
dirty

2D FT
⇀↽ G ∗ S ⇔ Bgrid

dirty = G̃.S̃;

⇒ Imeas = Bdirty ∗
{
Bprimary.Isource

}
with Imeas = Igrid

meas/G̃

and Bdirty = Bgrid
dirty/G̃.

Remark: Gridding may be hidden in equations but it is still there.

⇒ Artifacts due to gridding! (cf. next transparencies)
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Gridding:
III. Effect of a Regular Sampling (Periodic Replication)

uv Plane Image Plane

Bprimary.Isource

Regular Sampling function

Result for a fine sampling

Result for critical sampling

(Nyquist’s criterion)

Result for a coarse sampling
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Gridding: III. Effect of a Regular Sampling (Aliasing)

uv Plane Image Plane

Aliasing = Folding of intensity outside the image size into the image.

⇒ Image size must be large enough.
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Gridding: IV. Pixel and Image Sizes

Pixel size: Between 1/4 and 1/5 of the synthesized beam size

(i.e. more than the Nyquist’s criterion in image plane to ease

deconvolution).

Image size:

• = uv plane sampling rate (FT property # 2);

• Natural resolution in the uv plane: B̃primary size;

⇒ At least twice the Bprimary size (i.e. Nyquist’s criterion in uv

plane).
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Gridding: V. Bright Sources in Bprimary Sidelobes

Bright Sources in Bprimary sidelobes

outside image size will be aliased into image.

⇒ Spurious source in your image!

Solution: Increase the image size.

(Be careful: only when needed for efficiency reasons!)
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Gridding: VI. Noise Distribution

Imaging, Deconvolution & Image Analysis J. Pety, 2010



Gridding: VII. Choice of Gridding function

Gridding function must:

• Fall off quickly in image plane (to avoid noise aliasing);

• Fall off quickly in uv plane (to avoid too much smoothing).

⇒ Define a mathematical class of functions: Spheroidal functions.

GILDAS implementation: In GO UVMAP

• Spheroidal functions = Default gridding function;

• Tabulated values are used for speed reasons.
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Dirty Beam Shape and Image Quality

Bdirty = 2D FT−1 {S}.

Importance of the Dirty Beam Shape:

• Deconvolving a dirty image is a delicate stage;

• The closest to a Gaussian Bdirty is, the easier the

deconvolution;

• Extreme case:

Bdirty = Gaussian ⇒ No deconvolution needed at all!

Ways to improve (at least change) Bdirty shape:

• Increase the number of antenna (costly).

• Change the antenna layout (technically difficult).

• Weight the irregular, limited sampling function S

(the only thing you can do in practice).
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Dirty Beam Shape and Number of Antenna:

2 Antenna
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Dirty Beam Shape and Number of Antenna:

3 Antenna
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Dirty Beam Shape and Number of Antenna:

4 Antenna
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Dirty Beam Shape and Number of Antenna:

5 Antenna
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Dirty Beam Shape and Number of Antenna:

6 Antenna
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Dirty Beam Shape and Super Synthesis
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Dirty Beam Shape and Super Synthesis

Imaging, Deconvolution & Image Analysis J. Pety, 2010



Dirty Beam Shape and Weighting

Natural Weighting: Default definition of the irregular sampling

function at uv table creation.

• S(u, v) = 1/σ2 at (u, v) points where visibilities are measured;

• S(u, v) = 0 elsewhere;

with σ2(u, v) the noise variance of the visibility.

Introduction of a weighting function W (u, v):

• Bdirty = 2D FT−1 {W.S};

• Robust weighting: W enhance the large baseline contribution;

• Tapering: W enhance the small baseline contribution.
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Robust Weighting: I. Definition
Definitions:

• Natural =
∑

(u,v)∈Cell

S;

•
∑

(u,v)∈Cell

W.S =
{

Constant if (Natural ≥ Threshold);

Natural else;

• In practice, the cell size is 0.5D where D is the single-dish

antenna diameter (i.e. 15m for PdBI).
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Robust Weighting: II. Examples
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Robust Weighting: III. Definition and Properties

Definitions:

• Natural =
∑

(u,v)∈Cell

S;

•
∑

(u,v)∈Cell

W.S =
{

Constant if (Natural ≤ Threshold);

Natural else;

• In practice, the cell size is 0.5D.

Properties:

• Increase the resolution;

• Lower the sidelobes;

• Degrade point source sensitivity.

Imaging, Deconvolution & Image Analysis J. Pety, 2010



Tapering: I Definition

Definition:

• Apodization of the uv coverage in general by a Gaussian;

• W = exp

−
(
u2 + v2

)
t2

 where t = tapering distance.

⇒ Convolution (i.e. smoothing) of the image by a Gaussian.

Imaging, Deconvolution & Image Analysis J. Pety, 2010



Tapering: II. Examples
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Tapering: II. Examples
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Tapering: II. Examples
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Tapering: III. Definition and Properties

Definition:

• Apodization of the uv coverage in general by a Gaussian;

• W = exp

−
(
u2 + v2

)
t2

 where t = tapering distance.

⇒ Convolution (i.e. smoothing) of the image by a Gaussian.

Properties:

• Decrease the resolution;

• Degrade point source sensitivity;

• Increase sensitivity to “medium size” structures.

Inconvenient: Throw out some information.

⇒ To increase sensitivity to extended sources, use compact ar-

rays not tapering.
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Weighting and Tapering: Summary

Robust Natural Tapering
Resolution High Medium Low

Side Lobes ↘ Medium ?
Point Source Sensitivity ↘ Maximum ↘
Extended Source Sensitivity ↘ Medium ↗

Non-circular tapering:

Sometimes ⇒ Better (i.e. more circular) beams.
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From Calibrated Visibilities to Images: Summary

Fourier Transform and Deconvolution:

The two key issues in imaging.

Stage Implementation

Calibrated Visibilities

⇓ Fourier Transform GO UVSTAT, GO UVMAP

Dirty beam & image

⇓ Deconvolution GO CLEAN

Clean beam & image

⇓ Visualization GO BIT, GO VIEW

⇓ Image analysis GO NOISE, GO FLUX, GO MOMENTS

Physical information

on your source
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Deconvolution: I. Philosophy

Imeas = Bdirty ∗
{
Bprimary.Isource

}
+ N.

Information lost:

• Irregular, incomplete sampling ⇒ convolution by Bdirty;

• Noise ⇒ Low signal structures undetected.

⇒ 1. Impossible to recover the intrinsic source structure!

⇒ 2. Infinite number of solutions!{
S solution (i.e. Imeas = Bdirty ∗ S + N)

Bdirty ∗R = 0

}
⇒(S+R) solution.
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Deconvolution: I. Philosophy (continued)

Imeas = Bdirty ∗
{
Bprimary.Isource

}
+ N.

Information lost:

⇒ 1. Impossible to recover the intrinsic source structure!

⇒ 2. Infinite number of solutions!

Deconvolution goal: Finding a sensible intensity distribution

compatible with the intrinsic source one.

Deconvolution needs:

• Some a priori assumptions about the source intensity

distribution;

• As much as possible knowledge of

– Bdirty (OK in radioastronomy);

– Noise properties.

The best solution: A Gaussian Bdirty ⇒ No deconvolution needed!
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Deconvolution: II. MEM principle

a priori assumptions: Smoothed and positive intensity.

Idea:

“Select from the images that agree with the measured visibilities

to within the noise level the one that maximizes entropy.”

Algorithm:

• Entropy:

S = −
∑

ij Iij log(Iij/Mij) with M = first guess image.

• Constraint:∑
k
|V (uk,vk)−Ĩ(uk,vk)|2

σ2
k

= number of visibilities

with Ĩ = 2D FT(I).
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Deconvolution: II. MEM properties

Advantages:

• Fast:
Computational load ∝ N ln(N) with N = number of pixels.

• Easy to generalize (Arrays with different antenna diameters).

• Flatten low-level extended emission.

• Resolve peaks.

Inconvenients:

• Angular resolution increases with peak height.

• Unable to clean ripples (e.g. point source sidelobes) in
extended emission.

• Biased residuals:
⇒ Noise increase and spurious emission at low signal.

• Impossibility to deal with absorption features.

• Poor performance with limited uv coverage
⇒ Not used at PdBI.

Imaging, Deconvolution & Image Analysis J. Pety, 2010



Deconvolution: III. The Basic CLEAN Algorithm

a priori assumption: Source = Collection of point sources.

Idea: “Matching pursuit”.

Algorithm:

1 Initialize

– the residual map to the dirty map;

– the Clean component list to an empty (NULL) value;

2 Identify pixel of |Imax| in residual map as a point source;

3 Add γ.Imax to clean component list;

4 Subtract γ.Imax from residual map;

5 Go back to point 2 while stopping criterion is not matched;

6 Convolution by Clean beam (a posteriori regularization);

5 Addition of residual map to enable:

– Correction when cleaning is too superficial;

– Noise estimation.
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Deconvolution: III. The Basic Clean Algorithm

1. First Illustration
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Deconvolution: III. The Basic Clean Algorithm

2. Second Illustration
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Deconvolution: III. The Basic Clean Algorithm
3. Little Secrets

Convergence:
Too superficial cleaning ⇒ Approximate results.

Too deep cleaning ⇒ Divergence.
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Deconvolution: III. The Basic Clean Algorithm
3. Little Secrets

Addition of residual map:
Improvement when convergence not reached;

Noise estimation.
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Deconvolution: III. The Basic Clean Algorithm
3. Little Secrets

Addition of residual map:
Improvement when convergence not reached;

Noise estimation.
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Deconvolution: III. The Basic Clean Algorithm
3. Little Secrets

Choice of clean beam:
Gaussian of FWHM matching the synthesized beam size.

⇒ Super resolution strongly discouraged.
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Deconvolution: III. The Basic Clean Algorithm

3. Little Secrets

Negative clean components are mandatory.
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Deconvolution: III. The Basic Clean Algorithm

4. Other Little Secrets

• Stopping criterions:

– Total number of Clean components;

– |Imax| < fraction of noise (when noise limited);

– |Imax| < fraction of dirty map max (when dynamic limited).

• Loop gain: Good results when γ ∼ 0.1− 0.3.

• Cleaned region: Only the inner quarter of the dirty image.

• Support: Definition of a region where CLEAN components are

searched.

– A priori information ⇒ Help CLEAN convergence.

– But bias if support excludes signal regions

⇒ Be wise!
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Deconvolution: III. The Basic Clean Algorithm
5. A True Example without support
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Deconvolution: III. The Basic Clean Algorithm
5. A True Example without support (zoom)
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Deconvolution: III. The Basic Clean Algorithm
5. A True Example with right support
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Deconvolution: III. The Basic Clean Algorithm
5. A True Example with wrong support
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Deconvolution: IV. CLEAN Variants

Basic:

• HOGBOM (Hogböm 1974)

Robust but slow.

Faster Search Algorithms:

• CLARK (Clark 1980)

Fast but instable (when sidelobes are high).

• MX (Cotton& Schwab 1984)

Better accuracy (Source removal in the uv plane), but slower

(gridding steps repeated).

Better Handling of Extended Sources:

• MULTI (Multi-Scale Clean by Cornwell 1998)

Multi-resolution approach.
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Deconvolution: IV. CLEAN Variants (continued)

Exotic use at PdBI:

• SDI (Steer, Dewdney, Ito 1984)

Created to minimize stripes.

• MRC (Multi-Resolution Clean by Wakker & Schwarz 1988)

Too simple multi-resolution approach.
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Deconvolution: V. Recommended Practices

• Method: Start with CLARK and turn to HOGBOM in case of high side-

lobes.

• Support:

– Start without one.

– Define one on your first clean image if really needed (i.e. dif-

ficulties of convergence).

• Stopping criterion:

– Use a large enough number of iterations to ensure convergence.

– Clean down to the noise level unless a very strong source is

present.

• Misc: Consult an expert until you become one.
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Visualization and Image Analysis

Fourier Transform and Deconvolution:

The two key issues in imaging.

Stage Implementation

Calibrated Visibilities

⇓ Fourier Transform GO UVSTAT, GO UVMAP

Dirty beam & image

⇓ Deconvolution GO CLEAN

Clean beam & image

⇓ Visualization GO BIT, GO VIEW

⇓ Image analysis GO NOISE, GO FLUX, GO MOMENTS

Physical information

on your source
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Photometry: I Generalities

• Brightness = Intensity (e.g. Power = Iν(α, β)dAdΩdν)

• Flux unit: 1 Jy = 10−26 W m−2 Hz−1.

• Source flux measured by a single–dish antenna:

Fν = B ∗ Iν with B the antenna beam.

• Relationship between measured flux and temperature scales:

TA = λ2

2kΩA
Fν, T ?

A = λ2

2kΩ2π
Fν and Tmb = λ2

2kΩmb
Fν because

– Pν = 1
2AeFν Power detected by the single–dish antenna.

– P ′ν = kT Power emitted by a resistor at temperature T.

– Pν = P ′ν ⇒ TA = Ae
2kFν.

– λ2 = AeΩA (diffraction).

– Ω2π = FeffΩA or Feff = Forward beam
Total beam .

– Ωmb = BeffΩA or Beff = Main beam
Total beam.
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Photometry: II Visibilities

Visibility unit: Jy because:

V = 2D FT
{
Bprimary.Isource

}
=

∫ ∫
Bprimary(σ).Isource(σ) exp(−i2πb.σ/c)dΩ.

Effect of flux calibration errors on your image:

• Multiplicative factor if uniform in uv plane.

• Convolution (i.e. distorsion) else.
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Photometry: III Dirty map

Ill–defined because:

• S(u = 0, v = 0) = 0 ⇒ Area of the dirty beam is 0!

• V (u = 0, v = 0) = 0 ⇒ Total flux of the dirty image is 0!

⇒ A source of constant intensity will be fully filtered out.

• A single point source of 1 Jy appears with peak intensity of 1.

• Several close-by point sources of 1 Jy appears with peak

intensities different of 1.
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Photometry: IV Clean map

(my dream: Don’t take it seriously)

Iclean = 1
Ωclean

(
Bclean ∗ Ipoint

)
: i.e. convolution of a set of point

sources (mimicking the sky intensity distribution) by the clean

beam.

Behavior: Brightness, i.e. Source flux measured in a given solid

angle (i.e. 1 steradian).

Unit: Jy/sr

Consequences:

• Source flux computation by integration inside a support:

Flux =
∑

ij ∈ S
Iclean dΩ

[Jy] [Jy/sr] [sr]

with dΩ the image pixel surface.

• From Brightness to temperature: Tclean = λ2

2kIclean
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Photometry: IV Clean map (reality)

Iclean = Bclean ∗ Ipoint: i.e. convolution of a set of point

sources (mimicking the sky intensity distribution) by the clean

beam.

Behavior: Brightness, i.e. Source flux measured in a given solid

angle (i.e. clean beam).

Unit: Jy/beam with 1 beam = Ωclean sr.

Consequences:

• Source flux computation by integration inside a support:

Flux =
∑

ij ∈ S
Iclean .

dΩ

Ωclean

[Jy] [Jy/beam] [beam]

with dΩ
Ωclean

the nb of beams in the surface of an image pixel.

• From Brightness to temperature: Tclean = λ2

2kΩclean
Iclean
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Photometry: IV Clean map

Consequences of a Gaussian clean beam shape:

• No error beams, no secondary beams.

• Tclean is a main beam temperature.

Natural choice of clean beam size: Synthesized beam size

(i.e. fit of the central peak of the dirty beam).

⇒ Minimize unit problems when adding the dirty map residuals.

Caveats of flux measurements:

• CLEAN does not conserve flux

(i.e. CLEAN extrapolates unmeasured short spacings).

• Large scales are filtered out (source size > 1/3 primary beam

size ⇒ need of short spacings, cf. lecture by F. Gueth).

• Iclean = Bprimary.Isource + N

⇒ Primary beam correction may be needed:

Iclean/Bprimary = Isource + N/Bprimary ⇒ Varying noise!

• Seeing scatters flux.
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Photometry: V Importance of Extended, Low Level Intensity
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Noise: I. Formula

δT =
λ2

2k

σ

Ω
with σ =

2k

η

Tsys
√

∆t∆ν
√

Nant(Nant − 1)A

δT Brightness noise [K].

λ Wavelenght.

k Boltzmann constant.

Ω Synthesized beam solid angle.

A Antenna area.

σ Flux noise [Jy].

Tsys System temperature.

∆t On-source integration time.

∆ν Channel bandwidth.

Nant Number of antennas.

and η Global efficiency ( = Quantum x Antenna x Atm. Decorrela-

tion).
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Noise: II. σ to compare instruments

δT =
λ2

2k

σ

Ω
with σ =

2k

η

Tsys
√

∆t∆ν
√

Nant(Nant − 1)A

Wavelenght: 1 mm. Tsys = 150 K. Decorrelation = 0.8.

Instrument Bandwidth σ On-source time
PdBI 2009 8 GHz 1.0 mJy/Beam 3 min
ALMA 2012 16 GHz 1.0 mJy/Beam 3 sec
ALMA 2012 16 GHz 0.12 mJy/Beam 3 min

One order of magnitude (∼ 8×) sensitivity increase in continuum.
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Noise: III. δT to prepare observations: 1. Continuum

δT =
λ2

2k

σ

Ω
with σ =

2k

η

Tsys
√

∆t∆ν
√

Nant(Nant − 1)A

Wavelenght: 1 mm. Tsys = 150 K. Decorrelation = 0.8.

Instrument Bandwidth Resol. δT On time Comment
PdBI 2009 8 GHz 0.30′′ 30 mK 3 hrs
ALMA 2012 16 GHz 0.30′′ 30 mK 3 min Low contrast, many objects
ALMA 2012 16 GHz 0.30′′ 4 mK 3 hrs High contrast, same object
ALMA 2012 16 GHz 0.03′′ 30 mK 500 hrs 5.7% of a civil year
ALMA 2012 16 GHz 0.03′′ 400 mK 3 hrs Intermediate sensitivity
ALMA 2012 16 GHz 0.10′′ 30 mK 3 hrs Intermediate resolution

Almost one order of magnitude (∼ 8×)

sensitivity increase

⇒ A factor ∼ 3 resolution increase

(same integration time,

same noise level).

Wolf et al. 2002, 0.02′′ in 3 hrs.
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Noise: III. δT to prepare observations: 2. Line

δT =
λ2

2k

σ

Ω
with σ =

2k

η

Tsys
√

∆t∆ν
√

Nant(Nant − 1)A

Channel width: 0.8 kms−1. Wavelenght: 1 mm. Decorrelation =
0.8.

Instrument Resolution δT On-source time Comment
PdBI now 1′′ 0.3 K 2 hrs
ALMA 2012 1′′ 0.3 K 3.5 min Same line, many objects
ALMA 2012 1′′ 0.05 K 2 hrs Fainter lines, same object
ALMA 2012 0.1′′ 0.3 K 575 hrs 6.5% of a civil year!
ALMA 2012 0.1′′ 5 K 2 hrs Intermediate sensitivity
ALMA 2012 0.4′′ 0.3 K 2 hrs Intermediate resolution

A factor ∼ 6 sensitivity increase
⇒ A factor ∼ 2.4 resolution increase

(same integration time, same noise level).

Imaging, Deconvolution & Image Analysis J. Pety, 2010



Noise: IV. Advices

δT =
λ2

2k

σ

Ω
with σ =

2k

η

Tsys
√

∆t∆ν
√

Nant(Nant − 1)A

• For your estimation:

– Use a sensitivity estimator!

http://www.eso.org/sci/facilities/alma/observing/tools/etc/

– The estimator is probably optimistic!

– Use δT not σ.
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Writing the Paper: Your job!



Mathematical Properties of Fourier Transform

1 Fourier Transform of a product of two functions

= convolution of the Fourier Transform of the functions:

If (F1
FT
⇀↽ F̃1andF2

FT
⇀↽ F̃2), then F1.F2

FT
⇀↽ F̃1 ∗ F̃2.

2 Sampling size
FT
⇀↽ Image size.

3 Bandwidth size
FT
⇀↽ Pixel size.

4 Finite support
FT
⇀↽ Infinite support.

5 Fourier transform evaluated at zero spacial frequency

= Integral of your function.

V (u = 0, v = 0)
FT
⇀↽

∑
ij ∈ image

Iij.
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