

Millimeter interferometers
Frédéric Gueth, IRAM Grenoble

```
8th IRAM Millimeter Interferometry School
    15-19 October 2012
```


Millimeter interferometers Outline

- The van Cittert-Zernike theorem
- The ideal interferometer
\hookrightarrow geometrical delay, source size, bandwidth
- The real interferometer
\hookrightarrow heterodyne receivers, delay correction, correlators
- Aperture synthesis
$\hookrightarrow u v$ plane, field of view, transfer function
- Sensitivity

- van Cittert-Zernike theorem

- source at infinite distance; no spatial coherence; measurement in plane perp. to the line of sight
- spatial autocorrelation of measured field $=\mathrm{FT}$ (source brightness) $\quad S\left(x_{1}\right) S\left(x_{2}\right)=\Sigma(u) \rightleftharpoons S(\alpha)$

partially coherent wave

van Cittert-Zernike theorem The ducks case

van Cittert-Zernike theorem Young's holes

van Cittert-Zernike theorem

Astronomical source

van Cittert-Zernike theorem

Implementing the van Cittert-Zernike theorem

1. Build a device that measures the spatial autocorrelation of the incoming signal
2. Do it for all possible scales
3. Take the FT and get an image of the brightness distribution

van Cittert-Zernike theorem

Implementing the van Cittert-Zernike theorem

1. Build a device that measures the spatial autocorrelation of the incoming signal $\longrightarrow 2$-elements interferometer
2. Do it for all possible scales $\longrightarrow \mathbf{N}$ antennas
3. Take the FT and get an image of the brightness distribution \longrightarrow software

The ideal interferometer

 Sketch

The ideal interferometer

Measurements

- The heterodyne receiver measures the incoming electric field $E \cos (2 \pi \nu t)$
- The correlator is a multiplier followed by a time integrator:

$$
r=<E_{1} \cos (2 \pi \nu t) E_{2} \cos (2 \pi \nu t)>=E_{1} E_{2}
$$

- We have measured the spatial correlation of the signal!
- ...

The ideal interferometer

Measurements

- The heterodyne receiver measures the incoming electric field $E \cos (2 \pi \nu t)$
- The correlator is a multiplier followed by a time integrator:

$$
r=<E_{1} \cos (2 \pi \nu t) E_{2} \cos (2 \pi \nu t)>=E_{1} E_{2}
$$

- We have measured the spatial correlation of the signal!
- But we have forgotten the geometrical delay

The ideal interferometer Sketch

The ideal interferometer

Measurements

- There is a geometrical delay τ_{g} between the two antennas \longrightarrow more complex experiment than the Young's holes
- Correlator output:

$$
\begin{aligned}
r & =<E_{1} \cos (2 \pi \nu t) E_{2} \cos (2 \pi \nu t)>=E_{1} E_{2} \\
r & =<E_{1} \cos \left(2 \pi \nu\left(t-\tau_{g}\right)\right) E_{2} \cos (2 \pi \nu t)> \\
& =E_{1} E_{2} \cos \left(2 \pi \nu \tau_{g}\right)
\end{aligned}
$$

The ideal interferometer Measurements

The ideal interferometer

 Measurements- Correlator output: $r=E_{1} E_{2} \cos \left(2 \pi \nu \tau_{g}\right)$
- τ_{g} varies slowly with time (Earth rotation) \longrightarrow fringes
- Natural fringe rate:

$$
\tau_{g}=\frac{\mathbf{b} . \mathbf{s}}{c} \quad \nu \frac{d \tau_{g}}{d t} \simeq \Omega_{\text {earth }} \frac{\mathrm{b} \nu}{c}
$$

$\sim 50 \mathrm{~Hz}$ for $b=800 \mathrm{~m}$ and $\nu=250 \mathrm{GHz}$

The ideal interferometer

Measurements

- Correlator output: $r=E_{1} E_{2} \cos \left(2 \pi \nu \tau_{g}\right)$
- τ_{g} varies slowly with time (Earth rotation) \longrightarrow fringes
- τ_{g} is known from the antenna position, source direction, time \longrightarrow could be corrected
- Problems: the source is not a point source the signal is not monochromatic

The ideal interferometer

Source size

$$
\mathbf{s}=\mathbf{S}_{\mathbf{o}}+\sigma
$$

Power received from $d \Omega: A(\mathbf{s}) I(\mathbf{s}) d \Omega$ $A(s)=$ beam $I(s)=$ source

Correlator output: $r=E_{1} E_{2} \cos \left(2 \pi \nu \tau_{g}\right)$

$$
r=A(\mathbf{s}) I(\mathbf{s}) d \Omega \cos \left(2 \pi \nu \tau_{g}(\mathbf{s})\right)
$$

The ideal interferometer

Source size

- Correlator output integrated over source:

$$
\begin{aligned}
R & =\int_{S k y} A(\mathbf{s}) I(\mathbf{s}) \cos (2 \pi \nu \mathbf{b} \cdot \mathbf{s} / c) d \Omega \\
& =|V| \cos \left(2 \pi \nu \tau_{g}-\varphi_{\mathrm{V}}\right)
\end{aligned}
$$

- Complex visibility:

$$
V=|V| e^{i \varphi_{\mathrm{V}}}=\int_{S k y} A(\sigma) I(\sigma) e^{-2 i \pi \nu \mathbf{b} \cdot \sigma / c} d \Omega
$$

The ideal interferometer

Source size

$$
\begin{aligned}
R & =\int_{S k y} A(\mathbf{s}) I(\mathbf{s}) \cos (2 \pi \nu \mathbf{b} \cdot \mathbf{s} / c) d \Omega \\
& =\cos \left(2 \pi \nu \frac{\mathbf{b} \cdot \mathbf{s}_{o}}{c}\right) \int_{S k y} A(\sigma) I(\sigma) \cos (2 \pi \nu \mathbf{b} \cdot \sigma / c) d \Omega \\
& -\sin \left(2 \pi \nu \frac{\mathbf{b} \cdot \mathbf{s}_{o}}{c}\right) \int_{S k y} A(\sigma) I(\sigma) \sin (2 \pi \nu \mathbf{b} \cdot \sigma / c) d \Omega \\
& =\cos \left(2 \pi \nu \frac{\mathbf{b} \cdot \mathbf{s}_{o}}{c}\right)|V| \cos \varphi_{\mathrm{V}}-\sin \left(2 \pi \nu \frac{\mathbf{b} \cdot \mathbf{s}_{o}}{c}\right)|V| \sin \varphi_{\mathrm{V}} \\
& =|V| \cos \left(2 \pi \nu \tau_{g}-\varphi_{\mathrm{V}}\right)
\end{aligned}
$$

The ideal interferometer Summary

- Correlator output:

$$
\begin{aligned}
r & =<E_{1} \cos (2 \pi \nu t) E_{2} \cos (2 \pi \nu t)>=E_{1} E_{2} \\
r & =E_{1} E_{2} \cos \left(2 \pi \nu \tau_{g}\right) \quad \longleftarrow \text { delay } \\
R & =|V| \cos \left(2 \pi \nu \tau_{g}-\varphi_{\mathrm{V}}\right) \quad \longleftarrow \text { source size }
\end{aligned}
$$

- Complex visibility V resembles a Fourier Transform:

$$
V=|V| e^{i \varphi_{\mathrm{V}}}=\int_{S k y} A(\sigma) I(\sigma) e^{-2 i \pi \nu \mathbf{b} \cdot \sigma / c} d \Omega
$$

The ideal interferometer

 Summary- Correlator output:

$$
\begin{aligned}
r & =<E_{1} \cos (2 \pi \nu t) E_{2} \cos (2 \pi \nu t)>=E_{1} E_{2} \\
r & =E_{1} E_{2} \cos \left(2 \pi \nu \tau_{g}\right) \quad \longleftarrow \text { delay } \\
R & =|V| \cos \left(2 \pi \nu \tau_{g}-\varphi_{\mathrm{V}}\right) \quad \longleftarrow \text { source size }
\end{aligned}
$$

- 3D version of van Cittert-Zernike
- We do not measure $r=F T(I)$
- We measure $R=$ something related to V, which resembles the $\mathrm{FT}(I)$

The ideal interferometer Bandwidth

- Integrating over a finite bandwidth $\Delta \nu$

$$
\begin{aligned}
R & =\frac{1}{\Delta \nu} \int_{\nu_{0}-\Delta \nu / 2}^{\nu_{0}+\Delta \nu / 2}|V| \cos \left(2 \pi \nu \tau_{g}-\varphi_{\mathrm{V}}\right) d \nu \\
& =|V| \cos \left(2 \pi \nu_{0} \tau_{g}-\varphi_{\mathrm{V}}\right) \frac{\sin \left(\pi \Delta \nu \tau_{g}\right)}{\pi \Delta \nu \tau_{g}}
\end{aligned}
$$

- The fringe visibility is attenuated by a $\sin (x) / x$ envelope (= bandwidth pattern) which falls off rapidly

The ideal interferometer Summary

- Correlator output:

$$
\begin{array}{ll}
r=<E_{1} \cos (2 \pi \nu t) E_{2} \cos (2 \pi \nu t)>=E_{1} E_{2} \\
r=E_{1} E_{2} \cos \left(2 \pi \nu \tau_{g}\right) & \longleftarrow \text { delay } \\
R=|V| \cos \left(2 \pi \nu \tau_{g}-\varphi_{\mathrm{V}}\right) & \longleftarrow \text { source size } \\
R=|V| \cos \left(2 \pi \nu_{0} \tau_{g}-\varphi_{\mathrm{V}}\right) \frac{\sin \left(\pi \Delta \nu \tau_{g}\right)}{\pi \Delta \nu \tau_{g}} \longleftarrow \text { bandwidth }
\end{array}
$$

- We measure R, which is related to V, which resembles the $\mathrm{FT}(I) . R$ also depends on τ_{g}.

The ideal interferometer Delay correction

$$
R=|V| \cos \left(2 \pi \nu_{0} \tau_{g}-\varphi_{\mathrm{V}}\right) \frac{\sin \left(\pi \Delta \nu \tau_{g}\right)}{\pi \Delta \nu \tau_{g}}
$$

- τ_{g} varies with time because of the Earth rotation \longrightarrow rapid decrease of $R(1 \%$ for a path length difference of $\sim 2 \mathrm{~cm}$ and $\Delta \nu=1 \mathrm{GHz})$
- Tracking a source requires the compensation of the geometrical delay
- Inteferometry requires temporal coherence!

The ideal interferometer

 Delay correction$$
R=|V| \cos \left(2 \pi \nu_{0} \tau_{g}-\varphi_{\mathrm{V}}\right) \frac{\sin \left(\pi \Delta \nu \tau_{g}\right)}{\pi \Delta \nu \tau_{g}}
$$

- Tracking a source requires the compensation of the geometrical delay
- This can be achieved by introducing an instrumental delay in the correlator
- If delay is compensated, one can measure $R=|V| \cos \left(\varphi_{\mathrm{V}}\right)$

The real interferometer

 Sketch

The real interferometer

 Heterodyne detection- In the receiver mixer, the incident electic field is combined with a local oscillator signal

$$
\begin{aligned}
U(t) & =E \cos (2 \pi \nu t+\varphi) \\
U_{\mathrm{LO}}(t) & =E_{\mathrm{LO}} \cos \left(2 \pi \nu_{\mathrm{LO}} t+\varphi_{\mathrm{LO}}\right) \\
\nu_{\mathrm{LO}} & \simeq \nu
\end{aligned}
$$

- The mixer is a non-linear element:

$$
I(t)=a_{0}+a_{1}\left(U+U_{\mathrm{LO}}\right)+a_{2}\left(U+U_{\mathrm{LO}}\right)^{2}+a_{3}(\ldots)^{3}+\ldots
$$

The real interferometer Heterodyne detection

- There are terms at various frequencies and harmonics
- A filter selects the frequencies such that;

$$
\nu_{\mathrm{IF}}-\Delta \nu / 2 \leq\left|\nu-\nu_{\mathrm{LO}}\right| \leq \nu_{\mathrm{IF}}+\Delta \nu / 2
$$

- ν_{IF} is the intermediate frequency
- $\nu_{\text {IF }}$ such that amplifiers and transport elements available
- PdBI: $\nu_{\mathrm{IF}}=4-8 \mathrm{GHz}$, ALMA: $\nu_{\mathrm{IF}}=4-12 \mathrm{GHz}$

The real interferometer Heterodyne detection

- The receiver output is

$$
I(t) \propto E E_{\mathrm{LO}} \cos \left(\pm\left(2 \pi\left(\nu-\nu_{\mathrm{LO}}\right) t+\varphi-\varphi_{\mathrm{LO}}\right)\right)
$$

The real interferometer Heterodyne detection

- DSB receivers accept both LSB and USB frequencies, i.e. their output is the sum of LSB and USB
- SSB receivers accept only LSB or USB (response very strongly frequency dependant)
- 2 SB receivers are 2 DSB receivers combined such that the two bands are independently output (and processed)

The real interferometer

Delay tracking

- A compensating delay is introduced in one of the branch of the interferometer, on the IF signal
- Equivalent to the delay lines in IR interferometers

The real interferometer

 Delay tracking- Phases of the two signals (USB):

$$
\begin{array}{ll}
\varphi_{1}=2 \pi \nu \tau_{g} & \varphi_{1}=2 \pi \nu \tau_{g}=2 \pi\left(\nu_{\mathrm{LO}}+\nu_{\mathrm{IF}}\right) \tau_{g} \\
\varphi_{2}=0 & \varphi_{2}=2 \pi \nu_{\mathrm{IF}} \tau_{i}
\end{array}
$$

- Correlator output:

$$
\begin{aligned}
& R=|V| \cos \left(2 \pi \nu \tau_{g}-\varphi_{\mathrm{V}}\right) \\
& R=|V| \cos \left(\varphi_{1}-\varphi_{2}-\varphi_{\mathrm{V}}\right) \\
& R=|V| \cos \left(2 \pi \nu_{\mathrm{LO}} \tau_{g}-\varphi_{\mathrm{V}}\right)
\end{aligned}
$$

The real interferometer Fringe Stopping

- Delay tracking not enough because applied on the IF
- Solution: in addition to delay tracking, rotate the phase of the local oscillator such that at any time:

$$
\varphi_{\mathrm{LO}}(t)=2 \pi \nu_{\mathrm{LO}} \tau_{g}(t)
$$

- τ_{g} is computed for a reference position $=$ phase center
- Phase center $=$ pointing center in practice, though not mandatory

The real interferometer Fringe stopping

- Phases of the two signals (USB):

$$
\begin{aligned}
\varphi_{1} & =2 \pi \nu \tau_{g}=2 \pi\left(\nu_{\mathrm{LO}}+\nu_{\mathrm{IF}}\right) \tau_{g} \\
\varphi_{2} & =2 \pi \nu_{\mathrm{IF}} \tau_{i}+\varphi_{\mathrm{LO}} \\
\varphi_{\mathrm{LO}} & =2 \pi \nu_{\mathrm{LO}} \tau_{g}
\end{aligned}
$$

- Correlator output:

$$
\begin{aligned}
& R=|V| \cos \left(\varphi_{1}-\varphi_{2}-\varphi_{V}\right) \\
& R=|V| \cos \left(\varphi_{V}\right)
\end{aligned}
$$

The real interferometer Complex correlator

- After fringe stopping:

$$
R=|V| \cos \left(-\varphi_{\mathrm{V}}\right)
$$

- The corrections were so good that there is no time or delay dependance any more \longrightarrow cannot measure $|V|$ and φ_{V} separately.
- A second correlator is necessary, with one signal phase shifted by $\pi / 2$:

$$
R_{i}=|V| \sin \left(-\varphi_{V}\right)
$$

- The complex correlator measures directly the visibility

The real interferometer Complex correlator

- The correlator measures the real and imaginary parts of the visibility. Amplitude and phases are computed off-line.
- Amplitude and phases have more physical sense
- Visibility amplitude $=$ correlated flux
- The atmosphere adds a phase to the incoming signals \longrightarrow measured phase $=$ visibility $+\varphi_{1}-\varphi_{2}$

The real interferometer

Spectroscopy

- Remember the Wiener-Kichnine theorem?
- Calculate the correlation function for several delay $\delta \tau \longrightarrow$ measurement of the temporal correlation \longrightarrow FT to get the spectra:

$$
V_{\nu}(u, v, \nu)=\int V(u, v, \tau) e^{-2 i \pi \tau \nu} d \nu
$$

- Nothing to do with geometrical delay compensation $\delta \tau \sim 1 / \delta \nu$ here
- Mixed up implementation in correlator software

Am: Abs. $\mathrm{R}--9 \mathrm{HCN}(1-0) 88.782 \mathrm{GHz} \mathrm{B} 1 \mathrm{Q} 3(320,320,320,20) \mathrm{V}$ Q3(320,320,320,20)H$\quad \mathrm{BOTH}$ polarizations
Ph: Abs.

$$
(14629090 \text { CORR })-(9723556 \text { O CORR) } 26-0 C T-200722: 07-07: 05
$$

van Cittert-Zernike theorem

Implementing the van Cittert-Zernike theorem

1. Build a device that measures the spatial autocorrelation of the incoming signal $\longrightarrow 2$-elements interferometer
2. Do it for all possible scales $\longrightarrow \mathbf{N}$ antennas
3. Take the FT and get an image of the brightness distribution \longrightarrow software

Aperture synthesis Complex visibility

- Complex visibility:

$$
V=|V| e^{i \varphi_{\mathrm{V}}}=\int_{S k y} A(\sigma) I(\sigma) e^{-2 i \pi \nu \mathbf{b} \cdot \sigma / c} d \Omega
$$

- Going from 3-D to 2-D? ...some algrebra...
- OK providing that:
(max. field of view) ${ }^{2} \times \max$. baseline $\ll 1$

$$
\Longrightarrow \frac{(\text { max. field of view })^{2}}{\text { resolution }} \ll 1
$$

Aperture synthesis

Complex visibility

$$
V(u, v)=\int_{S k y} A(\ell, m) I(\ell, m) e^{-2 i \pi \nu(u \ell+v m)} d \Omega
$$

- $u v$ plane is perpendicular to the source direction, fixed wrt source \longrightarrow back to Young's hole \& vC-Z theorem
- Price: limit on the field of view
- Approximation ok in (sub)mm domain, problem at wavelengths $>\mathrm{cm}$, maybe with ALMA (long baselines, short frequencies)

Aperture synthesis

 (Field of view)- Field of view is limited by
- the antenna primary beam: the interferometer measures $A \times I$
- the 2D visibility approximation
- the frequency averaging (bandwidth)
- the time averaging (integration)
\hookrightarrow averaging in the $u v$ plane; possible only if limited field of view

Aperture synthesis

 (Field of view)- Values for Plateau de Bure

θ_{s}	ν (GHz)	$2-\mathrm{D}$ Field	0.5 GHz Bandwidth	1 Min Averaging	Primary Beam
$5^{\prime \prime}$	80	5^{\prime}	$80^{\prime \prime}$	2^{\prime}	$60^{\prime \prime}$
$2^{\prime \prime}$	80	3.5^{\prime}	$30^{\prime \prime}$	$45^{\prime \prime}$	$60^{\prime \prime}$
$2^{\prime \prime}$	230	3.5^{\prime}	1.5^{\prime}	$45^{\prime \prime}$	$24^{\prime \prime}$
$0.5^{\prime \prime}$	230	1.7^{\prime}	$22^{\prime \prime}$	$12^{\prime \prime}$	$24^{\prime \prime}$

- Problem with 2D field: software; with bandwith: split the data for imaging; with time averaging: dump faster.
- Primary beam is the main limit on the FOV

Aperture synthesis

Complex visibility

$$
V(u, v)=\int_{S k y} A(\ell, m) I(\ell, m) e^{-2 i \pi \nu(u \ell+v m)} d \Omega
$$

- $u v$ plane is perpendicular to the source direction, fixed wrt source \longrightarrow back to Young's hole \& vC-Z theorem
- Price: limit on the field of view
- Approximation ok in (sub)mm domain, problem at wavelengths $>\mathrm{cm}$, maybe with ALMA (long baselines, short frequencies)

Aperture synthesis uv plane

- $u v$ plane is perpendicular to the source direction, fixed wrt source \longrightarrow back to Young's hole
- (u, v) is the 2-antennas vector baseline projected on the plane perpendicular to the source
- (u, v) are spatial frequencies
- ... Earth rotation ... (spherical trigonometry) ...
- (u, v) describe an ellipse in the $u v$ plane (for $\delta=0$ deg, a line)

Aperture synthesis uv plane coverage

Aperture synthesis

Summary

- We started with Young's hole experiment and the van Cittert-Zernike theorem
- An interferometer is more complex, because the two antennas (holes) are not in a plane perpendicular to the source direction \longrightarrow geometrical delay, etc.
- What we are measuring is not $\mathrm{FT}(\mathrm{I})$, but the visibility V, which resembles a FT
- For small field of view $=$ practical case, V is the 2D FT of the sky brighthness distribution (\times the primary beam)
- Back to the van Cittert-Zernike theorem

Aperture synthesis Image formation

Measurements $=$ uv plane sampling \times visibilities After FT: dirty map $=$ dirty beam $*($ prim. beam \times sky $)$ The FT of the $u v$ plane coverage gives the dirty beam $=$ the PSF of the observations

Aperture synthesis
 Image formation

Max. baseline gives the angular resolution

Sensitivity

Radiometric formula

- Measurement of visibilities is limited by noise emitted by atmosphere, antenna, ground, receivers.
- The rms noise for the baseline $i j$ is given by:

$$
\delta S_{i j}=\frac{\sqrt{2} k}{A \eta_{\mathrm{A}} \eta_{\mathrm{Q}} \eta_{\mathrm{P}}} \cdot \frac{T_{\mathrm{SYS}}}{\sqrt{B T}}
$$

- A antenna physical aperture
$-\eta_{\mathrm{A}}$ antenna aperture efficiency
- η_{Q} efficiency for the correlator
$-T_{\text {sYS }}$ system noise temperature (single dish)

Sensitivity

Radiometric formula

- This is the noise on the real and on the imaginary parts of the visibilities (measured independently)
- This is also the noise on the amplitude S
- Noise on the phase more complex, of the order of σ / S

Am: Abs. $\mathrm{R}--9 \mathrm{HCN}(1-0) 88.782 \mathrm{GHz} \mathrm{B} 1 \mathrm{Q} 3(320,320,320,20) \mathrm{V}$ Q3(320,320,320,20)H$\quad \mathrm{BOTH}$ polarizations
Ph: Abs.

$$
(14629090 \text { CORR })-(9723556 \text { O CORR) } 26-0 C T-200722: 07-07: 05
$$

Sensitivity

Radiometric formula

- For N identical antenna/receivers, i.e. $N(N-1) / 2$ baselines, the point-source sensitivity is:

$$
\delta S=\frac{2 k}{A \eta_{\mathrm{A}} \eta_{\mathrm{Q}} \eta_{\mathrm{P}}} \cdot \frac{T_{\mathrm{SYS}}}{\sqrt{N(N-1) B T}}
$$

- Scales as $\sim 1 / N$
- Sensitivity to extended sources depends on angular resolution

Summary

Other instrumental issues

- Phase lock systems to control φ_{LO}
- Real-time monitoring and correction of the phase offset in the cables or fibers
- Complex phase switching is used to cancel offsets, separate/reject side bands, ...
- Antenna position measurements, to get the delay, u, v
- Antenna deformations, e.g. thermal expansion (delay)
- Accurate focus measurements (delay)
- Atmospheric phase monitoring

Summary
It works!

