Single-dish antenna at (sub)mm wavelengths

P. Hily-Blant Institut de Planétologie et d'Astrophysique de Grenoble Université Joseph Fourier

October 15, 2012

Introduction

Introduction

Real antenna

Temperature scales Calibration

Summary

A single-dish antenna

Spectral surveys

Caux et al 2011 (IRAM spectral survey of I16293)

Real antenna

Spectro-imaging

Receiver cabin

Gain ~ 120 dB Few mW

Questions

Wishes

- Measure some power emitted in a (narrow) frequency range from a particular location
- Possibly want to make some (spectral/continuum) maps
- Eventually determine some chemical and/or physical properties

Questions

- Measurement fidelity ?
- Calibration (amplitude, frequency)
- Spatial resolution ?

General properties

Real antenna

Temperature scales Calibration S

Summary

Primary vs Secondary focus

(dis)Advantages

- * $f/D \longrightarrow f_e/D = m \times f/D$ IRAM-30m, m = 27.8f/D = 0.35, $f_e/D \approx 10$ or 300 m
- Rx alignement easier: 1" on the sky $\leftrightarrow f_e/206265$ mm in focal plane
- increase effective area (or on-axis gain)
- decrease spillover
- but increase mechanical load
- obstruction by subreflector (Ø = 2 m at 30-m) ⇒ wider main-beam

Real antenna

Temperature scales

Calibration Summary

World map of radiotelescopes

Summary

Main single-dish antenna at λ mm

Large aperture: f/D \lesssim 1

Obs.	D	ν	λ	HPBW	Latitude
	(m)	(GHz)	(mm)	('')	(deg)
IRAM	30	70 – 345	4 – 0.7	35 – 7	+37
APEX	12	230 - 1200	1.3 – 0.3	30 – 6	-22
JCMT [†]	15	210 - 710	2-0.2	20 – 8	+20
CSO^{\dagger}	10.4	230 - 810	1.3 - 0.4	30 – 10	+20
Herschel [†]	3.5	500-2000	0.6 - 0.1	43 – 11	space

Terminology (1): receivers

Central frequency

$$\nu_0=80-2000\,\mathrm{GHz}$$

Instantaneous bandwidth:

$$\Delta \nu = 1 - 32 \,\mathrm{GHz}$$

bolometers

 $\Delta\nu\approx 50\,\text{GHz}$

- one polarization (linear, circular)
- taper (apodization at the rim)

Terminology (2): backends

Spectrometers:

- digital: autocorrelators (AC), Fast Fourier Transform Spectrometer (FTS)
- (analogical: filter banks (FB), acousto-optic (AOS))
- Spectral resolution

 $\delta\nu\approx {\bf 3}-{\bf 2000\,kHz}$

Large resolution power

$$R = \nu_0 / \delta \nu \approx 10^5 - 10^8$$

Real antenna

Temperature scales

Collected power from a source

Consider an unpolarized point source

Monochromatic (and monomode) power collected by an area A_e:

$$p_
u = rac{1}{2} A_{e} \cdot S_
u$$
 [W Hz⁻¹]

• Flux density S_{ν} measured in Jy:

$$1 \text{Jy} = 10^{-26} \text{ J s}^{-1} \text{ m}^{-2} \text{ Hz}^{-1}$$

• Power in the bandwidth $\Delta \nu$:

$$p = rac{1}{2} A_e \cdot S_
u \cdot \Delta
u$$
 [W]

• Note: A 1 Jy source observed with a 10^3 m^{-2} radiotelescope during 40 yrs (*e.g.* Orion) with 50 MHz bandwidth $\Rightarrow \approx 40 \text{ GeV}$

Collected power from a source

Consider an unpolarized extended source

 Monochromatic (and monomode) power collected by an area A_e from solid angle δΩ:

$$\delta \boldsymbol{p}_{\nu} = \frac{1}{2} \boldsymbol{A}_{\boldsymbol{e}} \cdot \boldsymbol{I}_{\nu} \cdot \delta \Omega \qquad [\mathrm{W}\,\mathrm{Hz}^{-1}]$$

• Brightness I_{ν} measured in Jy sr⁻¹:

1 Jy sr
$$^{-1} = 10^{-26}$$
 J s $^{-1}$ m $^{-2}$ Hz $^{-1}$ sr $^{-1}$

Real antenna

Temperature scales Calibration

Summary

Collected power from a source

Effective area of the antenna: $A_e = \eta A_{geom}$

 $\eta < 1$

Question: $\eta = ?$

Perfect antenna

Emitted power by an antenna

Diffraction theory (Huygens-Fresnel, Fraunhoffer approx.):

 $E_{\mathrm{f-f}}(I,m) \propto \mathcal{F}[E_{\mathrm{ant}}(x,y)]$

- $E_{ant}(x, y)$ (grading): bounded on a finite domain Δr $\Rightarrow E_{f-f}(I, m)$ concentrated on a finite domain $\Delta \Omega$ $(\Delta r \cdot \Delta \Omega \sim 1)$
- sharp cut of the antenna domain \Rightarrow oscillations (side-lobes)
- apodization or taper: decrease the level of the sidelobes, to the cost of increasing $\Delta \Omega$

Antenna power pattern

- Reciprocity: antenna in emission
- Distribution of electric field on the dish: $E_{ant}(x, y)$
- Far-field radiated by the dish: $E_{f-f}(l,m) \propto \mathcal{F}[E_{ant}(x,y)]$
- Power emitted is a function of direction: $\propto |E_{f-f}(I,m)|^2$

- Power pattern: $\mathcal{P}(I,m) \propto |E_{\mathrm{f-f}}(I,m)|^2$
- Beam solid angle: $\Omega_{\mathcal{A}} = \int_{4\pi} \mathcal{P}(\Omega) \, \mathrm{d}\Omega \leq 4\pi$
- Effective area: $A(I,m) = A_e \cdot \mathcal{P}(I,m) \leq A_e$
- Fundamental relation:

$$A_e \Omega_A = \lambda^2$$

Power pattern $\mathcal{P}(I, m)$

Real antenna

Temperature scales

Calibration Summary

Power collected by an antenna (2)

Given a source of brightness $I_{\nu}(I, m) = I_{\nu}(\Omega)$

- Source flux density: $S_{\nu} = \int_{\Omega_{s}} I_{\nu}(\Omega) \, \mathrm{d}\Omega$
- Observed flux density:

$$egin{aligned} \mathcal{S}_{ ext{obs}} &= \int_{\Omega_{\mathcal{S}}} \mathcal{P}(\Omega) \, \textit{I}_{
u}(\Omega) \, \mathrm{d}\Omega < \mathcal{S}_{
u} \end{aligned}$$

- Power received from $d\Omega_i$: . $\mathrm{d}\boldsymbol{p}_{\nu} = \frac{1}{2} \boldsymbol{A}(\Omega_i) \boldsymbol{I}_{\nu}(\Omega_i) \mathrm{d}\Omega_i$
- Incoherent emission: add intensities Pointing towards a fixed position of the source at a fixed position

$$p_{
u}(l=0,m=0)=rac{A_e}{2}\int_{\Omega_S}\mathcal{P}(\Omega)\,I_{
u}(\Omega)\,\mathrm{d}\Omega=rac{1}{2}A_eS_{\mathrm{obs}}$$

- Antenna tilted towards $\Omega_0 = (I_0, m_0)$
- Power received from the direction Ω_i

$$\mathrm{d} \boldsymbol{p}_{\nu}(\Omega_i) = rac{1}{2} \boldsymbol{A}(\Omega_0 - \Omega_i) \boldsymbol{I}_{\nu}(\Omega_i) \mathrm{d} \Omega_i$$

Incoherent emission: add intensities

Scanning a source leads to a convolution

$$ig| oldsymbol{S}_{
m obs}(\Omega_0) = \int_{\Omega_S} \mathcal{P}(\Omega - \Omega_0) I_
u(\Omega) \, \mathrm{d}\Omega$$

$$oldsymbol{
ho}_{
u}(\Omega_0) = rac{A_e}{2} \, \int_{\Omega_S} \mathcal{P}(\Omega_0 - \Omega) \, I_{
u}(\Omega) \; \mathrm{d}\Omega = rac{1}{2} A_e S_{\mathrm{obs}}(\Omega_0)$$

Introduction General properties

perties Perfe

Perfect antenna

Real antenna

na Temperature scales

Calibration Summary

Convolution: consequences

$$\theta_{\rm obs} = \sqrt{\theta_{\rm mb}^2 + \theta_{\rm sou}^2}$$

Note: When quoting sizes from observations, must quote the deconvolved size (when needed).

Real antenna

Systematic deformations (1)

Introduction

Perfect antenna

Real antenna

Temperature scales Calibration

Summary

Systematic deformations (2)

Coma: misaligned subref.

Introduction Gen

Real antenna

Temperature scales Calibration Su

Summary

Systematic deformations (3)

Astigmatism

\Rightarrow Beam deformation (no pointing error)

Real antenna

Beam pattern

- Main lobe
- Secondary lobes (finite surface antenna)
- Error lobes (surface irregularities)
- main-beam collects less power
- if correlation length ℓ \Rightarrow Gaussian error-beam $\Theta_{EB} \approx \lambda/\ell$

real beam = main-beam + error-beam(s)

Questions:

Power collected in each e-beam ? FWHMs of the e-beams ?

Greve et al 1998

Error-Beams at IRAM-30m

Temperature scales

FIG. 2.—Distribution in right ascension of the peak antenna temperature of CO radiation at a declination of $-5^{\circ}24'21''$.

Introduction

Antenna temperature: T_A

- Johnson noise in terms of an equivalent temperature: the average power transferred from a conductor (in thermal equilibrium) to a line within $\delta\nu$: $\delta\rho = k T \delta\nu$
- Antenna temperature defined by

$$p_{\nu} = kT_A$$
 [W · Hz⁻¹] = [J] = [J · K⁻¹][K]

- On the other hand: $p_{\nu} = rac{A_e}{2} \left(\mathcal{P} * I_{\nu}\right) = rac{\lambda^2}{2\Omega_A} \left(\mathcal{P} * I_{\nu}\right)$
- Antenna temperature:

$$T_{\mathcal{A}}(\Omega_0) = \frac{\mathcal{A}_{e}}{2k} \int_{\Omega_S} I_{\nu}(\Omega) \mathcal{P}(\Omega - \Omega_0) \, \mathrm{d}\Omega$$

• Using $A_e \Omega_A = \lambda^2$, we may write:

$$T_{\mathcal{A}}(\Omega_0) = \frac{1}{\Omega_{\mathcal{A}}} \int_{\Omega_S} \frac{\lambda^2}{24} L(\Omega) \mathcal{P}(\Omega - \Omega_0) \,\mathrm{d}\Omega$$

Real antenna

Speaking in terms of temperatures

Black-body radiation at temperature $T: B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$

- Dimensions of brightness: $I s^{-1} m^{-2} H z^{-1} sr^{-1}$
- Rayleigh-Jeans approximation: $h\nu \ll kT$

$$rac{\lambda^2}{2k} B_
u(T) pprox T$$

Flux density of a black-body:

$$S_{
u} = \int_{\Omega_S} B_{
u}(T,\Omega) \,\mathrm{d}\Omega = 4\pi B_{
u}(T)$$

Introduction General properties Perfect antenna Real antenna Temperature scales Calibration Summary

Definitions: $T_{\rm B}$, $T_{\rm R}$

• Brightness temperature $T_{\rm B}$ of source brightness I_{ν} :

$$I_{
u}(\Omega) = B_{
u}(T_{
m B})$$

 Radiation temperature, T_R, in the Rayleigh-Jeans regime approximation

$$I_{\nu}(\Omega) = rac{2k\nu^2}{c^2} T_{
m R}(\Omega) = rac{2k}{\lambda^2} T_{
m R} \qquad [\,{
m J\,s^{-1}\,m^{-2}\,Hz^{-1}\,sr^{-1}}]$$

• Relationship between $T_{\rm B}$ and $T_{\rm R}$:

$$T_{
m R} = J_{
u}(T_{
m B}) = rac{h
u}{k} rac{1}{\exp(h
u/kT_{
m B}) - 1} = rac{T_{
m 0}}{\exp(T_{
m 0}/T_{
m B}) - 1}$$

• In the following: $I_{\nu}(\Omega) \rightarrow T_{\mathrm{R}}(\Omega)$

$$\frac{2k}{\lambda^2}J_{\nu}(T_{\rm B})=B_{\nu}(T_{\rm B})$$

Consequences

Monochromatic power received by the antenna:

$$egin{aligned} oldsymbol{p}_{
u}(\Omega_0) &= rac{k}{\Omega_{\mathcal{A}}} \int_{\Omega_{\mathcal{S}}} \mathcal{P}(\Omega) \ \mathcal{T}_{\mathrm{R}}(\Omega_0 - \Omega) \, \mathrm{d}\Omega \end{aligned}$$

• Observed flux density ($p_{\nu} = 1/2A_eS_{\nu}$)

$$\mathcal{S}_{\mathrm{obs}}(\Omega_0) = rac{2k}{\lambda^2} \int_{\Omega_S} \mathcal{P}(\Omega) \ T_{\mathrm{R}}(\Omega_0 - \Omega) \, \mathrm{d}\Omega$$

Antenna temperature: T_A

Antenna temperature:

$$T_{\mathcal{A}}(\Omega_{0}) = \frac{\mathcal{A}_{e}}{\lambda^{2}} \int_{\Omega_{S}} \mathcal{P}(\Omega) T_{R}(\Omega - \Omega_{0}) \, \mathrm{d}\Omega$$

Using $A_e \Omega_A = \lambda^2$, we may write: ٠

$$T_{\mathcal{A}}(\Omega_0) = rac{1}{\Omega_{\mathcal{A}}} \int_{\Omega_S} \mathcal{P}(\Omega) T_{\mathrm{R}}(\Omega - \Omega_0) \, \mathrm{d}\Omega$$

Note that: 0

$$\mathcal{T}_{\mathcal{A}}(\Omega_0) = rac{\int_{\Omega_{\mathcal{S}}} \mathcal{P}(\Omega) \, \mathcal{T}_{\mathrm{R}}(\Omega - \Omega_0) \, \mathrm{d}\Omega}{\int_{4\pi} \mathcal{P}(\Omega) \, \mathrm{d}\Omega}$$

Introduction General properties Perfect antenna Real antenna Temperature scales Calibration Summary

From T_A to T'_A

At frequency *ν*:

$$T_{A} = \eta_{s} \left\{ T_{R} e^{-\tau_{\nu}} + (1 - e^{-\tau_{\nu}}) T_{atm} \right\}$$

+ $(1 - \eta_{s}) T_{gr}$

Correct for atmospheric attenuation:

$$T_{A}^{\prime}=T_{A}e^{ au_{
u}}$$

Note: for space-based telescopes (e.g. HIFI/Herschel): $T'_A = T_A$

• Correct for rear-sidelobes: measure the monochromatic power recieved from the forward 2π sr. Hence, $\Omega_A = \mathcal{P}_{4\pi} \rightarrow \mathcal{P}_{2\pi} = \int_{2\pi} \mathcal{P}(\Omega) \, d\Omega$:

$$T_{\rm A}^*(\Omega_0) = \frac{T_{\rm A}'}{F_{\rm eff}} = \frac{1}{\mathcal{P}_{2\pi}} \int_{\Omega_S} \mathcal{P}(\Omega) \ T_{\rm R}(\Omega_0 - \Omega) \, \mathrm{d}\Omega$$

$$T_{\mathrm{A}}^{*} = rac{\mathbf{e}^{- au_{
u}}}{\mathcal{F}_{\mathrm{eff}}}T_{\mathcal{A}}$$

• Forward efficiency: $F_{eff} = \mathcal{P}_{2\pi}/\mathcal{P}_{4\pi}$

Introduction General properties Perfect antenna Real antenna Temperature scales Calibration Summary From T'_{Λ} to T_{mb}

- Take into account main-beam and error-lobes
- Same as \mathcal{T}_{A}^{*} but in Ω_{mb} instead of 2π . Hence, $\Omega_{A} \rightarrow \mathcal{P}_{mb} = \int_{mb} \mathcal{P}(\Omega) \, d\Omega$:

$$T_{
m mb}(\Omega_0) = rac{T_{
m A}'}{B_{
m eff}} = rac{\int_{\Omega_{\mathcal S}} \mathcal{P}(\Omega) \ T_{
m R}(\Omega_0 - \Omega) \, {
m d}\Omega}{\mathcal{P}_{
m mb}},$$

- Beam efficiency: $B_{eff} = \mathcal{P}_{mb}/\mathcal{P}_{4\pi}$
- Useful relation for a Gaussian beam:

$$\Omega_{\mathrm{mb}} = \int_{\mathrm{mb}} \mathcal{P}(\Omega) \, \mathrm{d}\Omega = 1.133 \, heta_{\mathrm{mb}}^2$$

Summary

Temperature scales

Definitions

 $\frac{\mathcal{P}_{2\pi}}{\mathcal{P}_{4\pi}}$ Forward efficiency: $\overline{F_{eff}} =$ $rac{\mathcal{P}_{mb}}{\mathcal{P}_{4\pi}}$ Beam efficiency: $B_{\rm eff} =$

Consequences

$$T_{\mathrm{mb}} = rac{F_{\mathrm{eff}}}{B_{\mathrm{eff}}} \ T_{\mathrm{A}}^{*} = rac{\mathcal{P}_{2\pi}}{\mathcal{P}_{\mathrm{mb}}} \ T_{\mathrm{A}}^{*}$$

Limiting cases

• Small sources: $\Omega_S \ll \Omega_{mb}$ • $T_{mb} \approx \frac{P(0)\Omega_S T_R}{\mathcal{P}_{mb}} = T_R \frac{\Omega_S}{\mathcal{P}_{mb}}$ • Gaussian sources & beam: $\int_{\Omega_S} \mathcal{P}(\Omega) T_R(\Omega_0 - \Omega) d\Omega = 1.133(\theta_{sou}^2 + \theta_{mb}^2)$ and $\mathcal{P}_{mb} = 1.133\theta_{mb}^2$ hence $T_R = T_{mb} \frac{\theta_{mb}^2}{\theta_{sou}^2 + \theta_{mb}^2}$: beam dilution • Large sources: $\Omega_S \gg \mathcal{P}_{mb}$

$$T_{\rm A}^* pprox T_{\rm R} rac{\int_{2\pi} P(\Omega) \, \mathrm{d}\Omega}{\mathcal{P}_{2\pi}} pprox T_{\rm R}$$

• Special case: $\Omega_{\mathcal{S}} = \mathcal{P}_{mb}$

$$T_{\mathrm{mb}} = T_{\mathrm{R}} rac{\int_{\Omega_{\mathrm{S}}} P(\Omega) \, \mathrm{d}\Omega}{\mathcal{P}_{\mathrm{mb}}} = T_{\mathrm{R}}$$

Main-beam temperature gives the source brightness

- General (worse) case: $\Omega_{\mathcal{S}} \sim \mathcal{P}_{mb}$
 - $T_{\rm A}^* = \frac{T_{\rm R}}{\mathcal{P}_{2\pi}} \int_{\Omega_S} P(\Omega) \, \mathrm{d}\Omega$
 - Main-beam temperature usually quoted
 - If source of uniform brightness and beam pattern known, feasible, but in real life... Which scale to use: T_A^* , T_{mb} ?

Which temperature scale ?

Calibration

Goals of the calibration

Overview

- Atmospheric calibration:
 - atmospheric emission/abs at frequency ν : radiative transfer
 - turbulence affects the intensity through phase shifts
- Full detection chain calibration (antenna, receiver,)
 - Antenna-sky coupling: F_{eff}
 - Receiver: gain, noise, stability
 - Cables, backends (e.g. dark currents)

Goals

- Input is an e-m field and output at backends are counts
- Question 1: how to convert from counts to power in physical units ?
- Question 2: how to correct for the atmospheric contribution ?

Notations

Telescope pointing at a source receives

$$\mathcal{C}_{\mathrm{sou}} = \chi \left\{ \mathcal{T}_{\mathrm{rec}} + \mathcal{F}_{\mathrm{eff}} \boldsymbol{e}^{- au_{
u}} \mathcal{T}_{\mathrm{sou}} + \mathcal{T}_{\mathrm{sky}}
ight\}$$

where

$$T_{\mathrm{sky}} = F_{\mathrm{eff}}(1 - e^{- au_{
u}})T_{\mathrm{atm}} + (1 - F_{\mathrm{eff}})T_{\mathrm{gr}}$$

- T_{rec}: noise contribution from the receiver
- $F_{\rm eff}e^{-\tau_{\nu}}T_{\rm sou}$: signal from the scientific target after propagation through the atmosphere
- T_{sky} : signal emitted by the atmosphere (T_{atm}) and the ground (T_{gr})
- Orders of magnitude (IRAM-30m):
 - $T_{\rm atm} \approx T_{\rm gr} \approx 290 \ {\rm K}$
 - $T_{\rm rec} \approx 50 70$ K at 100 350 GHz at the IRAM-30m
 - $\nu_{
 m GHz} = 100 350$: $F_{
 m eff}(\nu) \approx 90 80\%$, $B_{
 m eff}(\nu) \approx 80 35\%$,
 - $T_{\rm sky} \approx 30 100$ K at 100 230 GHz
 - Note: if $\tau_{\nu} \ll$ 1 (good weather), $T_{\rm sky} \approx F_{\rm eff} \tau_{\nu} T_{\rm atm}$

The "Chopper Wheel" method

Perform 3 measurements: hot, empty sky, source

$$C_{\text{sou}} = \chi \{ T_{\text{rec}} + T_{\text{sky}} + F_{\text{eff}} e^{-\tau_{\nu}} T_{\text{sou}} \}$$

$$C_{\text{atm}} = \chi \{ T_{\text{rec}} + T_{\text{sky}} \}$$

$$C_{\text{hot}} = \chi \{ T_{\text{rec}} + T_{\text{hot}} \}$$

Making differences:

$$\Delta C_{\text{sig}} = C_{\text{sou}} - C_{\text{atm}} = \chi F_{\text{eff}} e^{-\tau_{\nu}} T_{\text{sou}}$$
$$\Delta C_{\text{cal}} = C_{\text{hot}} - C_{\text{atm}} = \chi (T_{\text{hot}} - T_{\text{sky}})$$
$$\boxed{T_{\text{sou}} = T_{\text{cal}} \frac{\Delta C_{\text{sig}}}{\Delta C_{\text{cal}}}}$$

Definition of T_{cal} (correcting for atm contrib. and spillover)

$$T_{\mathrm{cal}} = (T_{\mathrm{hot}} - T_{\mathrm{sky}}) \, rac{oldsymbol{e}^{ au_{
u}}}{F_{\mathrm{eff}}}$$

Calibration outputs (1): T_{cal}

Rewrite T_{sky} and ΔC_{cal} :

$$T_{\rm sky} = T_{\rm gr} + F_{\rm eff}(T_{\rm atm} - T_{\rm gr}) - F_{\rm eff}e^{-\tau_{\nu}}T_{\rm atm}$$

$$T_{\rm cal} = T_{\rm gr} + e^{\tau_{\nu}}[T_{\rm gr} - T_{\rm atm}] + e^{\tau_{\nu}}/F_{\rm eff}[T_{\rm hot} - T_{\rm gr}]$$

$$\Delta C_{\rm cal} = \chi\{(T_{\rm hot} - T_{\rm gr}) + F_{\rm eff}(T_{\rm gr} - T_{\rm atm}) + F_{\rm eff}e^{-\tau_{\nu}}T_{\rm atm}\}$$

- Assume $T_{\rm hot} = T_{\rm atm} = T_{\rm gr}.$
- Then $T_{\text{cal}} = T_{\text{hot}}$

$$T_{\mathrm{sou}} = T_{\mathrm{hot}} rac{\Delta \mathcal{C}_{\mathrm{sig}}}{\Delta \mathcal{C}_{\mathrm{cal}}}, \quad T_{\mathrm{cal}} = T_{\mathrm{atm}} = T_{\mathrm{gr}} = T_{\mathrm{hot}}$$

- No need to know $e^{-\tau_{\nu}}$ and F_{eff} (Penzias & Burrus ARAA 1973):
- But T_{rec} not known

Real antenna

Calibration

Summarv

Temperature scales

• General case: different T_{atm} , T_{hot} and T_{gr} \Rightarrow must solve for $e^{-\tau_{\nu}}$ and F_{eff} .

Perfect antenna

General properties

Introduction

- $e^{-\tau_{\nu}}$: model of the atmosphere trying to reproduce T_{sky} varying the amount of dominant species in the model (hence providing us with pwv).
- *F*_{eff}: skydips (measure atm. at several elevations)
- Perform 3 + 1 measurements: hot, cold, empty sky, source

$$C_{sou} = \chi \{ T_{rec} + T_{sky} + F_{eff} e^{-\tau_{\nu}} T_{sou} \}$$

$$C_{atm} = \chi \{ T_{rec} + T_{sky} \}$$

$$C_{hot} = \chi \{ T_{rec} + T_{hot} \}$$

$$C_{col} = \chi \{ T_{rec} + T_{col} \}$$

Calibration outputs (2): $T_{\rm rec}$

Using hot & cold loads measurements lead to T_{rec} :

$$T_{\rm rec} = \frac{T_{\rm hot} - YT_{\rm col}}{Y - 1}$$
$$Y = \frac{C_{\rm hot}}{C_{\rm col}} = \frac{T_{\rm rec} + T_{\rm ho}}{T_{\rm rec} + T_{\rm col}}$$

Calibration outputs (3): T_{sys}

System temperature: describes the noise including all sources from the sky down to the backends

- $T_{\rm sys} = T_{\rm cal} C_{\rm off} / \Delta C_{\rm cal}$
- used to determine the total statistical noise. For heterodyne receivers, noise is given by the "radiometer formula":

$$\sigma_T = \frac{\kappa \cdot T_{\rm sys}}{\sqrt{\delta \nu \, \Delta t}}$$

- δ_{ν} : spectral resolution
- Δt : total integration time
- κ depends on the observing mode:
- example: position switching, ON-OFF $\Rightarrow \sqrt{2}$, $t_{\rm ON} = t_{\rm OFF} \Rightarrow \Delta t = 2t_{\rm ON} \Rightarrow \sqrt{2}, \Rightarrow \kappa = 2$

From $T_{\rm mb}$ to S_{ν} , from Kelvin to Jansky

Real antenna

Temperature scales

Calibration

Summary

• flux density: $S_{\nu} = \int_{\Omega_S} I_{\nu}(\Omega) \, \mathrm{d}\Omega = \frac{2k}{\lambda^2} \int_{\Omega_S} T_{\mathrm{R}} \, \mathrm{d}\Omega$

Perfect antenna

• power received by the antenna: $kT'_{A} = k \frac{T_{A}}{F_{eff}} = \frac{1}{2}S_{\nu}A_{e}$

$$\frac{S_{\nu}}{T_{\rm A}^*} = \frac{2k}{A} \frac{F_{\rm eff}}{\eta_A} \qquad {\rm Jy}\,{\rm K}^{-1}$$

• 1 Jy =
$$10^{-26}$$
 J s⁻¹ m⁻² Hz⁻¹

General properties

Introduction

- values of $S_{\nu}/T_{\rm A}^*$ are tabulated *e.g.* on IRAM-30m web page (\approx 6 @ 100 GHz, \approx 11 @ 340 GHz)
- How to convert the temperatures into $J s^{-1} m^{-2} H z^{-1} sr^{-1}$?

$$I_{
u}(\Omega) = rac{2k}{\lambda^2} T_R(\Omega)$$

Image formation: total power telescope

- antenna scans the source
- image: convolution of I_0 by beam pattern $I'_{\nu} = \mathcal{P} * I_{0,\nu}$
- measure directly the brightness distribution I_0

Perfect antenna

General properties

Introduction

$$F = D * (\mathcal{P} \times I) + N$$

Real antenna

Temperature scales

Calibration

- F =dirty map = FT of observed visibilities
- $D = \text{dirty beam} (\longrightarrow \text{deconvolution})$
- \mathcal{P} = power pattern of single-dish (primary beam B in the following)
 - / = sky brightness distribution

$$N =$$
 noise distribution

- An interferometer measures the product $\mathcal{P} \times I$
- ${\mathcal P}$ has a finite support \longrightarrow limits the size of the field of view

Physical parameters

- Chose an adapted temperature scale (T_{A}^{*}, T_{mb}) .
- Correct for error-beam pick-up when needed .
- Amplitude calibration: often enough \rightarrow 10% accuracy 4

Introduction

Perfect antenna

Real antenna

Temperature scales Calibration

- full-aperture antenna: $\mathcal{P} * \mathbf{I}$
- interferometry sensitive to $\mathcal{P} imes \mathbf{I}$
- amplitude calibration:
 - converts counts into temperatures
 - corrects for atmospheric absorption
 - corrects for spillover
- lobe = main-lobe + error-lobes (e.g. as much as 50% in error-lobes at 230GHz for the 30m)
- Pay attention to the **temperature scale** to use $(T_{\Lambda}^*, T_{mb},...)$

Introduction

Perfect antenna

Real antenna

Temperature scales Calibration

Image formation: correlation telescope

- antennas fixed w.r.t. the source

Interferometer field of view

Measurement equation of an interferometric observation:

 $F = D * (B \times I) + N$

- F = dirty map = FT of observed visibilities
- $D = \text{dirty beam} (\longrightarrow \text{deconvolution})$
- B = primary beam
- I = sky brightness distribution
- *N* = noise distribution
- \odot An interferometer measures the product B imes I
- B has a finite support \longrightarrow limits the size of the field of view
- B is a Gaussian → primary beam correction possible (proper estimate of the fluxes) but strong increase of the noise

Real antenna

Primary beam width

Aperture function \rightleftharpoons Voltage pattern $\star \downarrow$ $\downarrow |\cdot|^2$ Transfert function T(u, v) \rightleftharpoons Power pattern $B(\ell, m)$ = Primary beam

Gaussian illumination \implies to a good approximation, *B* is a Gaussian of 1.2 λ/D FWHM

Plateau de Bure					
<i>D</i>					
Frequency	Wavelength	Field of View			
85 GHz	3.5 mm	58″			
100 GHz	3.0 mm	50″			
115 GHz	2.6 mm	43″			
215 GHz	1.4 mm	23″			
230 GHz	1.3 mm	22″			
245 GHz	1.2 mm	20″			