A Sightseeing Tour of mm Interferometry

Jérôme PETY (IRAM & Obs. de Paris)

8th IRAM Millimeter Interferometry School Oct. 15 - Oct. 19 2012, Grenoble

Towards Higher Resolution: I. Problem

Telescope resolution:

- ~ λ/D ;
- IRAM-30m: \sim 11 $^{\prime\prime}$ @ 1 mm.

Needs to:

- increase *D*;
- increase precision of telescope positionning;
- keep high surface accuracy.
- \Rightarrow Technically difficult (perhaps impossible?).

Towards Higher Resolution: II. Solution

Aperture Synthesis: Replacing a single large telescope by a collection of small telescope "filling" the large one.

 \Rightarrow Technically difficult but feasible.

Vocabulary and notations:

- **Baseline** Line segment between two antenna.
- b_{ij} Baseline length between antenna i and j.

Configuration Antenna layout (*e.g.* compact configuration).

D configuration size (*e.g.* 150 m).

Primary beam resolution of one

antenna (*e.g.* 27" @ 1 mm).

Synthesized beam resolution of the array (*e.g.* 2" @ 1 mm).

Parenthesis: PSF = Diffraction Pattern = Beam Pattern

Single-Dish sensitivity in polar coordinates.

Combination of:

- Antenna properties;
- Optical system (*i.e.* how the waves are feeding the receiver).

Typical kind: Optic/IR Airy function; Radio Gaussian function.

(Lecture by P. Hily-Blant)

Young's Experiment

Setup

Lens \Rightarrow Fraunhofer conditions (*i.e.* Plane waves as if the source were placed at infinity).

Obtained image of interference: fringes

 $I(x) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\left(\frac{bx}{\lambda}\right)$

with $\begin{cases} \lambda \text{ Source wavelength;} \\ b \text{ Distance between the} \\ two Young's holes; \\ x \text{ Distance from the optical center on the screen.} \end{cases}$

Effect of the Antenna Diffraction Pattern

Effect of the Source Hole Size: I. Description

Hypothesis: Monochromatic source (but not a laser).

Description:

- The Source Hole Size is increased.
- Everything else is kept equal.

Effect of the Source Hole Size: II. Results

Fringes disappear! \Rightarrow {Fringe contrast is linked to the spatial properties of the source. $I(x) = I_1 + I_2 + 2\sqrt{I_1I_2}|C|\cos\left(\frac{bx}{\lambda} + \phi_C\right)$ with $|C| = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$

A Sightseeing Tour of mm Interferometry

Effect of the Distance Between Young's Holes: I. Description

Hypothesis:

- Monochromatic source (but not a laser).
- The source hole is a circular disk.

Description:

- The distance between the two Young's holes is increased.
- Everything else is kept equal (in particular the hole size).

Effect of the Distance Between Young's Holes: II. Results

A Sightseeing Tour of mm Interferometry

Effect of the Distance Between Young's Holes: II. Results (Continued)

A Sightseeing Tour of mm Interferometry

Measured Curve = 2D Fourier Transform of the Source

Theoretical Basis of the Aperture Synthesis

The van Citter-Zernike theorem $V_{ij}(b_{ij}) = C_{ij}(b_{ij}).I_{tot} \stackrel{2\mathsf{D}}{\rightleftharpoons} F^{\mathsf{T}} B_{\mathsf{primary}}.I_{\mathsf{source}}$

- Young's holes = Telescopes;
- Signal received by telescopes are combined by pairs;
- Fringe visibilities are measured.
- \Rightarrow One Fourier component of the source (*i.e.* one visibility) is measured by baseline (or antenna pair).
 - \Rightarrow Each baseline lenght $b_{ij} =$ a spatial frequency.
 - \Rightarrow Convention: Spatial frequencies are measured in meter.

An Example: The PdBI

Number of baselines: N(N-1) = 30 for N = 6 antennas.

Convention: Fourier plane = uv plane.

Each Visibility is a Weighted Sum of the Fourier Components of the Source

 $V_{ij}(b_{ij}) \stackrel{\text{2D,FT}}{=} B_{\text{primary}}.I_{\text{source}}$ *i.e.* $V_{ij}(b_{ij}) = \left\{ \tilde{B}_{\text{primary}} * \tilde{I}_{\text{source}} \right\} (b_{ij})$ with $\tilde{B}_{\text{primary}}$ a Gaussian of FWHM=15 m. $\Rightarrow \left\{ \begin{array}{c} \text{Indirect information on the source} \\ (\text{important for mosaicing}). \end{array} \right.$

Mathematical Properties of Fourier Transform

1 Fourier Transform of a product of two functions
= convolution of the Fourier Transform of the functions:

If
$$(F_1 \rightleftharpoons^{\mathsf{FT}} \tilde{F_1} \text{ and } F_2 \rightleftharpoons^{\mathsf{FT}} \tilde{F_2})$$
, then $F_1.F_2 \rightleftharpoons^{\mathsf{FT}} \tilde{F_1} * \tilde{F_2}$.

- 2 Sampling size $\stackrel{\mathsf{FT}}{\rightleftharpoons}$ Image size.
- 3 Bandwidth size $\stackrel{\mathsf{FT}}{\rightleftharpoons}$ Pixel size.
- 4 Finite support $\stackrel{\mathsf{FT}}{\rightleftharpoons}$ Infinite support.
- 5 Fourier transform evaluated at zero spacial frequency = Integral of your function.

$$V(u = 0, v = 0) \stackrel{\mathsf{FT}}{\Leftarrow} \sum_{ij \in image} I_{ij}.$$

Each Visibility is a Weighted Sum of the Fourier Components of the Source

 $V_{ij}(b_{ij}) \stackrel{\text{2D,FT}}{=} B_{\text{primary}}.I_{\text{source}}$ *i.e.* $V_{ij}(b_{ij}) = \left\{ \tilde{B}_{\text{primary}} * \tilde{I}_{\text{source}} \right\} (b_{ij})$ with $\tilde{B}_{\text{primary}}$ a Gaussian of FWHM=15 m. $\Rightarrow \left\{ \begin{array}{c} \text{Indirect information on the source} \\ (\text{important for mosaicing}). \end{array} \right.$

An Example: The PdBI (Cont'd)

Number of baselines: N(N-1) = 30 for N = 6 antennas. Convention: Fourier plane = uv plane.

Incomplete uv plane coverage \Rightarrow difficult to make a reliable image (Lectures by C. Feruglio, J. Pety and F. Gueth).

A Sightseeing Tour of mm Interferometry

Precision: Spatial frequencies = baseline lengths projected onto a plane perpendicular to the source mean direction.

Precision: Spatial frequencies = baseline lengths projected onto a plane perpendicular to the source mean direction.

J. Pety, 2012

Precision: Spatial frequencies = baseline lengths projected onto a plane perpendicular to the source mean direction.

J. Pety, 2012

Precision: Spatial frequencies = baseline lengths projected onto a plane perpendicular to the source mean direction.

Advantage: Possibility to measure different Fourier components without moving antennas!

J. Pety, 2012

Precision: Spatial frequencies = baseline lengths projected onto a plane perpendicular to the source mean direction.

Advantage: Possibility to measure different Fourier components without moving antennas!

J. Pety, 2012

Precision: Spatial frequencies = baseline lengths projected onto a plane perpendicular to the source mean direction.

Precision: Spatial frequencies = baseline lengths projected onto a plane perpendicular to the source mean direction.

J. Pety, 2012

Precision: Spatial frequencies = baseline lengths projected onto a plane perpendicular to the source mean direction.

J. Pety, 2012

Precision: Spatial frequencies = baseline lengths projected onto a plane perpendicular to the source mean direction.

J. Pety, 2012

Delay Correction: I. Why?

Real life: Source not at zenith. Wave plane arrives at different moment on each antenna. \Rightarrow

Temporal coherence:

- $E(t) = E_0 \cos(\omega t + \psi)$
- Temporally Incoherent Source = random phase changes.
- Coherence time: mean time over which wave phase = constant.

 $\psi = 0$ $\psi = 1.5$ $\psi = 0.5$

Problem: (Coherence time \leq delay) \Rightarrow fringes disappear!

Delay Correction: II. Earth rotation

Earth rotation:

- Advantage: Super synthesis;
- Inconvenient: Delay correction varies with time!

Delay Correction: III. Finite Bandwidth

Real life: Observation of finite bandwidth. \Rightarrow polychromatic light.

Perfect delay correction \Rightarrow White fringes in 0.

Real life: Observation of finite bandwidth. \Rightarrow polychromatic light.

Perfect delay correction \Rightarrow White fringes in 0.

Worse and worse delay correction.

 \Rightarrow Translation of the fringe pattern.

 \Rightarrow Fringes seem to disappear.

J. Pety, 2012

Real life: Observation of finite bandwidth. \Rightarrow polychromatic light.

Perfect delay correction \Rightarrow White fringes in 0.

Worse and worse delay correction.

 \Rightarrow Translation of the fringe pattern.

 \Rightarrow Fringes seem to disappear.

J. Pety, 2012

Real life: Observation of finite bandwidth. \Rightarrow polychromatic light.

Perfect delay correction \Rightarrow White fringes in 0.

Worse and worse delay correction.

 \Rightarrow Translation of the fringe pattern.

 \Rightarrow Fringes seem to disappear.

J. Pety, 2012

Real life: Observation of finite bandwidth. \Rightarrow polychromatic light.

Perfect delay correction \Rightarrow White fringes in 0.

Worse and worse delay correction.

 \Rightarrow Translation of the fringe pattern.

 \Rightarrow Fringes seem to disappear.

J. Pety, 2012

Real life: Observation of finite bandwidth. \Rightarrow polychromatic light.

Perfect delay correction \Rightarrow White fringes in 0.

Worse and worse delay correction.

 \Rightarrow Translation of the fringe pattern.

 \Rightarrow Fringes seem to disappear.

A Sightseeing Tour of mm Interferometry

Optic vs Radio Interferometer: I. Measurement Method

Detector {Kind Observable Measure {Method Quantity

Interferometer kind

Optic Quadratic $I = |EE^*|$

Optical fringes $|C| = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$

Additive

Radio Linear (Heterodyne) $|E| \exp(i\psi)$

Electronic correlation $|V| \exp(i\phi_V) = \langle E_1.E_2 \rangle$

Multiplicative

(Heterodyne: lectures by F. Gueth and V.Piétu)

A Sightseeing Tour of mm Interferometry

Optic vs Radio Interferometer: I. Measurement Method

Detector $\begin{cases} \text{Kind} & \text{Quadratic} \\ \text{Observable} & I = |EE^*| \end{cases}$ Measure {Method Quantity Interferometer kind

Optic Quadratic

Optical fringes $|C| = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$

Additive

Radio Linear (Heterodyne) $|E| \exp(i\psi)$

Electronic correlation $|V| \exp(i\phi_V) = \langle E_1 \cdot E_2 \rangle$

Multiplicative

Multiplicative Interferometer

Optic vs Radio Interferometer: II. Atmospheric Influence

Atmosphere is turbulent: \Rightarrow Phase noise (Lecture by M. Bremer). Timescale of atmospheric phase random changes:

- Optic: 10-100 milli secondes;
- Radio: 10 minutes.
- \Rightarrow Radio permits phase calibration on a nearby point source (e.g. quasar).

Instantaneous Field of View

One pixel detector:

- Single Dish: one image pixel/telescope pointing;
- Interferometer: numerous image pixels/telescope pointing
 - Field of view = Primary beam size;
 - Image resolution = Synthesized beam size.

Wide-field imaging: \Rightarrow mosaicing (Lecture by F. Gueth).

Conclusion

mm interferometry:

- A bit more of theory;
- Lot's of experimental details (*e.g.* lecture by V. Piétu, and E. Villard).

Why caring about technical details: Some of them must be understood to know whether you can trust your data.

By the end of this week, you should be ready to use PdBI & ALMA! (Lectures by J.M. Winters, and G. Dumas)

Bibliography

- "Synthesis Imaging". Proceedings of the NRAO School. R. Perley, F. Schwab and A. Bridle, Eds.
- "Proceedings from IMISS2", A. Dutrey Ed.
- "Interferometry and Synthesis in Radio Astronomy", R. Thompson, J. Moran and G. W. Swenson, Jr.

Photographic Credits

- M. Born & E. Wolf, "Principles of Optics".
- J. W. Goodman, "Statistical Optics".
- J. D. Kraus, "Radio Astronomy".

Lexicon

- Beam: Antenna diffraction pattern.
- Primary Beam: Instantaneous field of view (Single-Dish Beam).
- Synthesized Beam: Image resolution (Interferometer Beam).
- Configuration: Antenna layout of interferometer.
- Baseline: Distance between two antenna.
- *uv*-plane: Fourier plane.
- Visibilities: \sim Fourier components of the source.
- Fringe stopping: Temporal variation of delay correction needed to avoid translation of the white fringe.
- Heterodyne: Principle of linear detection.
- Correlator: Where visibilities are measured by correlation of signal coming from pairs of antenna.