

GILDAS

Jérôme PETY (IRAM/Obs. de Paris) on behalf of the IRAM Science Software developers

IRAM Millimeter Interferometry Summer School Oct. 10 - 14 2016, Grenoble

People (as of 2016 April)

• People participating in one way or another

IRAM/Grenoble R. Zylka, J.M. Winters, E. Reynier, J.C. Roche, V. Pietu, J. Pety, A. Castro-Carrizo, D. Broguière, M. Bremer, J. Boissier, S. Bardeau.

IRAM/Granada H. Ungerechts, A. Sievers.

IPAG/Grenoble S. Maret.

LAB/Bordeaux S. Guilloteau.

- Large code contributors: $\sim 5.0 \text{ FTE/yr}$
 - R. Zylka MOPSIC.
 - H. Ungerechts PAKO.
 - **A. Sievers** MIRA + MRTCAL.
 - **E. Reynier** kernel + OMS.
 - V. Pietu CLIC + RDI.
 - **J. Pety** kernel + MRTCAL + CLASS + MAPPING.
 - **A.** Castro-Carrizo CLIC pipeline + OBS.
 - J. Boissier ASTRO.
 - **S. Bardeau** kernel (including the python binding) + CLASS + MRTCAL.
 - S. Maret CLASS/WEEDS.
 - **S. Guilloteau** Kernel + MAPPING.

What my daughters think I do at IRAM

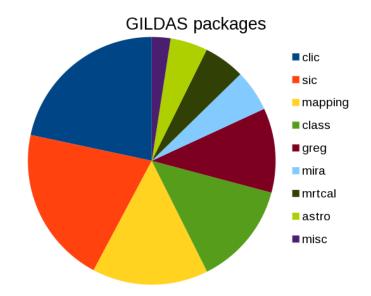
Actual activity: Helping people to make sense of

Hexadecimal representation of the ${}^{12}CO(1-0)$ LMV cube of the south-western edge of the Orion B molecular cloud...

4c7225bfa4b317bff31e063f21fab6bd7846db3e0e4d5abf2f20803ed28e b53e23910dbfa730babe1bbe2a3f8c2aa5be1e7f49bfcc4fe93e4bafe83e46948b3f916efebe6984ae3e9798a23ecf39bb3f0d91e0be23fb423d4213 b93e2c81e8bb5caf18bff30531beccd7fabee326e7bc46a2d53e2da3963d 40ea9bbc91a2d53d0607b1bc98894ebe96ce19bd898f7cbf683f17bea624 4bbec1b9ef3e09f9923f0a1b0f3cf20d2cc0f4d189be7615fdbe37f3f4be 2418b6bcc7192e3fe047703fc38f93bfa4a2c8bfe4f765be4ae63b3e2cec b23e7ef00c3f3409ef3e946d07bfce0ffcbd4fee443ea04f48bdabfb3bbe1ad525bfcd5cedbdf95a883eb4ac373f539ac9be6db95c3e806deebef6d4 3b3e3d4cd33e0534053f52a12ebed6f397be2c71353f5f615a3f0357043f 29ca013e459010bf989f503ed1646f3e04a236bfe4dc01bf04ad0abf2e5b 7abcbede96bf42af0abf7f6d54be3c37c9be6d1c06becae9d0be314e72bd34984abf0d5c5cbd528c0fbe4c32943e7732adbe96a0213eac883fbef537 0abfcfc050bf3b56dfbeb315123f35b80b3dfbfb7abda62325bf8356bcbf df2834bf8b27a73f6105823f41881b3f75a00d3fedfea83fce354abf81bb c33f8dc0053ea521343faba63a3fa0d037be3fcbaa3efe025e3f63fa2c3f d91ffa3ea3bad13e3efd60bf4817073f11e714be1cf28ebc5a885dbf8dc5 8bbf88a339bd3f4d9d3f8cbc03bf9374dcbec0ef683e0368273f19e0453e 9e8fec3d0d93943ef5b085bfd0948e3f9980823fbbff7bbff2a55dbe9e6a 973de216d8befb3704bff2a88f3d761c71bfe6cb80be8b75003fbd59f63e e8cc0a3fe8b24bbd2a7efabeea72313f2906a83edcdad1bbe0209dbd8625 fabda6f426be4a5e6e3ea91305bf3497233d5a3d783ee02e653f6cdc913f 071b99beef73ebbe17cfd83eb503783f962aae3efd2a93be8e64fc3edf58 4fbe33d70e3f448fb93e65e5be3d4b98b63e78b7173ecb4c7d3e492b063e 18e5373ec55eef3d924a5d3ec354583f9ce2f4bdca6e16bf59683cbe9598 223fda2a643e77bb8c3ed520193f1175a43e73e5b73ef992763dcb68c53e 6fa5b63e7dfc15bfb832063e25ab06bec64f10bf9c4d4abe8b6f83be451f 883d848e17be720c2c3f45d65e3fac91293f590dfd3eca0ca73e86acbc3e 294ed83edfa03a3f3f07b23eb99a143f7fc4483fcab724beb0318fbe69e8 283f4289b73e025d1a3d824c68bef42c423e53df0cbef420db3e62dda13e

Scope: I. Softwares at IRAM

- Many different kinds of softwares at IRAM:
 - 1. Proposal and scheduling (statistics, dynamic scheduling, pool observing).
 - 2. Preparation of observations, e.g. setups.
 - 3. Data acquisition:
 - 3.1 Low level, e.g. hardware control (antennas, receivers, correlators, etc...)
 - 3.2 High level, *e.g.* operator and observer interface.
 - 4. Data archiving.
 - 5. Data reduction and analysis (single dish + interferometry).
 - 6. Generic plot package.
- Science software deals only with a subset. Points: 1, 2, 3.2, 5, and 6.
- GILDAS deals with an even smaller subset. Points: 2, 3.2, 5 and 6.


Scope: II. Observation Management System 40 000 executable lines

015 - NOEMA lis	Show setup Open to PI Setup W15AL001	Current user lefevre Logout
	Proposal: W15 Observing mode: Detection / track-sharing 12 sources Local contact: Charlene Lefevre Pdf: w15 -m.pdf Requested sensitivity: 0.35mJy/3600.00MHz PIs: Letter: w15 .html On source time (h): 0.57 Pis:	Select user: lefevre
	Sources Add a source	
	Id Epoch RA DEC Visr (km/s) 27 UScol 12000 15:55:56.000 -20:45:18.700 0.0 Ø edit UScol 12000 15:55:56.000 -20:45:18.700 0.0 Ø edit UScol 12000 15:55:56.000 -20:45:18.700 0.0 Ø edit UScol 12000 15:00:26.690 -20:56:44.300 0.0 Ø edit UScol 12000 16:00:26.690 -20:56:44.300 0.0 Ø edit UScol 12000 16:00:25.614.300 0.0 Ø edit 0.0 Ø edit UScol 12000 16:00:55.410 -9:19:19:36.200 0.0 Ø edit 0.0 Ø edit UScol 12000 16:10:05.410 -9:19:19:36.200 0.0 Ø edit 0.0 Ø edit 0.0 Ø 0.0 Ø edit 0.0 Ø	
	0 3 6 9 12 15 18 21 24 LS.T.	
	Calibrators Recompute • Name Band Flux Distance Date • UTC: 05-APR-2016 14:25:49.99 UTC: 05-APR-2017 UTC: 05-APR-2017 UTC: 05-APR-2018 UTC:	
	Type: Detection Mapping Size measurement Number of sources: 12 Typical settings per source Line name[?]: Distribution of time per configuration: Requested sensitivity: 0.35 mJy/beam Spectral resolution: Jbistribution of time per configuration: 3600.0 MHz → On source time per source[?]: 0.57 hours A: % B: % 0: % or Any: 100.0 % from: A B B C C D	

Scope: III. GILDAS at IRAM 450 000 **executable lines**

• Common facilities

- Command line interpreter: **SIC**;
- Graphical possibilities: GREG (1D: curves, 2D: images, 3D: spectra cubes).
- Preparation of observations: ASTRO.
- 30m
 - Spectroscopy: TELCAL + MIRA + CLASS.
- PdBI
 - Calibration: CLIC;
 - Imaging + Deconvolution: MAPPING.
- ALMA
 - Simulator: MAPPING @ alma.map;
 - Holographies of ALMA antennas are done in CLIC at San Pedro.

GILDAS Strengths

Large range of supported systems Linux, Mac/OSX, Windows.

Light weight Data reduction and analysis possible on laptops.

30+ years of history \Rightarrow Accumulated expertise.

Powerful advanced tools, e.g.,

- Interface to line catalogs;
- Easy OTF processing;
- Easy interferometric mosaicing;
- General fitting routines.

GILDAS users

- IRAM AODs: Instrument monitoring, data pipelining.
- IRAM users: Data reduction.
- Others:
 - CLASS is used in many facilities (*e.g.* APEX, CSO, NANTEN2, GBT, HHT, Effelsberg, Kosma, ...); CLASS is partly used by Herschel/HIFI, SOFIA, 45m.
 - ALMA: (Single Dish characterization in San Pedro).
- All kind of public from beginners to data specialists.
 - Easyness of use for new users.
 - Flexibility for data specialists.
- \Rightarrow GILDAS evolutions must be thought with all users in mind.

An example of the GILDAS daily life: CLASS

- The command SET WINDOW has been improved as follows.
 - SET WINDOW DEFAULT will revert to the default status, i.e. no signal window defined, BASE will return an error.
 - SET WINDOW NONE will define 0 window, i.e. BASE will fit all channels, assuming there is no signal at all in the spectrum.
 - SET WINDOW AUTO will reuse the previous windows as found in the current base section in the R buffer.
 - SET WINDOW /POLYGON (used in PLOT /INDEX mode) accepts now complicated polygons shapes resulting in more than 1 window per polygon.
- The support of different projection systems in CLASS was completed, i.e., the PLOT and HEADER commands now also display the projection kind and angle. We note that this support implied a change of data format (modification of the position section of the header). This implies that data written with recent version of GILDAS (after apr15) can not be read by older version of CLASS (in contrast, newer CLASS is obviously able to read old CLASS format). The documentation about the improved support of coordinate projections in CLASS is now available here:

http://www.iram-institute.org/medias/uploads/class-projection.pdf

- After 5 years of obsolescence, the old averaging engine (AVERAGE /2010) is removed.
- The CLASS FITS reader did not convert UT and ST from second to radian, implying a wrong recomputation of the Doppler factor, when needed. This was fixed.
- The possibility to store 2D arrays in the USER section was added after a request from the SOFIA observatory.
- The LMV command now correctly imports ALMA data cubes produced by CASA into CLASS as we now enforce that Voff and Restf are aligned on the spectral reference channel.

• etc...

GILDAS

User support: I. Documentation

Web page http://www.iram.fr/IRAMFR/GILDAS.

Memos at http://www.iram-institute.org/EN/content-page-161-7-66-161-0-0.html. Mail to gildas@iram.fr.

IRAM Memo 2015-1

Extended support of sky spherical coordinates in CLASS

S. Bardeau¹, J. Pety^{1,2}

IRAM (Grenoble)
LERMA, Observatoire de Paris

March, 26th 2015 Version 1.0

Abstract

Up to now, **CLASS** only supported natively the radio projection of the sky spherical coordinates. The main limitation of the radio projection is the absence of support of a projection angle. This could imply some approximation in the handling of On-The-Fly data with rotated scanning directions. **CLASS** now supports all the projections already supported in the **GILDAS** hernel, i.e., none (unprojected spherical coordinates), gnomonic, orthographic, azimuthal, stereographic, lambert, aitoff, radio, and sl. This required the introduction of the MODIFY PROJECTION command, the modification of the MODIFY POSITION command, and the modification of the position header section in the **CLASS** Data Format. This memo describes all this in details.

Keywords: coordinates, (re)projection, CLASS Data Format Related documents: CLASS documentation, CLASSIC Data Container IRAM Memo 2013-2

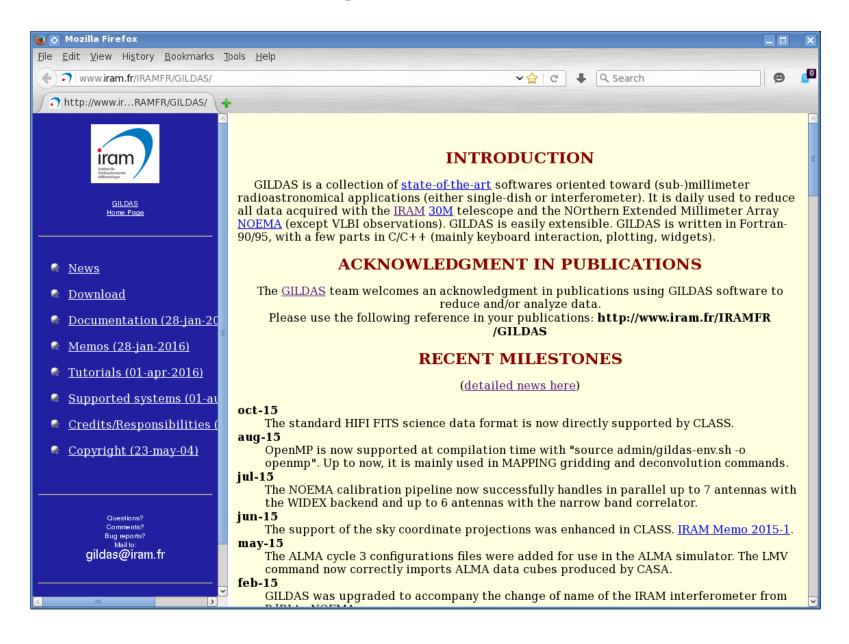
CLASSIC Data Container

S. Bardeau¹, V. Piétu¹, J. Pety^{1,2}

IRAM (Grenoble)
LERMA, Observatoire de Paris

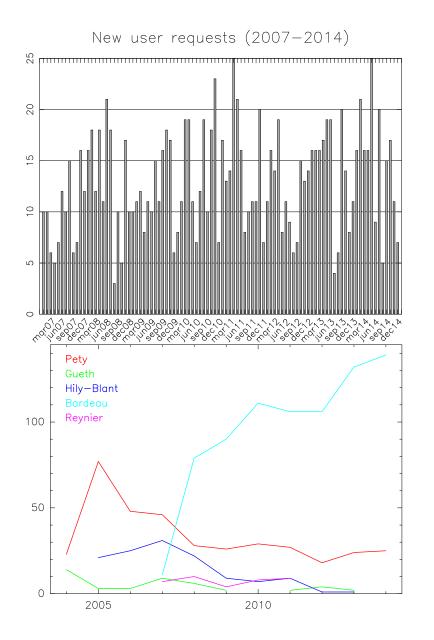
October, 3rd 2013 Version 1.0

Abstract

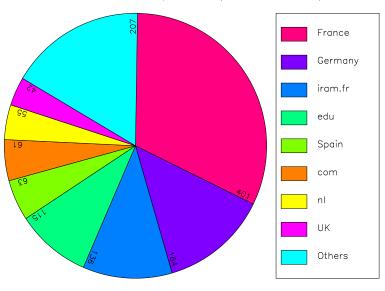

The CLASS/CLIC Data Format are digital formats used to describe single-dish/interferometric radio-astronomy data. They can be described in two layers: 1) a CLASSIC Data Container, which is generic enough to store many kind of data, typically several observations which gather observational parameters with actual data, and 2) the CLASS/CLIC Data Format itself, which make a particular use of the CLASSIC Data Container.

The size of the datasets produced by the IRAM instruments experience a tremendeous increase (because of multi-beam receivers, wide bandwidth receivers, spectrometers with thousands of channels, and/or new observing mode like the interferometric on-the-fly). This implied that the **CLASS/CLIC** Data Format were reaching common limits in the size of data which could be stored. To solve these issues, the **CLASSIC** Data Contamer standard was revised. This documents aims to describe the new standard. A companion document describes the **GILDAS** library which implements this standard and which is now used by **CLASS and CLIC**.

Related documents: The CLASSIC Library, IRAM memo 2013-3


User support:

II. Web page http://www.iram.fr/IRAMFR/GILDAS


User support:

III. answers to gildas@iram.fr

- Total number of threads from new users: 155/year.
- Total number of threads from all users: 302/year.
- Number of emails per threads: 2.5 (min: 1, max: 27).
- Median time to
 - First answer: 6h;
 - Final answer: 25h.

New user requests (2007-2014)

Bug report: I. Wrong way

Hi,

I have just stumbled on an obnoxious bug which prevents me from making the discovery of the century. I will defend my PhD thesis tomorrow. Fix this bug in the coming minutes.

Toto.

Bug report: II. Right way

Dear Gildas team,

Your software is great. For the first time in my life, I encountered a segmentation fault using it. I succeeded to reproduce the bug with a simple list of commands. I attach the following information: version of gildas I am currently using, list of commands and the data set to reproduce the bug. I hope this will help you solve the bug in the coming months. Continue the great work.

Best regards, Toto.

gildas version: sep15b (x86_64-redhat6.4-ifort) source tree

List of commands: LAS90> file in test LAS90> find Blablablabla... Segmentation fault

Data set attached: test.30m

Coping with the NOEMA project: Challenges

Changes of technology

Receiver 2 polar, 4GHz, SSB \Rightarrow 2 polar, 8GHz, 2SB.

Backend $XF \Rightarrow FX$.

New operation modes *e.g.* double-array.

Increased complexity More antennas + More frontend/backend chunks.

Increased data rates by a factor 32 to 6000.

Number of baselines $PdBI-2010 \times N_{ant}(N_{ant}-1)/30$, *i.e.* 1.9, 3, and 4.4 for 8, 10, and 12 antennas.

Channels PdBI-2010 ×32.

Shorter integration times PdBI-2010 $\times 1 - 45$.

Typical data rates at the end of phase 1, *i.e.* end of 2017

Average (Single-field, 10 antennas) 2.8 MB/s, *i.e.*, at most 77 GB for 8-hrs observation.

Peak (Wide-field, 10 antennas) 63.0 MB/s, *i.e.*, 1.7 TB for 8-hrs observation.

Bigger delivered data products Large 3D data cubes.

Increased scientific capabilities

Wide bandwidth.

Higher sensitivity.

Higher brightness dynamic.

 \Rightarrow Discovery of subtle, previously undetected "artifacts".

No software is the answer to all these:

- Best (*i.e.* most recent) computing technology.
- Best portability.
- Best speed.
- Best ease of use (CLI and GUI).
- Best (*i.e.* shortest) learning curve.
- Best functionalities.
 - Best data calibration methods.
 - Best data mapping methods.
 - Best (*i.e.* most complete) analysis methods.
 - Best graphical possibilities.
- Best cost.

IRAM Science Software Strategy

Maintain high-quality software for IRAM instruments while staying open to outside world

- Focused but generic developments;
- In/out fillers;
- Python binding.

"Short", "focused" development cycles

- No one-fit-all-use-cases-in-astronomy software.
- Only exceptional ruptures, e.g., data formats.

A good balance between astronomers and software engineers

- In-house astronomers make the link between the community and the engineers.
- Keeping a science activity is the best way to understand the community needs on a daily basis.
- Prototypes are useful first steps for more professional developments (e.g., $IPP \Rightarrow PMS$).

Continuous aggregation of functionality without creating black boxes

- Integration of functionality enable to simplify the interaction with ever increasing data complexity.
- Viewing the intermediate processing steps enable to keep control of the data reduction.

Yearly versions for the online acquisition

• Ensure stability and evolution at Pico Veleta and Bure.

Monthly releases to the community enable

- the algorithms to follow observatory changes.
- us to quickly distribute new functionality or bug fixes.