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Pound lock: Original & Adaptation

Original
� Oscillator (loop) 

stabilised by ultra-high 
Q>109 resonator

� High power technique –
no amplification

Adaptation

� Stable microwave 
oscillator probes unstable 
Q>104 resonator

� Low power technique –
needs amplification
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Pound lock: Concept

� fc ~ fo

� fm >> ∆f

� Side bands reflect
Carrier interacts

� Error signal at fm but 
contains information about 
resonance!
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Pound lock: Error signal

� Gradient of carrier 
maximal when power in 
sidebands is half that of 
carrier

� Zero crossings 
correspond to each 
signal being at 
resonance



Pound Lock: Implementation

� Improved carrier 
stability from function 
generator

� Tuneable attenuator 
maintains control of 
microwave input power

� Lock in used as down 
mixer with gain

� Data acquisition by 
DAQ-ADC and FFT 
analyser



Sample overview

� Nb on Sapphire

� 5 Lumped element 
resonators

� f0 range 4-8 GHz

� Additional dielectric layer 
over capacitive region of 
three resonators (blue strip)



Allan deviation: Introduction

� Deviation of points 
equally separated in 
time

� Estimator of Allan 
deviation converges for 
all power law noise 
processes.
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Allan deviation: Introduction cont.

� Plot of stability within a 
measurement time t

� Stability can be 
considered as read out 
resolution in Hz

� Power law noise 
processes can be fit
as σv∂t

α



Characterising the loop

� 10 Hz readout 
resolution at 10 ms 

� DRO 100 times more 
stable than 
superconducting 
resonator

� Between 5-100 Hz 
dominant noise in 
superconducting 
resonator is random 
frequency walk (1/f2)



Preliminary results: Loss tangent

� Measure centre frequency 
with changing temperature

� Loss tangent approximately 
10x larger for Al2O3 layer

� Loss tangent approximately 
5x larger for HfO2 layer
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Preliminary result: Noise

� Covered resonators 
always noisier than 
uncovered 

� Noise level decreases 
at lower powers

� Between 5-100 Hz 
random frequency walk 
(1/f2) is dominant noise

� Between 100-10000Hz 
noise type varies with 
power



Summary

� Direct probe of resonant frequency fluctuations

� Measurements possible between –80dBm and –100dBm

� Pound loop read out resolution of 10 Hz within 10 ms

� Read out resolution down to 0.2 Hz has been demonstrated in 
“clean” DRO

� Covered resonators are noisier and have higher loss tangent.

� Dominant random frequency walk noise in the 5-100 Hz range

� Flicker frequency noise only dominates at sub 1 Hz 

http://arxiv.org/abs/1106.5396



Further loop characterisations

� Thermal or mechanical 
instability produces 
frequency drift 

� DRO 100 times more 
stable than 
superconducting 
resonator

� Between 5-100 Hz 
dominant noise in 
superconducting 
resonator is random 
frequency walk (1/f2)


