

Characterising Superconducting lumped element resonators by Pound locking Jonathan Burnett ^{1,2} T. Lindström ^{1,2}, A.Ya. Tzalenchuk¹, M. Oxborrow¹, G. Ithier²,

P Meeson² Y. Harada³ and Y. Sekine³

National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
2 Royal Holloway, University of London, Egham, TW20 0EX, UK
3 NTT Basic Research Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 Japan

4th Workshop on the Physics and Applications of Superconducting Micro-resonators, IRAM, Grenoble, 2011

Pound lock: Original & Adaptation

Original

- Oscillator (loop) stabilised by ultra-high Q>10⁹ resonator
- High power technique no amplification

Adaptation

- Stable microwave oscillator probes unstable Q>10⁴ resonator
- Low power technique needs amplification

Pound lock: Concept

Pound lock: Error signal

 Zero crossings correspond to each signal being at resonance

 Gradient of carrier maximal when power in sidebands is half that of carrier

Pound Lock: Implementation

- Improved carrier stability from function generator
- Tuneable attenuator maintains control of microwave input power
- Lock in used as down mixer with gain
- Data acquisition by DAQ-ADC and FFT analyser

Sample overview

- Nb on Sapphire
- 5 Lumped element resonators
- f₀ range 4-8 GHz

 Additional dielectric layer over capacitive region of three resonators (blue strip)

Allan deviation: Introduction

- Deviation of points equally separated in time
- Estimator of Allan deviation converges for all power law noise processes.

$$\sigma_{y}(\tau) = \frac{1}{\sqrt{2}} \left\langle \left(\overline{y}_{i+1} - \overline{y}_{i}\right)^{2} \right\rangle^{1}$$

Allan deviation: Introduction cont.

Characterising the loop

- 10 Hz readout resolution at 10 ms
- DRO 100 times more stable than superconducting resonator
- Between 5-100 Hz dominant noise in superconducting resonator is random frequency walk (1/f²)

Preliminary results: Loss tangent

$50 \text{ nm Al}_2\text{O}_3$

Z		
f ₀ (MHz)	F*tan d _i *1e6	
4322	26	
5004	3.0	
6248	27	
7091	13	
7764	27	

50 nm HfO₂

f _o (MHz)	F*tan d _i *1e6
4946	4.8
6125	24
7045	6.0
7588	15

- Measure centre frequency with changing temperature
- Loss tangent approximately 10x larger for Al₂O₃ layer

$$F\tan\delta_i = \frac{F\pi d^2 n}{3\varepsilon}$$

 Loss tangent approximately 5x larger for HfO₂ layer

Preliminary result: Noise

- Covered resonators always noisier than uncovered
- Noise level decreases at lower powers
- Between 5-100 Hz random frequency walk (1/f²) is dominant noise
- Between 100-10000Hz noise type varies with power

Summary

- Direct probe of resonant frequency fluctuations
- Measurements possible between –80dBm and –100dBm
- Pound loop read out resolution of 10 Hz within 10 ms
- Read out resolution down to 0.2 Hz has been demonstrated in "clean" DRO
- Covered resonators are noisier and have higher loss tangent.
- Dominant random frequency walk noise in the 5-100 Hz range
- Flicker frequency noise only dominates at sub 1 Hz

http://arxiv.org/abs/1106.5396

Further loop characterisations

- Thermal or mechanica instability produces frequency drift
- DRO 100 times more stable than superconducting resonator
- Between 5-100 Hz dominant noise in superconducting resonator is random frequency walk (1/f²)

