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Motivation

� Investigate new regimes of  matter-light interaction in electronic circuits 
(Quantum optics, cavity quantum electrodynamics)

� Quantum circuits for information processing (Quantum computation)

� Interfaces between different physical systems (Quantum hybrids)
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[DiCarlo, Nature (2009)]



• Quantum Mechanics with Superconducting Circuits
(microresonator in the quantum regime ) 

• Circuit QED 
(microresonator as noise filter
+ qubit readout
+ study of matter-light coupling )

• Generation of entangled 2-qubit and 3-qubit states
(microresonator for quantum information distribution)

• Hybrid quantum computation with Rydberg atoms
and superconducting circuits
(microresonator as interface to other quantum objects)

Outline
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Classical and Quantum Electronic Circuit 
Elements

[Review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411172 (2004)]

quantum superposition states:

•charge q

•flux φ

basic circuit elements: charge on a capacitor:

current or magnetic flux in an inductor:
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Constructing Linear Quantum Electronic Circuits

classical physics:

harmonic LC oscillator:

quantum mechanics:

energy:basic circuit elements:
Electronic 

photon
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+ + --

E B

1 mm

1D Cavity with large Vacuum Field 
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electric field across resonator in vacuum state (n=0):

optical microscope image of sample fabricated at FIRST
(Nb on sapphire)



Storing Photons and Controlling their Life Time
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1 mm

100µm

quality factor:

photon lifetime:

measuring the life time:

[M. Goeppl, et al. J. Appl. Phys. 104, 113904 (2008)]

100µm



Constructing Non-Linear Quantum Electronic 
Circuits
basic circuit elements:

Josephson junction:
a non-dissipative 
nonlinear element 
(inductor)

anharmonic oscillator: non-linear energy 
level spectrum:

electronic
artificial atom
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Artificial atom: Cooper Pair Box Qubit

5 µm

[Bouchiat, Vion, Joyez, Esteve, Devoret, Physica Scripta T76, 165 (1998);
Koch et al. PRA 76, 042319 (2007); Schreier et al. PRB (2008)]

bulk

islandφ
v

transmon-design for increased 
charge noise resilience:

quantum state: 
number n of Cooper pairs on island^
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How to operate circuits quantum mechanically?

� avoid dissipation

� work at low temperatures

� isolate quantum circuit from environment

recipe:
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Setup
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resonator+ transmon chip:

Sampleholder: Box with B-field coils: 

Dilution fridge (20mk):



Superconducting Artificial Atoms and Molecules

Yale
NIST

Transmon 
Yale, 
Saclay, 
ETH, 
Princeton, 
Delft

coupled 
phase 
qubits
UCSB

flux 
qubit
Munich, 
NEC, 
Delft

CSFQ, 
IBM

etc…
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Cavity Quantum Electrodynamics 

[D. Walls, G. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994)]

interaction of atom and photon in a cavity 

Jaynes-Cummings Hamiltonian

strong coupling limit: 
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Our Circuit Realization of Cavity QED

A. Blais, et al. , PRA 69, 062320 (2004)

A. Wallraff et al., Nature (London) 431, 162 (2004)

Coherent quantum mechanics with 
individual photons and qubits
[S. Haroche & J. Raimond]

in superconducting circuits:

circuit quantum 
electrodynamics

circuit quantum 
electrodynamics

strong designable coupling 
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Resonant coupling

qubit 1: transition frequency: 

resonator: • direct coupling (g ~  130 MHz)

g
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Resonant Vacuum Rabi Mode Splitting …

[first demonstration in a solid: A. Wallraff et al., Nature (London) 431, 162 (2004)

this data: J. Fink et al., Nature (London) 454, 315 (2008)

R. J. Schoelkopf, S. M. Girvin, Nature (London) 451, 664 (2008)]
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Tavis -Cummings model: Increase number of 
qubits

Coupling scales with
number N of atoms

C:\Documents and Settings\JMF\Desktop\SchematicsCombi.jpg

[J. M. Fink et al., PRL 103, (2009)]
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Rabi Splitting with N = 1, 2, 3 Qubits and 1 Photon

at degeneracy: two bright states, N - 1 dark states
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νr

νA � νC � νB

[J. M. Fink et al., PRL 103, (2009)]



Dispersive regime 

Workshop, Grenoble, France, July 29, 2011

[Blais et al., PRA 69 (2004)]

resonant: dispersive 
(qubit detuned from resonance:  
¢ = |!ge - !r| À g)



Circuit QED – read out of qubit state

low power transmission measurement to determine qubit state:

dispersive Hamiltonian:

state-dependent frequency shift
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Circuit QED – read out of qubit state

low power transmission measurement to determine qubit state:

dispersive Hamiltonian:

state-dependent frequency shift
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state-dependent frequency shift -> ¾z determined

Circuit QED – read out of qubit state

low power transmission measurement to determine qubit state:

dispersive Hamiltonian:
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Preparation of non-classical photon states  
using sideband transitions.
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Sideband transitions in circuit QED

• Qubit & cavity off-resonant:

• Transitions can be driven using strong external fields
¢ = j!R ¡ !Aj À g

[Chiorescu et al. Nature (2004); Wallraff et al. PRL (2007);
Blais et al. PRA (2007); Liu et al. PRB (2007); P. J. Leek et al., PRB(R) (2009)]
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Operations using blue sideband

Sideband can be used for exchange of information between qubit and photon
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Preparation of n photon Fock states with blue sideband transitions

Sideband Rabi frequency scales with 

n photon Fock state Generation up to n=4
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Result: Scaling of Rabi frequency

Sideband Rabi Oscillations with Fock States n=0 
to 4

[P. J. Leek et al., PRL 104, 100504 (2010)]
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Entangling two distant qubits

resonator can also be used as a ‘quantum bus’ to create an 

entangled state (a quantum state, where the single qubits lose 

their individuality)
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Entangling two qubits using sideband transitions
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Entanglement of superconducting qubits

Experiment:

Theory:

Fidelity:

Re ªBell Im ªBell

86%
[Leek et al., PRB 79, 180511R (2009); 

Filipp et al., PRL 102, 200402 (2009).]
recent data:  M. Baur (ETH Zurich)
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Qubit interactions mediated via virtual 
photons.
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Resonant and dispersive coupling

qubit 1: transition frequency: 

resonator: 

qubit 2: constant frequency (5.5 GHz)

• direct coupling (g ~  130 MHz)

g

• mediated J-coupling (J ~ 20 MHz)

J
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[Majer et al., Nature 449 (2007)]



Avoided level crossing
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� cavity mediated coupling leads to an avoided crossing

� two-photon transition becomes allowed at avoided crossing
� formation of a darkstate



Formation of dark state – drive symmetry
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symmetric drive:

anti-symmetric drive:

dark state condition:



Anti-symmetric drive/symmetric dark state

Workshop, Grenoble, France, July 29, 2011

anti-symmetric drive:

[S. Filipp, PRA 83, 063827 (2011)]



J-coupling for Bell-state generation (SWAP gate)
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qubit A

qubit B

fidelity: 74% 
(here limited by T1 ~280ns)

e.g.



3-qubit entanglement for quantum 
teleportation.
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Quantum Teleportation

Qubit A: 

Qubit B, C:

Alice Bob 

Bell state 
measurement: 

If Bell state 1:

No local interaction!

If Bell state 2:

…

classical communication

U



Quantum processor platform with 3-Qubits

Main parameters

Transmon qubits
• Full individual coherent qubit 

control via local charge and flux 
lines

• Large coupling strength to 
resonator g ~ 300 - 350 MHz

• Coherences times: 
T1 ~ 0.8 - 1.2 ¹ s,T2 ~ 0.4 – 0.7 ¹ s.

Resonator 
• f0 ~  8.625 GHz

[M. Baur, et al. arxiv:1107.4774 (2011)]
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Teleportation Circuit
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implemented three qubit 
tomography at step III

Bell Measurement
Measurement + classical communication

Teleportation:
transmission of quantum bit 
(qubit A) from Alice to Bob
using a pair of entangled 
qubits (qubits B+C)

Preparation of Bell state



State tomography of the entangled three qubit 
state
Example: State to be teleported on qubit A is

Simulating measurement of 
qubit A and B with projection onto 

fidelity 88%



Hybrid Quantum Computation.
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Hybrid Cavity QED with Atoms and Circuits

combine the best properties of two worlds
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long coherence times ...
... of Rydberg atoms

very strong dipole interactions ...
... in quantum engineered electronic 

circuits

on-chip trapping & 
guiding possibilities



Other hybrid (circuit QED) approaches:
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� Spin ensembles (NV centers)
[Kubo et al., PRL 105, 140502 (2010); Schuster et al., PRL 205, 
140501 (2010)]

� Electrons on Helium
[Schuster et al., PRL 105, 040503 (2010)]

� Charged particles (Ions)
[Tian et al., PRL 92, 247902 (2004)]

� Atomic ensembles (BEC) 
[Verdu, PRL 103, 043603 (2009)]

� …



Experimental Setup
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Driving Transitions

33p     32
33p     33s
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Summary

o Photon storage in high-Q mode and entanglement generation using
sideband transitions

o Collective effects of multi-qubits coupled to a 
single resonator mode

o Generation of 3-qubit entangled states
for quantum teleportation

o Hybrid system of Rydberg atoms and superconducting circuits for future 
quantum computation
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Thanks for your attention.
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