Distributing Quantum Information with Microwave Resonators in Circuit QED

Stefan Filipp (ETH Zurich)

M. Baur, A. Fedorov, L. Steffen (Quantum Computation)
J. Fink, A. F. van Loo (Collective Interactions)
T. Thiele, S. Hogan (Hybrid Systems)
PI: A. Wallraff (ETH Zurich)

Theory support: A. Blais (*Sherbrooke*, *Canada*) *M. da Silva (Raytheon BBN Tech.)* J. Gambetta *(Waterloo, Canada)*

Grenoble, France, Juli 29, 2011

erc

NSNE

Schweizerischen Nationalfonds zur Förderung der Wissenschaftlichen Förschung Fonds national suisse de La recherche scientifique Swiss National Science Foundation Fondo nazionale swizzerd per La rikerca scientifica

ETH

Eidgenössische Technische Hochschule Zürich WorkshoperGnenoble, of nacioeulogy 209;h2011

Der Wissenschaftsfort

Motivation

Investigate new regimes of matter-light interaction in electronic circuits (Quantum optics, cavity quantum electrodynamics)

Quantum circuits for information processing (Quantum computation) •••

Interfaces between different physical systems (Quantum hybrids)

Swiss Federal Institute of Technology Zurich

Outline

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Classical and Quantum Electronic Circuit Elements

[Review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411172 (2004)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Constructing Linear Quantum Electronic Circuits

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

1D Cavity with large Vacuum Field

optical microscope image of sample fabricated at FIRST (Nb on sapphire)

electric field across resonator in vacuum state (*n=0*):

$$E_{0,\rm rms} pprox 0.2 \, {
m V/m}$$
 for $\omega_r/2\pi pprox 6 \, {
m GHz}$

 $\times 10^{6}$ larger than E_{0} in 3D microwave cavity cross-section of transm. line (TEM mode):

harmonic oscillator

$$H_r = \hbar \omega_r \left(a^{\dagger} a + \frac{1}{2} \right)$$

Storing Photons and Controlling their Life Time

measuring the life time:

quality factor:

$$Q = \frac{\nu_r}{\delta\nu_r} \approx 10^2 - 10^5$$

photon lifetime:

$$T_{\kappa} = 1/\kappa pprox 10 \,\mathrm{ns} - 10 \,\mu\mathrm{s}$$

[M. Goeppl, et al. J. Appl. Phys. 104, 113904 (2008)]

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Constructing Non-Linear Quantum Electronic Circuits

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Artificial atom: Cooper Pair Box Qubit

quantum state: number n of Cooper pairs on island

transmon-design for increased charge noise resilience:

[Bouchiat, Vion, Joyez, Esteve, Devoret, *Physica Scripta* **T76**, 165 (1998); Koch *et al. PRA* **76**, 042319 (2007); Schreier *et al. PRB* (2008)]

0.4

0.6

0.5

Flux bias (V)

0.7

0.8

0.3

0

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

How to operate circuits quantum mechanically?

recipe: * avoid dissipation

✤ work at low temperatures

Setup

resonator+ transmon chip:

Sampleholder:

Box with B-field coils:

Dilution fridge (20mk):

Superconducting Artificial Atoms and Molecules

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Cavity Quantum Electrodynamics

interaction of atom and photon in a cavity

Jaynes-Cummings Hamiltonian

$$H = \hbar \omega_r \left(a^{\dagger} a + rac{1}{2}
ight) + rac{\hbar \omega_a}{2} \sigma^z + \hbar g (a^{\dagger} \sigma^- + a \sigma^+) + H_{\kappa} + H_{\gamma}$$

strong coupling limit: $g=dE_0/\hbar>\gamma,~\kappa$

[D. Walls, G. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Our Circuit Realization of Cavity QED

Resonant coupling

qubit 1: transition frequency: $\omega_{ge} \approx \sqrt{8E_C E_J} = \sqrt{8E_C E_{J,max} |\cos(\pi \Phi/\Phi_0)|}$

resonator: • direct coupling (g ~ 130 MHz)

Resonant Vacuum Rabi Mode Splitting ...

... with one photon (n = 1):

[first demonstration in a solid: A. Wallraff et al., Nature (London) 431, 162 (2004) this data: J. Fink et al., Nature (London) 454, 315 (2008) R. J. Schoelkopf, S. M. Girvin, *Nature (London)* **451**, 664 (2008)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Tavis-Cummings model: Increase number of qubits

Coupling scales with number **N** of atoms $d \propto \sqrt{N}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Rabi Splitting with N = 1, 2, 3 Qubits and 1 Photon

at degeneracy: two bright states, **N** - 1 dark states

[J. M. Fink et al., PRL 103, (2009)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Dispersive regime

Circuit QED – read out of qubit state

low power transmission measurement to determine qubit state:

dispersive Hamiltonian:

$$H = \hbar(\omega_r + \chi \sigma_z) a^{\dagger} a + \frac{\hbar}{2} (\omega_a + \chi) \sigma_z$$

state-dependent frequency shift

Circuit QED – read out of qubit state

low power transmission measurement to determine qubit state:

dispersive Hamiltonian:

$$H = \hbar(\omega_r + \chi \sigma_z) a^{\dagger} a + \frac{\hbar}{2} (\omega_a + \chi) \sigma_z$$

state-dependent frequency shift

Circuit QED – read out of qubit state

low power transmission measurement to determine qubit state:

dispersive Hamiltonian:

$$\begin{split} H = \hbar(\omega_r + \chi \sigma_z) a^{\dagger} a + \frac{\hbar}{2} (\omega_a + \chi) \sigma_z \\ & \checkmark \\ \text{state-dependent frequency shift -> } \sigma_z \text{ determined} \end{split}$$

Preparation of non-classical photon states using sideband transitions.

Sideband transitions in circuit QED

• Qubit & cavity off-resonant: $\nabla = |m_{T} - m_{T}| \gg d$

• Transitions can be driven using strong external fields

[Chiorescu *et al. Nature (2004); Wallraff et al. PRL (2007);* Blais *et al. PRA (2007); Liu et al. PRB (2007);* P. J. Leek *et al.*, PRB(R) (2009)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Operations using blue sideband

Sideband can be used for exchange of information between qubit and photon

n photon Fock state Generation up to n=4

Preparation of n photon Fock states with blue sideband transitions

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Sideband Rabi Oscillations with Fock States n=0 to 4

Result: Scaling of Rabi frequency

 $\Omega_n=\sqrt{n}\Omega_1$

[P. J. Leek *et al.*, PRL **104**, 100504 (2010)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Entangling two distant qubits

resonator can also be used as a 'quantum bus' to create an entangled state (a quantum state, where the single qubits lose their individuality)

Entangling two qubits using sideband transitions

Entanglement of superconducting qubits

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Qubit interactions mediated via virtual photons.

Resonant and dispersive coupling

qubit 1: transition frequency: $\omega_{ge} \approx \sqrt{8E_C E_J} = \sqrt{8E_C E_{J,max} |\cos(\pi \Phi/\Phi_0)|}$ qubit 2: constant frequency (5.5 GHz)

- resonator: direct coupling (g ~ 130 MHz)
 - mediated J-coupling (J ~ 20 MHz)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

[Majer et al., Nature 449 (2007)]

Avoided level crossing

cavity mediated coupling leads to an avoided crossing

- two-photon transition becomes allowed at avoided crossing
- formation of a darkstate

anh

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Formation of dark state – drive symmetry

dark state condition: $\langle gg|H_d|\psi_{\rm dark}\rangle=0$

anti-symmetric drive:

$$H_d = \epsilon \left(\frac{|g^{(1)}|}{\Delta} \sigma_+^{(1)} - \frac{|g^{(2)}|}{\Delta} \sigma_+^{(2)} \right) + h.c.$$

symmetric drive:

$$H_d = \epsilon \left(\frac{|g^{(1)}|}{\Delta} \sigma_+^{(1)} + \frac{|g^{(2)}|}{\Delta} \sigma_+^{(2)} \right) + h.c.$$

$$\psi_s = (ge + eg)/\sqrt{2}$$

$$eg$$

$$f_a = (ge + eg)/\sqrt{2}$$

$$\psi_a = (ge + eg)/\sqrt{2}$$

$$gg$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Anti-symmetric drive/symmetric dark state

[S. Filipp, PRA 83, 063827 (2011)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

J-coupling for Bell-state generation (SWAP gate)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3-qubit entanglement for quantum teleportation.

Quantum Teleportation

Quantum processor platform with 3-Qubits

Main parameters

Transmon qubits

- Full individual coherent qubit control via local charge and flux lines
- Large coupling strength to resonator g ~ 300 - 350 MHz
- Coherences times: $T_1 \sim 0.8 - 1.2$ ¹ s, $T_2 \sim 0.4 - 0.7$ ¹ s.

Resonator

• f₀~ 8.625 GHz

[M. Baur, et al. arxiv:1107.4774 (201

Teleportation Circuit

Swiss Federal Institute of Technology Zurich

Teleportation:

transmission of quantum bit (qubit A) from Alice to Bob using a pair of entangled qubits (qubits B+C)

 $= |\psi_A\rangle$

Preparation of Bell state Measurement + classical communication Bell Measurement

State tomography of the entangled three qubit state

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Hybrid Quantum Computation.

Hybrid Cavity QED with Atoms and Circuits

combine the best properties of two worlds

Other hybrid (circuit QED) approaches:

Spin ensembles (NV centers) [Kubo et al., PRL 105, 140502 (2010); Schuster et al., PRL 205,

140501 (2010)]

- Atomic ensembles (BEC) [Verdu, PRL 103, 043603 (2009)]
- **Electrons on Helium** [Schuster et al., PRL 105, 040503 (2010)]

ion tran Charged particles (lons) [Tian et al., PRL 92, 247902 (2004)]

. . .

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Workshop, Grenoble, France, July 29, 2011

coaxial

cavity

superconducting

charge qubit

Experimental Setup

ETH

Driving Transitions

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Summary

- Photon storage in high-Q mode and entanglement generation using sideband transitions
- Colle ave effents or multi-qubits coupled to a single resonator mode
- Generation of 3-qubit entangled states for quantum teleportation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Thanks for your attention.