Submicron Wide Coplanar Waveguide Resonators Sensitivity improvement through width reduction

Reinier Janssen, 28th of July 2011

In collaboration with: A. Endo, P.J. de Visser, E.F.C. Driessen, N. Vercruyssen, T.M. Klapwijk (TU Delft) J.J.A. Baselmans, S.J.C. Yates, Y.J.Y. Lankwarden (SRON) R. Barends (UCSB)

Outline

Submicron Wide Coplanar Waveguide Resonators

- Sensitivity Requirements for Space-Based THz Astronomy
- Sensitivity Improvement by Width Reduction
 - Known width dependency
 - Fabrication of submicron wide KIDs
 - Results of a systematic study
- Conclusions

Kinetic Inductance Detector

KIDs for Space-based Astronomy

Sensitivity requirements

TUDelft

Submicron Wide CPW Resonators

KID Noise Equivalent Power Sensitivity improvement by width reduction

NEP = noise / responsivity

$$NEP_{x}(\omega) = \sqrt{S_{x}(\omega, P_{\text{int}})} \left(\frac{\eta\tau}{\Delta} \frac{\delta x}{\delta N_{qp}}\right)^{-1}$$

Responsivity depends on

$$\frac{\delta x}{\delta N_{qp}} \propto \frac{L_k \times Q}{V}$$

Kinetic Inductance Width dependence

TUDelft

Submicron Wide CPW Resonators

Power Handling Width dependence

TUDelft

Frequency Noise Width dependence

KID Noise Equivalent Power Sensitivity improvement by width reduction

$$NEP_{x}(\omega) = \sqrt{S_{x}(\omega, P)} \left(\frac{\eta\tau}{\Delta} \frac{\delta x}{\delta N_{qp}}\right)^{-1}$$

Width (S) dependence	S _e	S _R	$\delta x / \delta N_{qp}$	NEP _e	NEP _R
Al expected	S ^{-2.6}	S ^{-2.0}	S ^{-1.7}	S ^{0.4}	S ^{0.7}
NbTiN expected	S ^{-2.6}	S ^{-2.0}	S ^{-1.3}	S ^{0.0}	S ^{0.3}

Do these relationships hold for CPW widths below a few μ m?

Submicron Wide CPW Resonators

MKIDs for Space-based Astronomy

Sensitivity requirements

Submicron Resonator Fabrication

Fabrication Changes

Conventional

- Optical Lithography
- Wet Etching

Submicron resonators

- Electron-beam Lithography
- Reactive Ion Etching

Submicron Fabrication

Results

Systematic Width Study

Using NbTiN submicron resonators

Measurement Setup

Submicron Wide CPW Resonators

Systematic Width Study Using NbTiN submicron resonators

Central line width (s)

- 300 nm
- 600 nm
- 1000 nm
- 1500 nm
- 3000 nm

Investigate:

- Responsivity
- Frequency Noise
- Power Handling
- Noise Equivalent Power

$$\frac{NEP(\omega)}{\sqrt{S(\omega, P)}} \left(\frac{\Delta}{\tau} \frac{\delta\theta}{\delta N_{qp}}\right)$$

Frequency Noise NbTiN width study

17

Frequency Noise at $P_{int} = -30 \text{ dBm}$ Theory: -180r • S_f/f_{res}^2 (1 kHz) - $S_f/f_{res}^2 \propto S^{-1.3}$ - $S_f/f_{res}^2 \propto S^{-1.2}$ $S_{\theta} \propto s^{-1.6} P^{-0.5}$ -185 zH/cBa This work: • Fit to all data -190 $S_{\theta} \propto s^{-1.28 \pm 0.21}$ $\frac{2}{f} \int_{f}^{s} f$ -195 • Fit to $S \ge 1 \ \mu m$ $S_{\theta} \propto s^{-1.19 \pm 0.50}$ -200 0.3 0.6 1.5 Central Line Width [µm] **T**UDelft Submicron Wide CPW Resonators

Power Handling NbTiN width study

Noise Equivalent Power

$$NEP_{x}(\omega) \propto \sqrt{S_{x}(\omega, P_{\text{int}})} \left(\frac{\delta x}{\delta N_{qp}}\right)^{-1}$$

Width (S) dependence	S _e	S _R	δx/δN _{qp}	NEP ₀	NEP _R
Al expected	S ^{-2.6}	S ^{-2.0}	S ^{-1.7}	S ^{0.4}	S ^{0.7}
NbTiN expected	S ^{-2.6}	S ^{-2.0}	S ^{-1.3}	$S^{0.0}$	S ^{0.3}
NbTiN measured	S ^{-2.36±0.25}	S ^{-2.16±0.20}	S ^{-1.29±0.04}	$S^{0.11\pm 0.27}$	S ^{0.21±0.11}

No change in width dependency found for S < 1 μ m.

TUDelft

Conclusions Submicron KIDs for Astronomy

- Submicron KIDs (1000 nm \geq W \geq 200 nm) can be made reliably.
- A systematic width study of NbTiN resonators shows
 - no significant sensitivity improvement in phase read-out for NbTiN
 - no change in the width dependencies of responsivity, noise and power handling for submicron resonators
- This encourages a similar study using Al or TiN resonators

TUDelft

Kinetic Inductance Detectors (KIDs)

Requirement:

Promising detector technology for astronomy

Current Performance:

- Large arrays
- High sensitivity
- Large dynamic range

Superconducting Pair-Breaking

TUDelft

Kinetic Inductance Detector

Kinetic Inductance Detector Frequency Domain Multiplexing

Large arrays:

Resonators of Varying Length Frequency Domain Multiplexing 2 coax cables \approx 5.000 pixels

Volume Effect on responsivity

Submicron Wide CPW Resonators 27

TUDelft

Submicron Wide CPW Resonators

TUDelft

Submicron Wide CPW Resonators

Aluminum Submicron KID Prototypes

Width Hybrid KID 80% 1 – 2 - 1 μm 20% 0.3 - 0.6 - 0.3 μm

Fully submicron KID 0.3 - 0.6 - 0.3 μm

Submicron Wide CPW Resonators

KID Prototype Comparison Noise Equivalent Power

TUDelft

Drinks and Labtour

Labtour: Pieter de Visser

Drinks: Room F357/F366

Submicron Wide CPW Resonators

SPICA Far-Infrared Instrument SAFARI: Instrument Overview

Confusion Limit

Using spectroscopy to resolve individual sources

Photometry @ 120 µm

Slice @ 63.2 µm

Slice @ 58.3 µm

Sources with lines at different redshift appear in different wavelength "slices"

From primairy mirror to detection

Submicron Wide CPW Resonators

Fabrication Single layer process

Optical lithography:

Structures $\geq 1 \ \mu m$

E-beam lithography:

Structures \geq 5 nm

TUDelft

Kinetic Inductance Detector Noise Sources

NbTiN Submicron Resonators Basic results

8 of 10 resonators work regularly.

- 300 nm resonator detected as $\lambda/2$.
- 3 µm resonator missing

NbTiN: $T_c = 13.7$ (K)

Cryogenic System SRON Vericold GMBH dual stage ADR

Fabrication Single layer process

KID Prototype Comparison Responsivity

	Т _с (К)	T _{qp} (ms)	Q	a	V (μm³)	dR/dN _{qp}	$d\theta/dN_{qp}$
Micron	1.11	1.3	130k	13%	560	2.98*10-6	1.54*10-5
Hybrid	1.2	400	184k	9%	1300	0.12*10 ⁻⁵	0.60*10-5
Submicron	1.11	1.2	311k	23%	325	0.41*10-4	0.17*10-3

$$NEP(\omega) \propto \sqrt{S_x(\omega, P)} \left(\frac{\Delta}{\eta \tau} \frac{V}{\alpha Q}\right)$$

$$\frac{\delta x}{\delta N_{qp}} \propto \frac{\alpha \times Q}{V}$$

Kinetic Inductance Detector

Response to energy input

TUDelft

SAFARI Submicron KID Prototypes

Design Choices: Aluminum on sapphire X-slot antenna Comparison Micron sized (1-2-1 µm) Submicron sized (0.3-0.6-0.3 μm) •Hybrid 80% micron sized

20% submicron sized

SAFARI Submicron KID Prototypes

Comparison

MicronSubmicronHybrid

Compare

Kinetic inductance fraction
Noise spectrum
Power handling
Noise equivalent power

$$NEP(\omega) \propto \sqrt{S_x(\omega, P)} \left(\frac{\Delta}{\eta \tau} \frac{V}{\alpha Q}\right)$$

KID Prototype Comparison Kinetic Inductance Fraction

KID Prototype Comparison Noise Spectrum $NEP(\omega) \propto \sqrt{S_x(\omega, P)} \left(\frac{\Delta}{n\tau} \frac{V}{\alpha Q}\right)$

Submicron Wide CPW Resonators

KID Prototype Comparison Power Handling

TUDelft

Submicron Wide CPW Resonators

KID Prototype Comparison Noise Equivalent Power

W Hz ^{-0.5}	Micron	Hybrid	Submicron
NEP _R (15 Hz)	5.2*10 ⁻¹⁹	2.3*10 ⁻¹⁸	1.8*10 ⁻¹⁸
NEP _e (15 Hz)	3.8*10 ⁻¹⁸	2.2*10 ⁻¹⁷	8.2*10 ⁻¹⁸

Kinetic Inductance Detector

Noise Equivalent Power

KID Prototype Comparison Noise equivalent power improvements

Hybrid resonators:

Quasiparticle lifetime 0.4 ms → 1.2 ms
Volume (film thickness) 100 nm → 50 nm

$$NEP(\boldsymbol{\omega}) \propto \sqrt{S_x(\boldsymbol{\omega}, P)} \left(\frac{\Delta}{\eta \tau} \frac{V}{\alpha Q}\right)$$

Submicron resonators:

- Power handling
- 13 dB excess amplitude noise

Factor 6

Factor 4.5

Sensitivity Improvement of KIDs SPICA Far-Infrared Instrument

Current Technology: 1800 hours (2 months) Blue Square (1 arcmin²)

SPICA/SAFARI: 900 hours (1 month) Green Box (1 deg²)

V. Springel et.al., Nature (2006)

KID Prototype Comparison "Expected" Noise Equivalent Power

10⁻¹⁵ 10⁻¹⁶ NEP (W/Hz^{0.5}) ---Micron NEP_R 10⁻¹⁷ Micron NEP_A ---Hybrid NEP_R -Hybrid NEP $_{\theta}$ 10⁻¹⁸⊢ ---Submicron NEP_R Submicron NEP_{θ} 10⁻¹⁹ 10⁰ 10¹ 10^{2} 10^{3} 10^{4} 10⁵ F (Hz)

W Hz ^{-0.5}	Micron	Hybrid	Submicron
NEP _R (15 Hz)	5.2*10 ⁻¹⁹	3.9*10 ⁻¹⁹	4.1 *10 ⁻¹⁹
NEP_{θ} (15 Hz)	3.8*10 ⁻¹⁸	3.6*10 ⁻¹⁸	8.2*10-18