Two Level System Noise (TLS) and RF Readouts

Christopher McKenney

4th Microresonator Workshop 29th July, 2011

Two Level System (TLS) and Superconducting Resonators

Have well known effects in superconducting resonator applications
Energy dissipation – limits Q's of devices (Q-bits, MKIDS, etc)
Frequency shift – small shifts in resonant frequency
Add Frequency Noise

No clear theoretical understanding of noise

- •Temperature power power dependence well mapped
- •Limited exploration of variation with resonator frequency
- •Some TLS physics suggest lower noise as hf << kT

Kinetic Inductance Thermometry And Radio-Frequency Readouts

Possible use of LC resonators at Kinetic Inductance Thermometers (KITs)

- •FIR radiation absorbed by suspended bolometer island
- •Temperature read out via RF-KIT

•RF - Require large capacitors with amorphous dielectrics (TLS noise)

Kinetic Inductance Thermometry And Radio-Frequency Readouts

TLS Noise - potentially limiting factor in this FIR detection scheme

Need TLS Noise < Photon Noise

$$S_{TLS} < \frac{\beta^2}{4Q_{\sigma}^2} \frac{1+n}{n\Delta\nu}$$

 β – ratio of frequency to dissipation response n – optical efficiency ~ 1 Δv – optical bandwidth

$$\beta = \frac{\delta \sigma_2}{\delta \sigma_1} \sim 1 - 10$$

Noise for a FIR spectrometer detector with typical values: n = 1, β = 10, Q_i = 10⁵, Δv =0.3 GHz: S_{TLS} < 2x10⁻¹⁷ / Hz

Is this achievable with radio-frequency readouts?

Exploration of TLS effects at Radio-Frequency

Lumped LC resonators spanning wide frequency range

Inductance

•High α materials – TiN, NbTiN

•Vary frequency of resonators by adjusting length of meander inductors

Capacitance – goals: •Interdigitated Capactiors – 250 MHz – 3 GHz •Parallel Plate – 50 MHZ – 1 GHz •Multiple dielectrics – SiO2, SiN, Si, SOI

Fabricated our first device:
•28 Resonators
•IDC, 250 MHz – 1 GHZ

Devices: Lumped LC resonators spanning wide frequency range

Device design: 31 Resonators Resonator + CPW center conductor: NbTiN (Tc ~ 14 K) Ground Planes: Nb Dielectric coating: 200nm SiO2 Frequency: 250 MHz – 1 GHz IDC:

Fingers $2\mu m$ wide, $2\mu m$ spacing 32 Fingers total (~ 160 μm long) Finger length: 1mm Capacitance ~ 2 pF

Inductor: NbTiN ~ 6 pH / square Probe devices by measuring forward transmission (S21)

Device response plots a circle in the IQ plane:

For the resonator with fres = 813 MHz:

$$S_{21} = 1 - \frac{Q_r}{Q_c} \frac{1}{1 + 2i\delta x Q_r}$$

Fits yield:

 $Qi = 1.0x10^5$ $Qc = 3.8x10^6$

Devices are undercoupled!

Loss tangent fit over 28 resonators:

Very little change as frequency varies ~ 20% Sonnet simulations indicate F ~ 0.035 for our geometry $Q_{TLS} \sim 800$ for this amorphous SiO2

Observe decreasing Qi with temperatures

Change in Qi with temperature

Internal Qi depends strongly on electric field and temperature Weak Fields – TLS saturates as temperature increases

$$\delta_{TLS} = \delta_{TLS}^0 \tanh\left(\frac{\hbar\omega}{2kT}\right)$$

Under Bloch model TLS saturation condition

$$\Omega^{2}T_{1}T_{2} \gg 1$$

$$\Omega = \vec{d} \cdot \vec{E} / \hbar$$
For SiO2 - $E_{critical} \approx 2.6 \left(\frac{f}{GHz}\right)^{3/2} \operatorname{coth}^{1/2} \left(\frac{hf}{2kT}\right) \left(\frac{T}{200 \text{ mK}}\right)^{0.75}$
4 GHz, 200 mK: Ecrit ~ 30 V/m

500 MHz, 100mK: Ecrit ~ 1 V/m Our fields ~ 10^3 V/m, well above critical field Internal Qi depends strongly on electric field and temperature Weak Fields – TLS saturates as temperature increases

$$\delta_{TLS} = \delta_{TLS}^{0} \tanh\left(\frac{\hbar\omega}{2kT}\right) \longrightarrow \delta_{TLS}^{0} \left(\left|\vec{E}\right|\right) = \frac{\delta_{TLS}^{0} \tanh\left(\frac{\hbar\omega}{2kT}\right)}{\sqrt{1 - \left\|\vec{E}\right\|_{Ec}^{2}}}$$

Under Bloch model TLS saturation condition

$$\Omega^2 T_1 T_2 >> 1$$

$$\Omega = \vec{d} \cdot \vec{E} / \hbar$$

For SiO2 - $E_{critical} \approx 2.6 \left(\frac{f}{GHz}\right)^{3/2} \operatorname{coth}^{1/2} \left(\frac{hf}{2kT}\right) \left(\frac{T}{200 \text{mK}}\right)^{0.75}$

4 GHz, 200 mK: Ecrit ~ 30 V/m 500 MHz, 100mK: Ecrit ~ 1 V/m Our fields ~ 10^3 V/m, well above critical field

Measure noise as S21 fluctuations

(I) Amplitude and Frequency (Q) components

- Decompose noise spectra (S) into parallel and perpendicular components
- Fractional Frequency Noise Spectrum

$$\frac{S_{\delta fr}(\nu)}{f_r^2} = \frac{S_{\parallel}}{16Q^2r^2}$$

- Our devices undercoupled (Qc/Qr < 0.05)
- TLS fluctuations not far above amplifier noise
- Phase noise ~ 2-4x amplifier noise
- Measuring at internal powers not far below critical power in NbTiN

Fractional Frequency Noise Spectra - Power dependence

- •Increasing power saturates TLS
- •Observe near P^{-1/2} dependence Indicative of TLS
- •Observed from ~ 500 MHz 1 GHz

Fractional Frequency Noise Spectra

- Increasing Temperature saturates TLS
- •Observe ~ T⁻² dependence characteristic of TLS
- •Observed from ~ 500 MHz 1 GHz
- •Unusual slope is clear on temperature plot usually $S_{TLS} \sim v^{-1/2}$

Observed slope deviation from $\nu^{-1/2}$

•Operating about 10 dB below critical current – nonlinearities

- •Severely undercoupled
 - Noise is large compared to radius of curvature
 - Phase noise is 2-4x amplifier noise
 - Mixing of I & Q components?

FIR Applications:What is the TLS noise under conditions FIR detection?

Popt ~ Pdiss $P_{opt} = (\hbar v_{opt}) \Delta v$ $P_{diss} = \frac{\omega_{RF} E_{res}}{Q_i}$ $E = \frac{1}{2} C V^2$

Readout: Qi ~ 10⁵, ω RF ~ 100 MHz, C ~ 10 pF Spectroscopy: v = 300 GHz, Δ n = 0.3 GHz – V ~ 1.3 mV Photometry: v = 300 GHz, Δ n = 100 GHz – V ~ 25 mV

S_{TLS} versus applied voltage to IDC capacitor:

$$\frac{S_{\delta fr,TLS}}{f_r^2} < \frac{\beta^2}{4Q_i^2} \frac{(1+n)}{n\Delta \nu} \sim 10^{-17}$$

Calculated Capacitor Voltage <V>

Conclusions

Measured TLS noise from 500 MHz – 1 GHz

•TLS noise may be suitable for FIR detection with RF readout schemes

•No clear readout frequency dependence noticed

Remaining goals:

•Measure over wider frequency range and lower powers

- Improve coupling measure at lower powers
- Improve electronics measure noise at lowest resonator frequencies
- •More device geometries: Parallel plate, different size IDC, etc

Thanks

Rick LeDuc

BeongHo Eom

Peter Day

Loren Swenson

Jonas Zmuidzinas

Kinetic Inductance Thermometry And Radio-Frequency Readouts

Easily multiplex large number of detectors