Development of silicon lens array for MKID camera

Tomu Nitta (Univ. of Tsukuba / NAOJ)
 Masato Naruse (The Univ. of Tokyo / NAOJ)

Yutaro Sekimoto , Hiroshi Matsuo , Takashi Noguchi , Yoshinori Uzawa, Kenji Mitsui , Norio Okada , Kenichi Karatsu (NAOJ)

Masakazu Sekine (The Univ. of Tokyo / NAOJ) Masumichi Seta , Naomasa Nakai (Univ. of Tsukuba)

Table of Contents

- * Motivation
- * Development of Silicon lens array
- * Measurement of lens' shapes
- * Beam pattern measurement of antenna coupled KID
- * Summary and future work

Motivation

* Wide-field sub-millimeter camera

st survey of the distant galaxy

***** The Dome Fuji Station

Tsukuba University planning to construct the 7m submillimeter telescope at the Dome Fuji

Temperature	Altitude
· Average∶ –54 °C	
 Minimum ∶ −79 °C 	3810 m

* Comparison of 220 GHz optical depth (Ishii et al , 2010)

NAOJ Camera Design

* Target Frequency

* 220 GHz & 440 GHz

* number of pixel

* 220 GHz \rightarrow 9 pixel demo camera

* 440 GHz \rightarrow 102 pixel camera

* Camera design

Neto et al , 2009

Development of Silicon lens array

- Lens diameter : D = 3×1.36 mm (=220GHz) = 4.09 mm
- Symmetrical beam pattern and low side-lobe level
 - Extension thickness : Ext = 0.65 mm

Machining by High-speed spindle

*Prototype 220 GHz Silicon Lens Array

- 3×3 array
- · lens diameter : D=4.09 mm
- Extension thickness : L=0.35 mm
- machining time
 - \rightarrow 9 hours for machining I pixel
- R0.15 mm TiAIN coated ceramic end-mill

 \star Error from the radius of lens (R=2.045mm) $\,$ \star Surface roughness

completed 9 pixel silicon lens array

Development of 440 GHz lens array

★440 GHz 102 pixel camera design

24 mm

26 mm

- * Lens Diameter : 2.04 mm
- * Extension thickness : 0.2 mm
- * Machining Setup : high speed-spindle & R0.1 mm TiAIN coated ceramic end-mill
- * Machining Time : 1 hour for machining 1 pixel

Beam pattern measurement of Antenna coupled KID

Measurement Setup

*He3 sorption cooler

- Tmin : 300 mK
- hold time : about 10 hours
- · IR filter

- *Antenna Coupled KIDs fabricated by M.Naruse
 - 9 pixel Al KIDs
 - --film thickness : I 50 nm
 - silicon substrate
 - double slot antenna

Measurement Setup

*beam pattern measurement

measurement at magnetic shield room

outside of the shield room

inside of the shield room

- 220 GHz radiation source was scanned around the window
- recorded the amplitude variations of the S21 response

Beam Pattern Measurement

★Far-field beam pattern

- frequency : 220 GHz
- dynamic range : 20 dB
- contour : 3 dB step

Future Work

Antireflective Structure

 λ

 n_{AR}

Raguin and Morris , 1993 Grann et al , 1995

* Antireflection coating

- conditions for zero reflectivity

$$n_{AR} = \sqrt{n_{air} \cdot n_{Si}} = 1.84 \qquad d = \frac{1}{4}$$

- AR coating could separate from lens in thermal cycling .

* Antireflective structure

Form a cyclic structure smaller than the target wavelength on the silicon surface

→ Possible to replace the ARS with the effective medium of the refractive index (Effective Medium Theory)

		refractive index	thickness@220GHz
	Kapton-JP	1.84	185 um
	TMM3	1.81	188 um
	Parylene N	1.66	205 um
	Stycast I 266	I.68	203 um

Tran & Page , 2009

→ same effect of one layer AR coating

* It is possible to get an anti reflective effect with only one material

Groove Structure

*groove has polarization dependence

→Because the structure is different at the vertical or horizontal direction of the groove.

★ Groove Design of 220 GHz band

Summary

- I. Development of Si lens array for MKID camera
- * 9 & 102 pixel silicon lens array was machined with the high-speed spindle at NAOJ
 * measurement of 9 pixel lens' shapes
 - shape error : $\sim 20 \text{ um}(P-V)$
 - surface roughness: ~0.48 um(Ra)

2. Beam Pattern measurement of antenna coupled KID

- * measurement of 220 GHz beam pattern using antenna coupled AI KID
- * Simulation and measurement are well conformed

3. Future work

- \ast fabricate the AR structures on the lens surface
- * beam pattern measurement of 102 pixel KIDs array