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Resonator designs for MKIDs
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Our first far-IR pixel design (A)
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CPS feedline • Cardiff style lumped element resonator
Doyle et al, J. Low Temp. Phys. 151, 2008

• TiN film on Silicon substrate 

t = 40 nm,  Rs ~ 20 Ω/sq, Tc=4.5 K
LeDuc et al, APL 97, 2010 (JPL, Caltech)

• 90% inductor area,  10% capacitor area

• High impedance CPS feedline

• Inductive or capacitive coupling, 

Qc ~500,000

• Impedance match for direct optical 

absorption: 

λ(optical) ~ 350 microns
a ≈ Fλ = 1mm

a

w p



First far-IR array: design (A)
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• 16 x 14 = 224 resonators 

• Resonators tightly packed in 

space (for efficiency) and in 

frequency (for multiplexing): 

Spacing = 60 um, ∆f = 1 

MHz,  

Coupling Q ~ 500,000.



Measurements:  array design (A)
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• 210 resonators showed up 

(out of 224)

• Feedline power = -90 dBm

• Temp = 100 mK

• Range ~ 1.25-1.55 GHz

• Tc = 4.1 K



• S-shape pattern in frequency vs. number plot.

• ~3 orders of magnitude variation in coupling quality factor (Qc).

• Extremely high internal Q (Qi ≤ 3.1 x 107).

Measurements:  array design (A)
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Resonator Crosstalk
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Crosstalk: simple model
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Uncoupled:  

Coupled:  

Frequency eigenvalues:  

A measure for cross-coupling:
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Crosstalk: simple model
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Array simulation for design (A)
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∆f =36.2 MHz

∆f =60.4 MHz ∆f =8.6 MHz

∆f =28.2 MHz

∆f =6.9 MHz

Eigen-frequencies of array



Eigen-frequencies and energy distribution for 

design (A)
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Simulation
Simulation (no coupling)
Measurement

• Simulated circuit model with 16x14 = 224 resonators. 

• Using simulated coupling energies, model predicts S-shape pattern in eigen-frequencies!

• Excellent agreement with measurement! (no fitting used).

• Each frequency mode is highly distributed across array � Large cross-coupling
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Simulation: effect of crosstalk on Qc for design (A) 
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Measuring crosstalk: “pump-probe” experiment
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Crosstalk measurement for design (A)

• Resonances highly coupled together.

• Crosstalk ≤ 60%  !
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New resonator for reduced crosstalk

(design B)
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0.5 mm

0.65 mm

• Close proximity of opposite 

polarity conductors and 

charges avoids large electric 

dipole moments, and results 

in confined fields.

• Spiral design for dual 

polarization absorption

Reduced cross-coupling



Comparison of coupling strengths in design (A) and (B)
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COUPLING SPLITTING FREQUENCIES 
Design A Design B 

Configuration �������������� (MHz) Configuration �������������� (MHz) 
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New array design (B)
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• High fill-factor array of dual-pol resonators

• Checker-board frequency coding to reduce crosstalk 

H1 H2 H3L1 L2 L3

L9 L10 L11H9 H10 H11

H17 H18 H19L17 L18 L19

…

…

…

Hn = nth frequency in high frequency band

Ln = nth frequency in Low frequency band 



Initial array with resonator design B (16x16)



Mounting box
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Back side (illumination side)Front side



Latest array with resonator design B (16x16)

Absorber 

/inductor

Interdigitate

d capacitor

CPW feedline
16x16 pixels  (~.5mm x .7mm pixels)

CPW + ground straps

Nb feedline (only centerline)

Gold edge + gold wirebonds  

Modifications:
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• Much more uniform frequency spacing between 256 resonators.

• Inverted S-shape almost disappeared.

• Nearest neighbor pixels have at least ~40 dB lower energy. � No cross-coupling.
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Crosstalk measurement for design (B)
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• High fill-factor array  

• Crosstalk ≤ 2% !   � Indeed, crosstalk effectively gone.
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Remaining Qc variation and effect on NEP

• Qc variation less than one order of 

magnitude achieved with new array design.

• NEP is a slow function of Qc variation:
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Record high Q with TiN

(with high pixel yield and uniformity)
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This means:

•Very low 

microwave loss 

material.

•Very low 

radiation loss 

resonator design.



Improved dual-polarization design

Meander simulation with Rs = 20 Ω/sq using HFSS -

N. Llombart
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Coupling Splitting Frequency

Horizontal Vertical Diagonal Horz-cross Diag-cross

1.2 MHz 2.9 MHz 0.2 MHz 2.4 MHz 0.5 MHz

Optimum sheet 

absorber on silicon 

substrate

Low crosstalk properties maintained 

while improving dual-pol absorption:



Summary

• Direct absorption far-IR MKIDs using TiN have very simple design 
and fabrication.

• 256 pixel array developed and demonstrated with good optical 
absorption, high pixel yield, and very high Qi.

• Crosstalk was major problem in initial design (60%), but was solved:

– Simple cross-coupling model developed and confirmed.

– Very low crosstalk ( < 2%) resonator and array designed and 
measured.

– Simple “pump-probe” technique developed for crosstalk 
measurement.

• Qc variation more under control (one order of magnitude), but still 
an issue since it affects NEP.

• Better dual-polarization pixel designed. Measurements under way.

• Effort opens path to very large arrays on CCAT and others.



Thank you for 

your time!
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Extra Slides
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Credits: Peter Day and Byeong Eom

Response to black body (design A)
• 215 um band pass filter (metal mesh).

• Response corresponds to ~70% absorption efficiency. (given measured lifetime and 

temperature response) 

•Efficiency agrees well with CST simulation (credits: Nuria Llombart).



Response to 200 µm Black Body  (Design B)
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Crosstalk measurement:  First FIR array (design A)
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Measurement results (latest two array B’s)

36

0 50 100 150 200 250
1.1

1.2

1.3

1.4

1.5

1.6

1.7

F
re
qu
en
c
y

Resonator number

 

 

FIR Spira l, CPW s traps , 1011 (Janis )
FIR Spira l, CPW s traps ,1007 (Leiden)

• Much more uniform frequency spacing between 256 resonators

• Inverted S-shape almost disappeared (Cross-coupling)
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Eigenfrequencies and Eigenmodes for 256 pixel array
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• Using coupling energies, circuit model predicts  

S-shape pattern in eigenfrequencies.  

•Eigenmodes distributed over space � crosstalk!

Eigenmodes (Simulated)

Credits: Peter Day and Byeong Eom

Eigenfrequencies (measured)



Very high Qi resonator
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Crosstalk v.s. separation

Obscos seminar, Caltech, Oct 7, 2010 40
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Checkerboard pattern

CPS CPS
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Obscos seminar, Caltech, Oct 7, 2010



Summary

• Far-IR lumped-element MKID arrays (~250 pixels) using single layer TiN 

have been designed and measured in the lab and show very promising 

results. 

• Pixel-pixel crosstalk was initially ≤ 70% but reduced to ≤ 2% in new design! 

• Simple circuit model predicts and explains crosstalk.

• Optical absorption with black body demonstrated with ~70% absorption 

efficiency (single pol) for first pixel design. New design still to be 

calibrated (expect efficiency of ~35% per polarization)

• Better dual polarization design is underway.

• Variation in coupling Q’s reduced from ~3 to ~1 order of magnitude, but 

still major issue. 

• Consistently measured very high internal Q resonators (31 x 106, highest 

up to date in MKIDs).
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