Simulations and measurements to optimize the optical coupling of LEKIDs

Markus Rösch

07/28/2011

NIKA (NEEL-IRAM-KIDs-Array)

Antenna coupled KID Array

SRON Netherlands Institute for Space research Groningen, Utrecht, Netherlands

Delft University of Technology Delft, Netherlands

University of

J-J. Lankwarden, L. Ferrari

J. Baselmans, S. Yates, A. Barychev,

A. Endo

The NIKA 2-mm LEKID array

Material: aluminum Thickness: 20 nm Substrate: high resistive silicon number of pixels: 132 sample holder: aluminum not visible: back-short

More details about NIKA will be presented by Alessandro Monfardini

Optical coupling

Transmission line model

$$Z_{substrate} = \frac{Z_{FS}}{\sqrt{\varepsilon_r}} = \frac{120 \pi}{\sqrt{\varepsilon_r}} \qquad Z_{LEKID} = R + j\omega L = \frac{R_{sheet}}{s/w} + j\frac{w}{\lambda}\ln\csc\left(\frac{2w}{\pi s}\right)Z_0$$

Ulrich, Infrared physics, vol. 7, pp. 37-57, 1967 Marcuvitz, Microwave Handbook

$$\left|\underline{S}\right|_{11} = \frac{\left|Z_{L} - Z_{0}\right|}{\left|Z_{L} + Z_{0}\right|}$$

absorption
$$= 1 - \left| \underline{S}_{11} \right|^2$$

Transmission line model

Cryogenic measurements to optimize these parameters are very time consuming

Reflection measurements at room temperature

- Assumptions: detection = absorption
 - el. properties are comparable to cryogenic case
 - (150 GHz > 90 GHz gap frequency of aluminum)
 - resistivity can be adapted by RRR factor

Measurement and simulation

Comparison of reflection measurement, simulation and transmission line model

Comparison of reflection measurement and FTS measurement at 100 mK in camera A. Bideaud, thesis, 2010 A. Monfardini et al, ApJ, 2011

180

Simulation of current distribution in LEKIDs

Current distribution varies with the phase of the incoming mm-wave

Current in strips that are orthogonal to the el. field vector are small \rightarrow Error due to radiation in different polarizations is small

Currents in strips close to the ground plane are smaller \rightarrow filling factor is higher \rightarrow lower impedance \rightarrow less absorption

LEKID geometry for 2 polarizations

- constant filling-factor over the whole direct detection area
- reasonable filling factor for optimal optical coupling
- symmetrical geometry: same optical coupling for horizontal and vertical orientation
 - symmetrical current distribution

Hilbert curve

Peano curve

LEKID geometry for 2 polarizations

- same filling-factor as meander geometry (assuming similar absorption in interrupted lines
- same coupling to feed line

Optical absorption

Low temperature measurements of Hilbert LEKID

Response for both polarizations identical

- Average sensitivity: NET = $2.5 \text{ mK/Hz}^{0.5}$ per pix (factor 2-3 from IRAM specifications)

- Best pixels: NET = $0.8 \text{ mK/Hz}^{0.5}$ per pix

Conclusion

- Reflection measurement setup to optimize the optical coupling at room temperature as alternative to cryogenic measurements
- Good agreement between reflection measurements, transmission line model, simulation and FTS measurement
- Two polarization geometry shows promising results
- Factor gained compared to meander structure ~ 1.5
- Best pixels showed NET = 0.8 mK/Hz^0.5 → new record for LEKIDs at the 2 mm window

Outlook

- developing arrays for 1 mm
- Optimize the optical coupling by simulations and measurements for 1 mm
- cross-talk issues
- investigation in TiN LEKIDs

- 3rd telescope run foreseen in October 2011

