Measurement of photon noise limited detection with lens-array coupled MKIDs using phase readout

S. Yates

Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research (NWO)

-5

Photon noise

• Intrinsic noise of incoming radiation

$$NEP_{photon} = \sqrt{2PhF(1+mB)} \simeq \sqrt{2PhF}$$

• Power dependent!! So NEP required is dependent on situation

Relation to generation-recombination noise

:
$$NEP_{g-r} = \frac{2\Delta}{\eta_{pb}} \sqrt{N_{qp}/\tau}$$

- Optical signal modifies quasiparticle number
- Generation of quasiparticles correlated with photon noise
- Recombination still gives Poisson noise, taking $N_{ap} = \eta_{pb} P \tau / \Delta$:

$$NEP_{g-r} = \sqrt{2P\Delta/\eta_{pb}}$$

• Giving ratio:

g-r NEP

ullet

$$NEP_{photon}/NEP_{g-r} \simeq \sqrt{hF\eta_{pb}/(\Delta)}$$

- ~2.1 for F=350GHz, Δ/h =45GHz for aluminium
- Total NEP~1.1 NEP_{photon}

Remarks

- g-r NEP is 2x less than photon in aluminium see g-r!
- Like g-r, photon noise is a signal in quasiparticles, so expect a white noise spectrum rolled off by quasiparticle lifetime
- Expect \sqrt{P} dependence for both photon and g-r noise so ratio photon/g-r should be constant
- Other noise sources...
 - Amplifiers
 - 2LS

KID antenna lens system

Lens creates room for KID

- Flexibility in optics design
- Decouple coupling from sensitivity
- Works for entire FIR & sub-mm
- Octave bandwidth possible
- Simple

Known problems

- 1 polarisation
- Quasiparticle outdiffusion
- Needs antireflection coating
- Needs lens array

Measurement setup

8

Responsivity calculation

KID 130,Q= 0.578e5, Qi= 10.7e5

Phase 0.3 0.15 Radius-1 +0.2 0.1 0.1 Fscan Reponse TD data Ξ Π 0.05 -0.1 -0.2 0 -0.3 50 100 150 0 0.2 -0.2 0 Loading (fW) Re

SRON

Responsivity versus optical loading

- Naive calculations expect $\sim \sqrt{P}$
- Get slower power (P^{0.25}) so SNR of photon with respect to other noises improves at high loading

Radius NEP

From S. Yates et al., arXiv 1107.4330, accepted for APL

S. Yates for the 4th microresonator workshop, IRAM, Grenoble 2011 12

Detector Optical efficiency

- MKIDs aren't bolometers need calibration
- Calibrate compared to power input to lens
- NEP is the SNR in 1Hz bandwidth
- Loss of photons to detection decrease signal, increase in NEP

$$NEP^2 = NEP_{det}^2 + (NEP_{g-r}^2 + NEP_{photon}^2)/\eta$$

• Detector NEP – other contributions (amplifier, 2LS etc)

10³

b

(a)

Phase NEP

- 2LS 1/f^{0.25} to NEP
- Low f also has setup and optical drift
- Phase

SRON

- more signal, so relaxes amplifier requirements
- larger dynamic range

